Cerfolio RJ, Bryant AS, Ohja B, Bartolucci AA: The maximum standardized uptake values on positron emission tomography of a non-small cell lung cancer predict stage, recurrence, and survival. J Thorac Cardiovasc Surg 2005, 130: 151–159. 10.1016/j.jtcvs.2004.11.007
Article
PubMed
Google Scholar
Cerfolio RJ, Bryant AS, Ojha B, Eloubeidi M: Improving the inaccuracies of clinical staging of patients with NSCLC: a prospective trial. Ann Thorac Surg 2005, 80: 1207–1214. 10.1016/j.athoracsur.2005.04.019
Article
PubMed
Google Scholar
Subedi N, Scarsbrook A, Darby M, Korde K, Mc Shane P, Muers MF: The clinical impact of integrated FDG PET–CT on management decisions in patients with lung cancer. Lung Cancer 2009,64(3):301–307. 10.1016/j.lungcan.2008.09.006
Article
CAS
PubMed
Google Scholar
Dijkman B, Schuurbiers O, Vriens D, Looijen-Salamon M, Bussink J, Timmer-Bonte J, Snoeren M, Oyen W, van der Heijden H, de Geus-Oei L-F: The role of 18F-FDG PET in the differentiation between lung metastases and synchronous second primary lung tumours. Eur J Nucl Med Mol Imaging 2010,37(11):2037–2047. 10.1007/s00259-010-1505-2
Article
PubMed Central
PubMed
Google Scholar
Gregory DL, Hicks RJ, Hogg A, Binns DS, Shum PL, Milner A, Link E, Ball DL, Mac Manus MP: Effect of PET/CT on management of patients with non-small cell lung cancer: results of a prospective study with 5-year survival data. J Nucl Med 2012,53(7):1007–1015. 10.2967/jnumed.111.099713
Article
PubMed
Google Scholar
Erdi YE, Macapinlac H, Rosenzweig KE, Humm JL, Larson SM, Erdi AK, Yorke ED: Use of PET to monitor the response of lung cancer to radiation treatment. Eur J Nucl Med Mol Imaging 2000,27(7):861–866. 10.1007/s002590000258
Article
CAS
Google Scholar
Beyer T, Czernin J, Freudenberg LS: Variations in clinical PET/CT operations: results of an international survey of active PET/CT users. J Nucl Med 2011,52(2):303–310. 10.2967/jnumed.110.079624
Article
PubMed
Google Scholar
Bryant AS, Cerfolio RJ: The maximum standardized uptake values on integrated FDG-PET/CT is useful in differentiating benign from malignant pulmonary nodules. Ann Thorac Surg 2006,82(3):1016–1020. 10.1016/j.athoracsur.2006.03.095
Article
PubMed
Google Scholar
Nambu A, Kato S, Sato Y, Okuwaki H, Nishikawa K, Saito A, Matsumoto K, Ichikawa T, Araki T: Relationship between maximum standardized uptake value (SUVmax) of lung cancer and lymph node metastasis on FDG-PET. Ann Nucl Med 2009,23(3):269–275. 10.1007/s12149-009-0237-5
Article
CAS
PubMed
Google Scholar
Young H, Baum R, Cremerius U, Herholz K, Hoekstra O, Lammertsma AA, Pruim J, Price P: Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur J Cancer 1999, 35: 1773–1782. 10.1016/S0959-8049(99)00229-4
Article
CAS
PubMed
Google Scholar
Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA: Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med 2004, 45: 1519–1527.
PubMed
Google Scholar
Nahmias C, Wahl LM: Reproducibility of standardized uptake value measurements determined by 18F-FDG PET in malignant tumors. J Nucl Med 2008, 49: 1804–1808. 10.2967/jnumed.108.054239
Article
PubMed
Google Scholar
Lodge MA, Chaudhry MA, Wahl RL: Noise considerations for PET quantification using maximum and peak standardized uptake value. J Nucl Med 2012, 53: 1041–1047. 10.2967/jnumed.111.101733
Article
PubMed Central
CAS
PubMed
Google Scholar
Wahl RL, Jacene H, Kasamon Y, Lodge MA: From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 2009, 50: 122S-150S. 10.2967/jnumed.108.057307
Article
PubMed Central
CAS
PubMed
Google Scholar
Larson SM, Erdi Y, Akhurst T, Mazumdar M, Macapinlac HA, Finn RD, Casilla C, Fazzari M, Srivastava N, Yeung HW, Humm JL, Guillem J, Downey R, Karpeh M, Cohen AE, Ginsberg R: Tumor treatment response based on visual and quantitative changes in global tumor glycolysis using PET-FDG imaging. The visual response score and the change in total lesion glycolysis. Clin Positron Imaging 1999, 2: 159–171. 10.1016/S1095-0397(99)00016-3
Article
PubMed
Google Scholar
Wiele C, Kruse V, Smeets P, Sathekge M, Maes A: Predictive and prognostic value of metabolic tumour volume and total lesion glycolysis in solid tumours. Eur J Nucl Med Mol Imaging 2013, 40: 290–301. 10.1007/s00259-012-2280-z
Article
CAS
PubMed
Google Scholar
Pak K, Cheon GI, Nam H-Y, Kim S-J, Kang KW, Chung J-K, Kim EE, Lee DS: Prognostic value of metabolic tumor volume and total lesion glycolysis in head and neck cancer: a systematic review and meta-analysis. J Nucl Med 2014, 55: 884–890. 10.2967/jnumed.113.133801
Article
CAS
PubMed
Google Scholar
Chung MDHH, PD, Kwon MDHW, Kang MDKW, Park MDN-H, Song MDY-S, Chung MDJ-K, Kang MDS-B, Kim MDJW: Prognostic value of preoperative metabolic tumor volume and total lesion glycolysis in patients with epithelial ovarian cancer. Ann Surg Oncol 2012, 19: 1966–1972. 10.1245/s10434-011-2153-x
Article
PubMed
Google Scholar
Hyun S, Ahn H, Kim H, Ahn M-J, Park K, Ahn Y, Kim J, Shim Y, Choi J: Volume-based assessment by 18F-FDG PET/CT predicts survival in patients with stage III non-small-cell lung cancer. Eur J Nucl Med Mol Imaging 2014, 41: 50–58. 10.1007/s00259-013-2530-8
Article
CAS
PubMed
Google Scholar
Panin VY, Kehren F, Michel C, Casey M: Fully 3-D PET reconstruction with system matrix derived from point source measurements. Med Imaging, IEEE Trans 2006, 25: 907–921. 10.1109/TMI.2006.876171
Article
Google Scholar
Alessio AM, Stearns CW, Shan T, Ross SG, Kohlmyer S, Ganin A, Kinahan PE: Application and evaluation of a measured spatially variant system model for PET image reconstruction. Med Imaging IEEE Trans 2010, 29: 938–949. 10.1109/TMI.2010.2040188
Article
Google Scholar
Conti M, Bendriem B, Casey M, Chen M, Kehren F, Michel C, Panin V: First experimental results of time-of-flight reconstruction on an LSO PET scanner. Phys Med Biol 2005, 50: 4507. 10.1088/0031-9155/50/19/006
Article
PubMed
Google Scholar
Kalemis A, Delattre BMA, Heinzer S: Sequential whole-body PET/MR scanner: concept, clinical use, and optimisation after two years in the clinic. The manufacturer's perspective. Magn Reson Mater Phy 2013, 26: 5–23. 10.1007/s10334-012-0330-y
Article
CAS
Google Scholar
Karp JS, Surti S, Daube-Witherspoon ME, Muehllehner G: Benefit of time-of-flight in PET: experimental and clinical results. J Nucl Med 2008, 49: 462–470. 10.2967/jnumed.107.044834
Article
PubMed Central
PubMed
Google Scholar
Lois C, Jakoby BW, Long MJ, Hubner KF, Barker DW, Casey ME, Conti M, Panin VY, Kadrmas DJ, Townsend DW: An assessment of the impact of incorporating time-of-flight information into clinical PET/CT imaging. J Nucl Med 2010, 51: 237–245. 10.2967/jnumed.109.068098
Article
PubMed Central
PubMed
Google Scholar
El Fakhri G, Surti S, Trott CM, Scheuermann J, Karp JS: Improvement in lesion detection with whole-body oncologic time-of-flight PET. J Nucl Med 2011, 52: 347–353. 10.2967/jnumed.110.080382
Article
PubMed Central
PubMed
Google Scholar
Akamatsu G, Ishikawa K, Mitsumoto K, Taniguchi T, Ohya N, Baba S, Abe K, Sasaki M: Improvement in PET/CT image quality with a combination of point-spread function and time-of-flight in relation to reconstruction parameters. J Nucl Med 2012, 53: 1716–1722. 10.2967/jnumed.112.103861
Article
PubMed
Google Scholar
Kadrmas DJ, Casey ME, Black NF, Hamill JJ, Panin VY, Conti M: Experimental comparison of lesion detectability for four fully-3D PET reconstruction schemes. Med Imaging IEEE Trans 2009, 28: 523–534. 10.1109/TMI.2008.2006520
Article
Google Scholar
Schaefferkoetter J, Casey ME, Townsend DW, El Fakhri G: Clinical impact of time-of-flight and point response modeling in PET reconstructions: a lesion detection study. Phys Med Biol 2013, 58: 1465–1478. 10.1088/0031-9155/58/5/1465
Article
PubMed Central
PubMed
Google Scholar
Kadrmas DJ, Casey ME, Conti M, Jakoby BW, Lois C, Townsend DW: Impact of time-of-flight on PET tumor detection. J Nucl Med 2009, 50: 1315–1323. 10.2967/jnumed.109.063016
Article
PubMed Central
PubMed
Google Scholar
Tong S, Alessio AM, Thielemans K, Stearns C, Ross S, Kinahan PE: Properties and mitigation of edge artifacts in PSF-based PET reconstruction. Nucl Sci IEEE Trans 2011, 58: 2264–2275. 10.1109/TNS.2011.2164579
Article
Google Scholar
Rahmim A, Qi J, Sossi V: Resolution modeling in PET imaging: theory, practice, benefits, and pitfalls. Med Phys 2013, 40: 064301–064315. 10.1118/1.4800806
Article
PubMed Central
PubMed
Google Scholar
Rapisarda E, Bettinardi V, Thielemans K, Gilardi MC: Image-based point spread function implementation in a fully 3D OSEM reconstruction algorithm for PET. Phys Med Biol 2010, 55: 4131–4151. 10.1088/0031-9155/55/14/012
Article
CAS
PubMed
Google Scholar
Watson CC: Estimating effective model kernel widths for PSF reconstruction in PET. Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2011 IEEE; 23–29 Oct. 2011 2011, 2368–2374.
Google Scholar
Kotasidis FA, Matthews JC, Angelis GI, Noonan PJ, Jackson A, Price P, Lionheart WR, Reader AJ: Single scan parameterization of space-variant point spread functions in image space via a printed array: the impact for two PET/CT scanners. Phys Med Biol 2011, 56: 2917–2942. 10.1088/0031-9155/56/10/003
Article
CAS
PubMed
Google Scholar
Lasnon C, Hicks RJ, Beauregard J-M, Milner A, Paciencia M, Guizard A-V, Bardet S, Gervais R, Lemoel G, Zalcman G, Aide N: Impact of point spread function reconstruction on thoracic lymph node staging with 18F-FDG PET/CT in non–small cell lung cancer. Clin Nucl Med 2012, 37: 971–976. 10.1097/RLU.0b013e318251e3d1
Article
PubMed
Google Scholar
Andersen FL, Klausen TL, Loft A, Beyer T, Holm S: Clinical evaluation of PET image reconstruction using a spatial resolution model. Eur J Radiol 2013, 82: 862–869. 10.1016/j.ejrad.2012.11.015
Article
PubMed
Google Scholar
Prieto E, Dominguez-Prado I, Garcia-Velloso MJ, Penuelas I, Richter JA, Marti-Climent JM: Impact of time-of-flight and point-spread-function in SUV quantification for oncological PET. Clin Nucl Med 2013, 38: 103–109. 10.1097/RLU.0b013e318279b9df
Article
PubMed
Google Scholar
Lasnon C, Desmonts C, Quak E, Gervais R, Do P, Dubos-Arvis C, Aide N: Harmonizing SUVs in multicentre trials when using different generation PET systems: prospective validation in non-small cell lung cancer patients. Eur J Nucl Med Mol Imaging 2013, 40: 985–996. 10.1007/s00259-013-2391-1
Article
PubMed Central
CAS
PubMed
Google Scholar
Boellaard R, O'Doherty MJ, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG, Oyen WJ, Kotzerke J, Hoekstra OS, Pruim J, Marsden PK, Tatsch K, Hoekstra CJ, Visser EP, Arends B, Verzijlbergen FJ, Zijlstra JM, Comans EF, Lammertsma AA, Paans AM, Willemsen AT, Beyer T, Bockisch A, Schaefer-Prokop C, Delbeke D, Baum RP, Chiti A, Krause BJ: FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 2010, 37: 181–200. 10.1007/s00259-009-1297-4
Article
PubMed Central
PubMed
Google Scholar
Kelly MD, Declerck JM: SUVref: reducing reconstruction-dependent variation in PET SUV. EJNMMI Res 2011, 1: 16. 10.1186/2191-219X-1-16
Article
PubMed Central
PubMed
Google Scholar
Jakoby BW, Bercier Y, Conti M, Bendriem B, Townsend D: Physical and clinical performance of the mCT time-of-flight PET/CT scanner. Phys Med Biol 2011, 56: 2375–2389. 10.1088/0031-9155/56/8/004
Article
CAS
PubMed
Google Scholar
Conti M, Bendriem B, Casey M, Mu C, Kehren F, Michel C, Panin V: Implementation of time-of-flight on CPS HiRez PET scanner. Nuclear Science Symposium Conference Record, 2004 IEEE; 16–22 Oct. 2004 2004, 2796–2800.
Google Scholar
National Electrical Manufacturers Association: NEMA Standards Publication NU 2–2007: Performance Measurements of Positron Emission Tomographs. NEMA 2007.
Rahmim A, Tang J: Noise propagation in resolution modeled PET imaging and its impact on detectability. Phys Med Biol 2013, 58: 6945–6968. 10.1088/0031-9155/58/19/6945
Article
PubMed
Google Scholar
Hofheinz F, Dittrich S, Potzsch C, Hoff J: Effects of cold sphere walls in PET phantom measurements on the volume reproducing threshold. Phys Med Biol 2010, 55: 1099–1113. 10.1088/0031-9155/55/4/013
Article
CAS
PubMed
Google Scholar
Berthon B, Marshall C, Edwards A, Evans M, Spezi E: Influence of cold walls on PET image quantification and volume segmentation: a phantom study. Med Phys 2013, 40: 082505. 10.1118/1.4813302
Article
CAS
PubMed
Google Scholar
Budinger TF: Time-of-flight positron emission tomography: status relative to conventional PET. J Nucl Med 1983, 24: 73–78.
CAS
PubMed
Google Scholar