Malakoff D. The rise of the mouse, biomedicine’s model mammal. Science. 2000;288:248–53.
Article
CAS
Google Scholar
Zhao S, Shetty J, Hou L, Delcher A, Zhu B, Osoegawa K, et al. Human, mouse, and rat genome large-scale rearrangements: stability versus speciation. Genome Res. 2004;14:1851–60.
Article
CAS
Google Scholar
Cherry SR. The 2006 Henry N. Wagner lecture: of mice and men (and positrons)—advances in PET imaging technology. J Nucl Med. 2006;47:1735–45.
CAS
Google Scholar
Taylor K, Gordon N, Langley G, Higgins W. Estimates for worldwide laboratory animal Use in 2005. Altern Lab Anim. 2008;36:327–42.
Article
CAS
Google Scholar
de Kemp RA, Epstein FH, Catana C, Tsui BMW, Ritman EL. Small-animal molecular imaging methods. J Nucl Med. 2010;51:18S-32S.
Article
Google Scholar
Toyohara J, Ishiwata K. Animal tumor models for PET in drug development. Ann Nucl Med. 2011;25:717–31.
Article
Google Scholar
Cuccurullo V, Di Stasio GD, Schillirò ML, Mansi L. Small-animal molecular imaging for preclinical cancer research: μPET and μSPECT. Curr Radiopharm. 2016;9:102–13.
Article
Google Scholar
Carbone L. Estimating mouse and rat use in American laboratories by extrapolation from Animal Welfare Act-regulated species. Sci Rep. 2021;11:493.
Article
CAS
Google Scholar
Cherry SR, Shao Y, Silverman RW, Meadors K, Siegel S, Chatziioannou A, et al. MicroPET: a high resolution PET scanner for imaging small animals. IEEE Trans Nucl Sci. 1997;44:1161–6.
Article
CAS
Google Scholar
Miyaoka RS, Lehnert AL. Small animal PET: a review of what we have done and where we are going. Phys Med Biol. 2020;65:24TR04.
Article
Google Scholar
Amirrashedi M, Zaidi H, Ay MR. Advances in preclinical PET instrumentation. PET Clin. 2020;15:403–26.
Article
Google Scholar
Lai Y, Wang Q, Zhou S, Xie Z, Qi J, Cherry SR, et al. H2RSPET: a 0.5 mm resolution high-sensitivity small-animal PET scanner, a simulation study. Phys Med Biol. 2021;66:065016.
Article
CAS
Google Scholar
Kim KY, Son J-W, Kim K, Chung Y, Park JY, Lee Y-S, et al. Performance evaluation of SimPET-X, a PET insert for simultaneous mouse total-body PET/MR imaging. Mol Imaging Biol. 2021;23:703–13.
Article
Google Scholar
Jones T. Total body PET imaging from mice to humans. Front Phys. 2020. https://doi.org/10.3389/fphy.2020.00077.
Article
Google Scholar
Surti S, Pantel AR, Karp JS. Total body PET: why, how, what for? IEEE Trans Radiat Plasma Med Sci. 2020;4:283–92.
Article
Google Scholar
Saboury B, Morris MA, Farhadi F, Nikpanah M, Werner TJ, Jones EC, et al. Reinventing molecular imaging with total-body PET, part I: technical revolution in evolution. PET Clin. 2020;15:427–38.
Article
Google Scholar
Surti S, Guerra AD, Zaidi H. Total-body PET is ready for prime time. Med Phys. 2021;48:3–6.
Article
Google Scholar
Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine E-book. Amsterdam: Elsevier; 2012.
Google Scholar
Cherry SR, Jones T, Karp JS, Qi J, Moses WW, Badawi RD. Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med. 2018;59:3–12.
Article
CAS
Google Scholar
Zhang X, Cherry SR, Xie Z, Shi H, Badawi RD, Qi J. Subsecond total-body imaging using ultrasensitive positron emission tomography. PNAS Natl Acad Sci. 2020;117:2265–7.
Article
CAS
Google Scholar
Kang HG, Tashima H, Yoshida E, Higuchi M, Yamaya T. A total-body small animal PET scanner with a 4-layer DOI detector. J Nucl Med. 2021;62:1148–1148.
Google Scholar
Du J, Bai X, Liu C-C, Qi J, Cherry SR. Design and evaluation of gapless curved scintillator arrays for simultaneous high-resolution and high-sensitivity brain PET. Phys Med Biol. 2019;64:235004.
Article
CAS
Google Scholar
Zhang X, Xie Q, Xie S, Yu X, Xu J, Peng Q. A novel portable gamma radiation sensor based on a monolithic lutetium–yttrium oxyorthosilicate ring. Sensors. 2021;21:3376.
Article
CAS
Google Scholar
Stolin AV, Martone PF, Jaliparthi G, Raylman RR. Preclinical positron emission tomography scanner based on a monolithic annulus of scintillator: initial design study. JMI. 2017;4:011007.
Google Scholar
Yoshida E, Tashima H, Hirano Y, Inadama N, Nishikido F, Murayama H, et al. Spatial resolution limits for the isotropic-3D PET detector X’tal cube. Nucl Instrum Methods Phys Res Sect A. 2013;728:107–11.
Article
CAS
Google Scholar
Lin S-Y, Craythorn RG, O’Connor AE, Matzuk MM, Girling JE, Morrison JR, et al. Female infertility and disrupted angiogenesis are actions of specific follistatin isoforms. Mol Endocrinol. 2008;22:415–29.
Article
CAS
Google Scholar
Schellong K, Neumann U, Rancourt RC, Plagemann A. Increase of long-term ‘diabesity’ risk, hyperphagia, and altered hypothalamic neuropeptide expression in neonatally overnourished ‘small-for-gestational-age’ (SGA) rats. PLoS ONE. 2013;8:e78799.
Article
CAS
Google Scholar
Krishnamoorthy S, Blankemeyer E, Mollet P, Surti S, Holen RV, Karp JS. Performance evaluation of the MOLECUBES β-CUBE—a high spatial resolution and high sensitivity small animal PET scanner utilizing monolithic LYSO scintillation detectors. Phys Med Biol. 2018;63:155013.
Article
Google Scholar
Gsell W, Molinos C, Correcher C, Belderbos S, Wouters J, Junge S, et al. Characterization of a preclinical PET insert in a 7 tesla MRI scanner: beyond NEMA testing. Phys Med Biol. 2020;65:245016.
Article
CAS
Google Scholar
Gu Z, Taschereau R, Vu NT, Prout DL, Lee J, Chatziioannou AF. Performance evaluation of HiPET, a high sensitivity and high resolution preclinical PET tomograph. Phys Med Biol. 2020;65:045009.
Article
CAS
Google Scholar
Kuang Z, Wang X, Ren N, Wu S, Gao J, Zeng T, et al. Design and performance of SIAT aPET: a uniform high-resolution small animal PET scanner using dual-ended readout detectors. Phys Med Biol. 2020;65:235013.
Article
CAS
Google Scholar
Dedeurwaerdere S, Callaghan PD, Pham T, Rahardjo GL, Amhaoul H, Berghofer P, et al. PET imaging of brain inflammation during early epileptogenesis in a rat model of temporal lobe epilepsy. EJNMMI Res. 2012;2:60.
Article
Google Scholar
Becker G, Warnier C, Serrano ME, Bahri MA, Mercier J, Lemaire C, et al. Pharmacokinetic characterization of [18F]UCB-H PET radiopharmaceutical in the rat brain. Mol Pharm. 2017;14:2719–25.
Article
CAS
Google Scholar
Sinharay S, Tu T-W, Kovacs ZI, Schreiber-Stainthorp W, Sundby M, Zhang X, et al. In vivo imaging of sterile microglial activation in rat brain after disrupting the blood-brain barrier with pulsed focused ultrasound: [18F]DPA-714 PET study. J Neuroinflamm. 2019;16:155.
Article
Google Scholar
Toyonaga T, Smith LM, Finnema SJ, Gallezot J-D, Naganawa M, Bini J, et al. In vivo synaptic density imaging with 11C-UCB-J detects treatment effects of saracatinib in a mouse model of alzheimer disease. J Nucl Med. 2019;60:1780–6.
Article
CAS
Google Scholar
Sadasivam P, Fang XT, Toyonaga T, Lee S, Xu Y, Zheng M-Q, et al. Quantification of SV2A binding in rodent brain using [18F]SynVesT-1 and PET imaging. Mol Imaging Biol. 2021;23:372–81.
Article
CAS
Google Scholar
Missimer J, Madi Z, Honer M, Keller C, Schubiger A, Ametamey S-M. Performance evaluation of the 16-module quad-HIDAC small animal PET camera. Phys Med Biol. 2004;49:2069–81.
Article
Google Scholar
Schäfers KP, Reader AJ, Kriens M, Knoess C, Schober O, Schäfers M. Performance evaluation of the 32-Module quadHIDAC small-animal PET scanner. J Nucl Med. 2005;46:996–1004.
Google Scholar
Hastings DL, Reader AJ, Julyan PJ, Zweit J, Jeavons AP, Jones T. Performance characteristics of a small animal PET camera for molecular imaging. Nucl Instrum Methods Phys Res Sect A. 2007;573:80–3.
Article
CAS
Google Scholar
Surti S, Karp JS, Perkins AE, Cardi CA, Daube-Witherspoon ME, Kuhn A, et al. Imaging performance of a-PET: a small animal PET camera. IEEE Trans Med Imaging. 2005;24:844–52.
Article
Google Scholar
Sato K, Shidahara M, Watabe H, Watanuki S, Ishikawa Y, Arakawa Y, et al. Performance evaluation of the small-animal PET scanner ClairvivoPET using NEMA NU 4-2008 Standards. Phys Med Biol. 2015;61:696–711.
Article
Google Scholar
Bergeron M, Cadorette J, Tétrault M-A, Beaudoin J-F, Leroux J-D, Fontaine R, et al. Imaging performance of LabPET APD-based digital PET scanners for pre-clinical research. Phys Med Biol. 2014;59:661–78.
Article
Google Scholar
Bao Q, Newport D, Chen M, Stout DB, Chatziioannou AF. Performance evaluation of the inveon dedicated PET preclinical tomograph based on the NEMA NU-4 standards. J Nucl Med. 2009;50:401–8.
Article
Google Scholar
Cañadas M, Embid M, Lage E, Desco M, Vaquero JJ, Pérez JM. NEMA NU 4-2008 performance measurements of two commercial small-animal PET scanners: ClearPET and rPET-1. IEEE Trans Nucl Sci. 2011;58:58–65.
Article
Google Scholar
Szanda I, Mackewn J, Patay G, Major P, Sunassee K, Mullen GE, et al. National Electrical Manufacturers Association NU-4 performance evaluation of the PET component of the NanoPET/CT preclinical PET/CT scanner. J Nucl Med. 2011;52:1741–7.
Article
Google Scholar
Belcari N, Camarlinghi N, Ferretti S, Iozzo P, Panetta D, Salvadori PA, et al. NEMA NU-4 performance evaluation of the IRIS PET/CT preclinical scanner. IEEE Trans Radiat Plasma Med Sci. 2017;1:301–9.
Article
Google Scholar
Liu Q, Li C, Liu J, Krish K, Fu X, Zhao J, et al. Technical note: performance evaluation of a small-animal PET/CT system based on NEMA NU 4-2008 standards. Med Phys. 2021;48:5272–82.
Article
CAS
Google Scholar
Dadgar M, Parzych S, Tayefi Ardebili F, Baran J, Chug N, Curceanu C, et al. Investigation of novel preclinical Total Body PET designed with J-PET technology: a simulation study. IEEE Trans Radiat Plasma Med Sci. 2022. https://doi.org/10.1109/TRPMS.2022.3211780.
Article
Google Scholar
Wang Q, Cherry S, Du J. Design of a high sensitivity total-body small animal BGO PET scanner for low activity imaging: a simulation study. Manchester, UK; 2019.
Liu C-C, Du J, Wang Q, Cherry S, Qi J. High spatial resolution and sensitivity total body preclinical PET based on gapless curved crystal arrays and dual-ended readouts: a simulation study. Virtual; 2021.
Du J, Yang Y, Berg E, Bai X, Gola A, Ferri A, et al. Evaluation of linearly-graded SiPMs for high resolution small-animal PET. Biomed Phys Eng Express. 2015;1:045008.
Article
Google Scholar
Du J, Bai X, Gola A, Acerbi F, Ferri A, Piemonte C, et al. Performance of a high-resolution depth-encoding PET detector module using linearly-graded SiPM arrays. Phys Med Biol. 2018;63:035035.
Article
Google Scholar
Kuang Z, Wang X, Fu X, Ren N, Yang Q, Zhao B, et al. Dual-ended readout small animal PET detector by using 0.5 mm pixelated LYSO crystal arrays and SiPMs. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip. 2019;917:1–8.
Article
CAS
Google Scholar
Hirano Y, Nitta M, Inadama N, Nishikido F, Yoshida E, Murayama H, et al. Performance evaluation of a depth-of-interaction detector by use of position-sensitive PMT with a super-bialkali photocathode. Radiol Phys Technol. 2014;7:57–66.
Article
Google Scholar
Ahmed AM, Chacon A, Rutherford H, Akamatsu G, Mohammadi A, Nishikido F, et al. A validated Geant4 model of a whole-body PET scanner with four-layer DOI detectors. Phys Med Biol. 2020;65:235051.
Article
Google Scholar
Du J. Performance of dual-ended readout PET detectors based on BGO arrays and BaSO4 reflector. IEEE Trans Radiat Plasma Med Sci. 2021;6:1–1.
Google Scholar
de Marcillac P, Coron N, Dambier G, Leblanc J, Moalic J-P. Experimental detection of α-particles from the radioactive decay of natural bismuth. Nature. 2003;422:876–8.
Article
Google Scholar
Lewellen TK. Recent developments in PET detector technology. Phys Med Biol. 2008;53:R287-317.
Article
Google Scholar
Du J, Wang Y, Zhang L, Zhou Z, Xu Z, Wang X. Physical properties of LYSO scintillator for NN-PET detectors. In: 2009 2nd international conference on biomedical engineering and informatics; 2009. p. 1–5.
van Dongen GAMS, Boellaard R, Vugts DJ. In vivo tracking of single cells with PET. Nat Biomed Eng. 2020;4:765–6.
Article
Google Scholar
Jung KO, Kim TJ, Yu JH, Rhee S, Zhao W, Ha B, et al. Whole-body tracking of single cells via positron emission tomography. Nat Biomed Eng. 2020;4:835–44.
Article
CAS
Google Scholar
Gambhir SS, Barrio JR, Phelps ME, Iyer M, Namavari M, Satyamurthy N, et al. Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. PNAS Natl Acad Sci. 1999;96:2333–8.
Article
CAS
Google Scholar
Blasberg R. PET imaging of gene expression. Eur J Cancer. 2002;38:2137–46.
Article
CAS
Google Scholar
Sharma V, Luker GD, Piwnica-Worms D. Molecular imaging of gene expression and protein function in vivo with PET and SPECT. J Magn Reson Imaging. 2002;16:336–51.
Article
Google Scholar
Yang Q, Kuang Z, Sang Z, Yang Y, Du J. Performance comparison of two signal multiplexing readouts for SiPM-based pet detector. Phys Med Biol. 2019;64:23NT02.
Article
CAS
Google Scholar
Du J, Peng P, Bai X, Cherry SR. Shared-photodetector readout to improve the sensitivity of positron emission tomography. Phys Med Biol. 2018;63:205002.
Article
Google Scholar
Niedźwiecki S, Białas P, Curceanu C, Czerwiński E, Dulski K, Gajos A, et al. J-PET: a new technologyfor the whole-body PET imaging. Acta Phys Pol B. 2017;48:1567–76.
Article
Google Scholar
Kowalski P, Wiślicki W, Shopa RY, Raczyński L, Klimaszewski K, Curcenau C, et al. Estimating the NEMA characteristics of the J-PET tomograph using the GATE package. Phys Med Biol. 2018;63:165008.
Article
CAS
Google Scholar
Yang Y, Bec J, Zhou J, Zhang M, Judenhofer MS, Bai X, et al. A prototype high-resolution small-animal PET scanner dedicated to mouse brain imaging. J Nucl Med. 2016;57:1130–5.
Article
CAS
Google Scholar
Yamamoto S, Watabe H, Watabe T, Ikeda H, Kanai Y, Ogata Y, et al. Development of ultrahigh resolution Si-PM-based PET system using 0.32mm pixel scintillators. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip. 2016;836:7–12.
Article
CAS
Google Scholar
Zhang X, Xie Z, Berg E, Judenhofer MS, Liu W, Xu T, et al. Total-body dynamic reconstruction and parametric imaging on the uEXPLORER. J Nucl Med. 2020;61:285–91.
Article
CAS
Google Scholar
Karakatsanis NA, Lodge MA, Tahari AK, Zhou Y, Wahl RL, Rahmim A. Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application. Phys Med Biol. 2013;58:7391–418.
Article
Google Scholar
Rahmim A, Lodge MA, Karakatsanis NA, Panin VY, Zhou Y, McMillan A, et al. Dynamic whole-body PET imaging: principles, potentials and applications. Eur J Nucl Med Mol Imaging. 2019;46:501–18.
Article
Google Scholar
Hood L, Heath JR, Phelps ME, Lin B. Systems biology and new technologies enable predictive and preventative medicine. Science. 2004;306:640–3.
Article
CAS
Google Scholar
Hacker M, Hicks RJ, Beyer T. Applied systems biology—embracing molecular imaging for systemic medicine. Eur J Nucl Med Mol Imaging. 2020;47:2721–5.
Article
CAS
Google Scholar
Goorden MC, van der Have F, Kreuger R, Ramakers RM, Vastenhouw B, Burbach JPH, et al. VECTor: a preclinical imaging system for simultaneous submillimeter SPECT and PET. J Nucl Med. 2013;54:306–12.
Article
CAS
Google Scholar
Jagoda EM, Vaquero JJ, Seidel J, Green MV, Eckelman WC. Experiment assessment of mass effects in the rat: implications for small animal PET imaging. Nucl Med Biol. 2004;31:771–9.
Article
CAS
Google Scholar
Kung M-P, Kung HF. Mass effect of injected dose in small rodent imaging by SPECT and PET. Nucl Med Biol. 2005;32:673–8.
Article
CAS
Google Scholar
Lambrecht RM, Eckelman WC, Rescigno A. Animal models in biomedical research and radiotracer design. In: Lambrecht RM, Eckelman WC, editors. Animal models in radiotracer design. New York, NY: Springer; 1983. p. 1–34. https://doi.org/10.1007/978-1-4612-5596-3_1.
Chapter
Google Scholar
Kaneta T, Ogawa M, Motomura N, Iizuka H, Arisawa T, Hino-Shishikura A, et al. Initial evaluation of the Celesteion large-bore PET/CT scanner in accordance with the NEMA NU2-2012 standard and the Japanese guideline for oncology FDG PET/CT data acquisition protocol version 2.0. EJNMMI Res. 2017;7:83.
Article
Google Scholar
van Sluis J, de Jong J, Schaar J, Noordzij W, van Snick P, Dierckx R, et al. Performance characteristics of the digital biograph vision PET/CT system. J Nucl Med. 2019;60:1031–6.
Article
Google Scholar
Hsu DFC, Ilan E, Peterson WT, Uribe J, Lubberink M, Levin CS. Studies of a next-generation silicon-photomultiplier-based time-of-flight PET/CT system. J Nucl Med. 2017;58:1511–8.
Article
CAS
Google Scholar
Zhang J, Maniawski P, Knopp MV. Performance evaluation of the next generation solid-state digital photon counting PET/CT system. EJNMMI Res. 2018;8:97.
Article
Google Scholar
Tan H, Sui X, Yin H, Yu H, Gu Y, Chen S, et al. Total-body PET/CT using half-dose FDG and compared with conventional PET/CT using full-dose FDG in lung cancer. Eur J Nucl Med Mol Imaging. 2021;48:1966–75.
Article
CAS
Google Scholar
Zhao Y-M, Li Y-H, Chen T, Zhang W-G, Wang L-H, Feng J, et al. Image quality and lesion detectability in low-dose pediatric 18F-FDG scans using total-body PET/CT. Eur J Nucl Med Mol Imaging. 2021;48:3378–85.
Article
CAS
Google Scholar
Liu G, Hu P, Yu H, Tan H, Zhang Y, Yin H, et al. Ultra-low-activity total-body dynamic PET imaging allows equal performance to full-activity PET imaging for investigating kinetic metrics of 18F-FDG in healthy volunteers. Eur J Nucl Med Mol Imaging. 2021;48:2373–83.
Article
Google Scholar
Wimberley C, Lavisse S, Hillmer A, Hinz R, Turkheimer F, Zanotti-Fregonara P. Kinetic modeling and parameter estimation of TSPO PET imaging in the human brain. Eur J Nucl Med Mol Imaging. 2021;49:246–56.
Article
Google Scholar
Fairley LH, Sahara N, Aoki I, Ji B, Suhara T, Higuchi M, et al. Neuroprotective effect of mitochondrial translocator protein ligand in a mouse model of tauopathy. J Neuroinflamm. 2021;18:76.
Article
CAS
Google Scholar
Bertoglio D, Amhaoul H, Goossens J, Ali I, Jonckers E, Bijnens T, et al. TSPO PET upregulation predicts epileptic phenotype at disease onset independently from chronic TSPO expression in a rat model of temporal lobe epilepsy. NeuroImage Clin. 2021;31:102701.
Article
Google Scholar
Hume SP, Gunn RN, Jones T. Pharmacological constraints associated with positron emission tomographic scanning of small laboratory animals. Eur J Nucl Med. 1998;25:173–6.
Article
CAS
Google Scholar
Badawi RD, Shi H, Hu P, Chen S, Xu T, Price PM, et al. First human imaging studies with the EXPLORER total-body PET scanner*. J Nucl Med. 2019;60:299–303.
Article
CAS
Google Scholar
Daube-Witherspoon ME, Viswanath V, Werner ME, Karp JS. Performance characteristics of long axial field-of-view PET scanners with axial gaps. IEEE Trans Radiat Plasma Med Sci. 2021;5:322–30.
Article
Google Scholar
Prenosil GA, Hentschel M, Fürstner M, Sari H, Rominger A. NEMA NU 2-2018 performance measurements of Biograph Vision Quadra PET/CT system. Nuklearmedizin. 2021;60:152.
Google Scholar
Moliner L, Rodríguez-Alvarez MJ, Catret JV, González A, Ilisie V, Benlloch JM. NEMA performance evaluation of CareMiBrain dedicated brain PET and comparison with the whole-body and dedicated brain PET systems. Sci Rep. 2019;9:15484.
Article
Google Scholar
Gaudin É, Toussaint M, Thibaudeau C, Paillé M, Fontaine R, Lecomte R. Performance simulation of an ultrahigh resolution brain PET scanner using 1.2-mm pixel detectors. IEEE Trans Radiat Plasma Med Sci. 2019;3:334–42.
Article
Google Scholar
Wang Z, Cao X, Zeng X, LaBella A, Petersen E, Clayton N, et al. A high resolution and high sensitivity Prism-PET brain scanner with non-cylindrical decagon geometry. J Nucl Med. 2021;62:1136–1136.
Google Scholar
Carson R, Berg E, Badawi R, Cherry S, Du J, Feng T, et al. Design of the NeuroEXPLORER, a next-generation ultra-high performance human brain PET imager. J Nucl Med. 2021;62:1120–1120.
Google Scholar
Lammertsma AA. Forward to the past: the case for quantitative PET imaging. J Nucl Med. 2017;58:1019–24.
Article
CAS
Google Scholar
Wang G, Rahmim A, Gunn RN. PET parametric imaging: past, present, and future. IEEE Trans Radiat Plasma Med Sci. 2020;4:663–75.
Article
Google Scholar
Wu Y, Feng T, Zhao Y, Xu T, Fu F, Huang Z, et al. Whole-body parametric imaging of FDG PET using uEXPLORER with reduced scan time. J Nucl Med. 2022;63:622–8.
Article
CAS
Google Scholar
Alf MF, Wyss MT, Buck A, Weber B, Schibli R, Krämer SD. Quantification of brain glucose metabolism by 18F-FDG PET with real-time arterial and image-derived input function in mice. J Nucl Med. 2013;54:132–8.
Article
CAS
Google Scholar
Colazzo F, Castiglioni L, Sironi L, Fontana L, Nobili E, Franzosi M, et al. Murine left atrium and left atrial appendage structure and function: echocardiographic and morphologic evaluation. PLoS ONE. 2015;10:e0125541.
Article
Google Scholar
Wei S, Joshi N, Salerno M, Ouellette D, Saleh L, De Lorenzo C, et al. PET imaging of leg arteries for determining the input function in PET/MRI brain studies using a compact, MRI-compatible PET system. IEEE Trans Radiat Plasma Med Sci. 2021;6:1–1.
Google Scholar
Du J, Yang Y, Bai X, Judenhofer MS, Berg E, Di K, et al. Characterization of large-area SiPM array for PET applications. IEEE Trans Nucl Sci. 2016;63:8–16.
Article
CAS
Google Scholar
Watanabe M, Saito A, Isobe T, Ote K, Yamada R, Moriya T, et al. Performance evaluation of a high-resolution brain PET scanner using four-layer MPPC DOI detectors. Phys Med Biol. 2017;62:7148–66.
Article
CAS
Google Scholar
Beltrame P, Bolle E, Braem A, Casella C, Chesi E, Clinthorne N, et al. The AX-PET demonstrator—design, construction and characterization. Nucl Instrum Methods Phys Res Sect A. 2011;654:546–59.
Article
CAS
Google Scholar
Jin Y, Tanton P, Streicher M, Yang H, Brown S, He Z, et al. Experimental evaluation of a prototype combined PET-Compton imaging system based on 3-D position-sensitive CZT detectors for dedicated breast cancer imaging. J Nucl Med. 2021;62:1129–1129.
Google Scholar
Ariño-Estrada G, Du J, Kim H, Cirignano LJ, Shah KS, Cherry SR, et al. Development of TlBr detectors for PET imaging. Phys Med Biol. 2018;63:13NT04.
Article
Google Scholar
Ishii K, Kikuchi Y, Matsuyama S, Kanai Y, Kotani K, Ito T, et al. First achievement of less than 1mm FWHM resolution in practical semiconductor animal PET scanner. Nucl Instrum Methods Phys Res Sect A. 2007;576:435–40.
Article
CAS
Google Scholar
Gallego Manzano L, Abaline JM, Acounis S, Beaupère N, Beney JL, Bert J, et al. XEMIS2: a liquid xenon detector for small animal medical imaging. Nucl Instrum Methods Phys Res Sect A. 2018;912:329–32.
Article
CAS
Google Scholar
Sharifi B, Saramad S. Investigation of a prototype double-stack MRPC detector with 20 gas gaps for Time-Of-Flight measurement in PET imaging systems. J Inst. 2020;15:P02015–P02015.
Google Scholar
Gu Y, Levin CS. Study of electrode pattern design for a CZT-based PET detector. Phys Med Biol. 2014;59:2599–621.
Article
CAS
Google Scholar
Ariño-Estrada G, Mitchell GS, Kwon SI, Du J, Kim H, Cirignano LJ, et al. Towards time-of-flight PET with a semiconductor detector. Phys Med Biol. 2018;63:04LT01.
Article
Google Scholar
Ariño-Estrada G, Mitchell GS, Kim H, Du J, Kwon SI, Cirignano LJ, et al. First Cerenkov charge-induction (CCI) TlBr detector for TOF-PET and proton range verification. Phys Med Biol. 2019;64:175001.
Article
Google Scholar
Radogna R, Verwilligen P, Maggi M. Development of the FTM technology for TOF-PET. Nucl Instrum Methods Phys Res Sect A. 2019;936:449–50.
Article
CAS
Google Scholar
Pizzichemi M, Polesel A, Stringhini G, Gundacker S, Lecoq P, Tavernier S, et al. On light sharing TOF-PET modules with depth of interaction and 157 ps FWHM coincidence time resolution. Phys Med Biol. 2019;64:155008.
Article
CAS
Google Scholar
Gundacker S, Heering A. The silicon photomultiplier: fundamentals and applications of a modern solid-state photon detector. Phys Med Biol. 2020;65:17TR01.
Article
CAS
Google Scholar
Lv Y, Lv X, Liu W, Judenhofer MS, Zwingenberger A, Wisner E, et al. Mini EXPLORER II: a prototype high-sensitivity PET/CT scanner for companion animal whole body and human brain scanning. Phys Med Biol. 2019;64:075004.
Article
CAS
Google Scholar
Tai Y-C, Chatziioannou AF, Yang Y, Silverman RW, Meadors K, Siegel S, et al. MicroPET II: design, development and initial performance of an improved microPET scanner for small-animal imaging. Phys Med Biol. 2003;48:1519–37.
Article
Google Scholar
Melcher CL. Scintillation crystals for PET. J Nucl Med. 2000;41:1051–5.
CAS
Google Scholar
Freedenberg MI, Badawi RD, Tarantal AF, Cherry SR. Performance and limitations of positron emission tomography (PET) scanners for imaging very low activity sources. Phys Med. 2014;30:104–10.
Article
Google Scholar
Bao Q, Chatziioannou AF. Estimation of the minimum detectable activity of preclinical PET imaging systems with an analytical method. Med Phys. 2010;37:6070–83.
Article
Google Scholar
van Eijk CWE. Inorganic scintillators in medical imaging. Phys Med Biol. 2002;47:R85-106.
Article
Google Scholar
Ren S, Yang Y, Cherry SR. Effects of reflector and crystal surface on the performance of a depth-encoding PET detector with dual-ended readout. Med Phys. 2014;41:072503.
Article
Google Scholar
Kang HG, Yamaya T, Han YB, Song SH, Ko GB, Lee JS, et al. Crystal surface and reflector optimization for the SiPM-based dual-ended readout TOF-DOI PET detector. Biomed Phys Eng Express. 2020;6:065028.
Article
Google Scholar
Stickel JR, Qi J, Cherry SR. Fabrication and characterization of a 0.5-mm lutetium oxyorthosilicate detector array for high-resolution PET applications. J Nucl Med. 2007;48:115–21.
Google Scholar
Yoshida E, Hirano Y, Tashima H, Inadama N, Nishikido F, Moriya T, et al. The X’tal cube PET detector with a monolithic crystal processed by the 3D sub-surface laser engraving technique: performance comparison with glued crystal elements. Nucl Instrum Methods Phys Res Sect A. 2013;723:83–8.
Article
CAS
Google Scholar
Du J, Bai X, Cherry SR. Performance comparison of depth-encoding detectors based on dual-ended readout and different SiPMs for high-resolution PET applications. Phys Med Biol. 2019;64:15NT03.
Article
CAS
Google Scholar
Du J, Bai X, Cherry SR. A depth-encoding PET detector for high resolution PET using 1 mm SiPMs. Phys Med Biol. 2020;65:165011.
Article
Google Scholar
Yang Y, James SS, Wu Y, Du H, Qi J, Farrell R, et al. Tapered LSO arrays for small animal PET. Phys Med Biol. 2010;56:139–53.
Article
Google Scholar
Peng P, Liu C-C, Du J, Bai X, Cherry SR. Improving edge crystal identification in flood histograms using triangular shape crystals. Biomed Phys Eng Express. 2018;4:025031.
Article
Google Scholar
Joung J, Miyaoka RS, Lewellen TK. cMiCE: a high resolution animal PET using continuous LSO with a statistics based positioning scheme. Nucl Instrum Methods Phys Res Sect A. 2002;489:584–98.
Article
CAS
Google Scholar
Gonzalez-Montoro A, Gonzalez AJ, Pourashraf S, Miyaoka RS, Bruyndonckx P, Chinn G, et al. Evolution of PET detectors and event positioning algorithms using monolithic scintillation crystals. IEEE Trans Radiat Plasma Med Sci. 2021;5:1–1.
Article
Google Scholar
España S, Marcinkowski R, Keereman V, Vandenberghe S, Holen RV. DigiPET: sub-millimeter spatial resolution small-animal PET imaging using thin monolithic scintillators. Phys Med Biol. 2014;59:3405–20.
Article
Google Scholar
Zhang X, Wang X, Ren N, Hu B, Ding B, Kuang Z, et al. Performance of long rectangular semi-monolithic scintillator PET detectors. Med Phys. 2019;46:1608–19.
Article
Google Scholar
Yonggang W, Junwei D, Zhonghui Z, Yang Y, Lijun Z, Bruyndonckx P. FPGA based electronics for PET detector modules with neural network position estimators. IEEE Trans Nucl Sci. 2011;58:34–42.
Article
Google Scholar
Lecoq P, Gundacker S. SiPM applications in positron emission tomography: toward ultimate PET time-of-flight resolution. Eur Phys J Plus. 2021;136:292.
Article
Google Scholar
Gola A, Acerbi F, Capasso M, Marcante M, Mazzi A, Paternoster G, et al. NUV-sensitive silicon photomultiplier technologies developed at Fondazione Bruno Kessler. Sensors. 2019;19:308.
Article
Google Scholar
Yang Q, Wang X, Kuang Z, Zhang C, Yang Y, Du J. Evaluation of two SiPM arrays for depth-encoding PET detectors based on dual-ended readout. IEEE Trans Radiat Plasma Med Sci. 2020;5:1–1.
CAS
Google Scholar
Schmall JP, Du J, Yang Y, Dokhale PA, McClish M, Christian J, et al. Comparison of large-area position-sensitive solid-state photomultipliers for small animal PET. Phys Med Biol. 2012;57:8119–34.
Article
Google Scholar
Peng Y, Lv W, Dai L, Zhao T, Liang K, Yang R, et al. A square-bordered position-sensitive silicon photomultiplier toward distortion-free performance with high spatial resolution. IEEE Electron Device Lett. 2020;41:1802–5.
Article
CAS
Google Scholar
Sacco I, Fischer P, Gola A, Piemonte C. A new position-sensitive silicon photomultiplier with submillimeter spatial resolution for photon-cluster identification. In: 2013 IEEE sensors; 2013. p. 1–4.
Du J, Schmall JP, Yang Y, Di K, Dokhale PA, Shah KS, et al. A simple capacitive charge-division readout for position-sensitive solid-state photomultiplier arrays. IEEE Trans Nucl Sci. 2013;60:3188–97.
Article
Google Scholar
Hatefi Hesari S, Haque MA, McFarlane N. A comprehensive survey of readout strategies for SiPMs used in nuclear imaging systems. Photonics. 2021;8:266.
Article
CAS
Google Scholar
Nadig V, Schug D, Weissler B, Schulz V. Evaluation of the PETsys TOFPET2 ASIC in multi-channel coincidence experiments. EJNMMI Phys. 2021;8:30.
Article
Google Scholar
Sánchez D, Gómez S, Mauricio J, Freixas L, Sanuy A, Guixé G, et al. HRFlexToT: a high dynamic range ASIC for time-of-flight positron emission tomography. IEEE Trans Radiat Plasma Med Sci. 2021;6:1–1.
Google Scholar
Sacco I, Fischer P, Ritzert M. PETA4: a multi-channel TDC/ADC ASIC for SiPM readout. J Inst. 2013;8:C12013–C12013.
Google Scholar
Schug D, Nadig V, Weissler B, Gebhardt P, Schulz V. Initial measurements with the PETsys TOFPET2 ASIC evaluation kit and a characterization of the ASIC TDC. IEEE Trans Radiat Plasma Med Sci. 2019;3:444–53.
Article
Google Scholar
Akamatsu G, Takyu S, Yoshida E, Iwao Y, Tashima H, Nishikido F, et al. Evaluation of a Hamamatsu TOF-PET detector module with 3.2 mm pitch LFS scintillators and a 256-channel SiPM array. IEEE Trans Radiat Plasma Med Sci. 2020;5:1–1.
Google Scholar
Zhao Z, Huang Q, Gong Z, Su Z, Moses WW, Xu J, et al. A novel read-out electronics design based on 1-bit sigma-delta modulation. IEEE Trans Nucl Sci. 2017;64:820–8.
Article
CAS
Google Scholar
Cheng X, Hu K, Shao Y. Dual-polarity SiPM readout electronics based on 1-bit sigma-delta modulation circuit for PET detector applications. IEEE Trans Nucl Sci. 2019;66:2107–13.
Article
CAS
Google Scholar
Won JY, Ko GB, Kim KY, Park H, Lee S, Son J-W, et al. Comparator-less PET data acquisition system using single-ended memory interface input receivers of FPGA. Phys Med Biol. 2020;65:155007.
Article
CAS
Google Scholar
Average human height by country. Wikipedia; 2021. https://en.wikipedia.org/w/index.php?title=Average_human_height_by_country&oldid=1032217037. Cited 24 Jul 2021.
Moses WW. Fundamental limits of spatial resolution in PET. Nucl Instrum Methods Phys Res Sect A. 2011;648:S236–40.
Article
CAS
Google Scholar
Levin CS, Hoffman EJ. Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol. 1999;44:781–99.
Article
CAS
Google Scholar
Yamamoto S, Yeom JY, Kamada K, Endo T, Levin CS. Development of an ultrahigh resolution block detector based on 0.4 mm pixel Ce:GAGG scintillators and a silicon photomultiplier array. IEEE Trans Nucl Sci. 2013;60:4582–7.
Article
CAS
Google Scholar
Mohammadi I, Castro IFC, Correia PMM, Silva ALM, Veloso JFCA. Minimization of parallax error in positron emission tomography using depth of interaction capable detectors: methods and apparatus. Biomed Phys Eng Express. 2019;5:062001.
Article
Google Scholar
Stockhoff M, Decuyper M, Van Holen R, Vandenberghe S. High resolution monolithic LYSO detector with 6-layer depth-of-interaction for clinical PET. Phys Med Biol. 2021;66:155014.
Article
CAS
Google Scholar
Bläckberg L, Sajedi S, Fakhri GE, Sabet H. A layered single-side readout depth of interaction time-of-flight-PET detector. Phys Med Biol. 2021;66:045025.
Article
Google Scholar
Peng P, Zhang M, Zeraatkar N, Qi J, Cherry SR. Tomographic imaging with Compton PET modules: ideal case and first implementation. J Inst. 2021;16:T04007.
CAS
Google Scholar
Ito M, Hong SJ, Lee JS. Positron emission tomography (PET) detectors with depth-of- interaction (DOI) capability. Biomed Eng Lett. 2011;1:70.
Article
Google Scholar
Akamatsu G, Tashima H, Iwao Y, Wakizaka H, Maeda T, Mohammadi A, et al. Performance evaluation of a whole-body prototype PET scanner with four-layer DOI detectors. Phys Med Biol. 2019;64:095014.
Article
CAS
Google Scholar
Nitta M, Inadama N, Nishikido F, Yoshida E, Tashima H, Kawai H, et al. Development of the X’tal cube PET detector with segments of (0.77 mm)3. IEEE Trans Radiat Plasma Med Sci. 2018;2:564–73.
Article
Google Scholar
Zhang Y, Yan H, Baghaei H, Wong W-H. A novel depth-of-interaction block detector for positron emission tomography using a dichotomous orthogonal symmetry decoding concept. Phys Med Biol. 2016;61:1608–33.
Article
Google Scholar
Son J-W, Lee MS, Lee JS. A depth-of-interaction PET detector using a stair-shaped reflector arrangement and a single-ended scintillation light readout. Phys Med Biol. 2016;62:465–83.
Article
Google Scholar
Moses WW, Derenzo SE. Design studies for a PET detector module using a PIN photodiode to measure depth of interaction. IEEE Trans Nucl Sci. 1994;41:1441–5.
Article
CAS
Google Scholar
Choghadi MA, Huang SC, Shimazoe K, Takahashi H. Evaluation of dual-ended readout GAGG-based DOI-PET detectors with different surface treatments. Med Phys. 2021;48:3470–8.
Article
CAS
Google Scholar
Snyder DL, Thomas LJ, Ter-Pogossian MM. A mathematical model for positron-emission tomography systems having time-of-flight measurements. IEEE Trans Nucl Sci. 1981;28:3575–83.
Article
Google Scholar
Budinger TF. Time-of-flight positron emission tomography: status relative to conventional PET. J Nucl Med. 1983;24:73–8.
CAS
Google Scholar
Tomitani T. Image reconstruction and noise evaluation in photon time-of-flight assisted positron emission tomography. IEEE Trans Nucl Sci. 1981;28:4581–9.
Article
Google Scholar
Schaart DR, Schramm G, Nuyts J, Surti S. Time of flight in perspective: instrumental and computational aspects of time resolution in positron emission tomography. IEEE Trans Radiat Plasma Med Sci. 2021;5:1–1.
Article
Google Scholar
Kwon SI, Ota R, Berg E, Hashimoto F, Nakajima K, Ogawa I, et al. Ultrafast timing enables reconstruction-free positron emission imaging. Nat Photonics. 2021;15:914–8.
Article
CAS
Google Scholar
Gundacker S, Turtos RM, Kratochwil N, Pots RH, Paganoni M, Lecoq P, et al. Experimental time resolution limits of modern SiPMs and TOF-PET detectors exploring different scintillators and Cherenkov emission. Phys Med Biol. 2020;65:025001.
Article
CAS
Google Scholar
Wagadarikar AA, Ivan A, Dolinsky S, McDaniel DL. Sensitivity improvement of time-of-flight (ToF) PET detector through recovery of Compton scattered annihilation photons. IEEE Trans Nucl Sci. 2014;61:121–5.
Article
Google Scholar
Yoshida E, Tashima H, Yamaya T. Sensitivity booster for DOI-PET scanner by utilizing Compton scattering events between detector blocks. Nucl Instrum Methods Phys Res Sect A. 2014;763:502–9.
Article
CAS
Google Scholar
Lee S, Kim KY, Lee MS, Lee JS. Recovery of inter-detector and inter-crystal scattering in brain PET based on LSO and GAGG crystals. Phys Med Biol. 2020;65:195005.
Article
CAS
Google Scholar
Hsu DFC, Freese DL, Innes DR, Levin CS. Intercrystal scatter studies for a 1 mm3 resolution clinical PET system prototype. Phys Med Biol. 2019;64:095024.
Article
CAS
Google Scholar
Surti S, Karp JS. Impact of event positioning algorithm on performance of a whole-body PET scanner using one-to-one coupled detectors. Phys Med Biol. 2018;63:055008.
Article
CAS
Google Scholar
Gillam JE, Solevi P, Oliver JF, Casella C, Heller M, Joram C, et al. Sensitivity recovery for the AX-PET prototype using inter-crystal scattering events. Phys Med Biol. 2014;59:4065–83.
Article
Google Scholar
Michaud J-B, Tétrault M-A, Beaudoin J-F, Cadorette J, Leroux J-D, Brunet C-A, et al. Sensitivity increase through a neural network method for LOR recovery of ICS triple coincidences in high-resolution pixelated-detectors PET scanners. IEEE Trans Nucl Sci. 2015;62:82–94.
Article
CAS
Google Scholar
Pratx G, Levin CS. Bayesian reconstruction of photon interaction sequences for high-resolution PET detectors. Phys Med Biol. 2009;54:5073–94.
Article
Google Scholar
Spencer BA, Berg E, Schmall JP, Omidvari N, Leung EK, Abdelhafez YG, et al. Performance evaluation of the uEXPLORER total-body PET/CT scanner based on NEMA NU 2-2018 with additional tests to characterize PET scanners with a long axial field of view. J Nucl Med. 2021;62:861–70.
Article
Google Scholar
Carter LM, Kesner AL, Pratt EC, Sanders VA, Massicano AVF, Cutler CS, et al. The impact of positron range on PET resolution, evaluated with phantoms and PHITS Monte Carlo simulations for conventional and non-conventional radionuclides. Mol Imaging Biol. 2020;22:73–84.
Article
CAS
Google Scholar
Herraiz JL, Bembibre A, López-Montes A. Deep-learning based positron range correction of PET images. Appl Sci. 2021;11:266.
Article
CAS
Google Scholar
Conti M, Eriksson L, Rothfuss H, Sjoeholm T, Townsend D, Rosenqvist G, et al. Characterization of176Lu background in LSO-based PET scanners. Phys Med Biol. 2017;62:3700–11.
Article
CAS
Google Scholar
Huesman RH, Klein GJ, Moses WW, Qi J, Reutter BW, Virador PRG. List-mode maximum-likelihood reconstruction applied to positron emission mammography (PEM) with irregular sampling. IEEE Trans Med Imaging. 2000;19:532–7.
Article
CAS
Google Scholar
Bloomfield PM, Rajeswaran S, Spinks TJ, Hume SP, Myers R, Ashworth S, et al. The design and physical characteristics of a small animal positron emission tomograph. Phys Med Biol. 1995;40:1105–26.
Article
CAS
Google Scholar