Kennedy A. Radioembolization of hepatic tumors. J Gastrointest Oncol. 2014;5:178.
PubMed
PubMed Central
Google Scholar
Gans JH, Lipman J, Golowa Y, Kinkhabwala M, Kaubisch A. Hepatic cancers overview: surgical and chemotherapeutic options, How Do Y-90 Microspheres Fit in? Semin Nucl Med: Elsevier; 2019.
Google Scholar
Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2015;278:563–77.
Article
PubMed
Google Scholar
Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.
Article
CAS
PubMed
Google Scholar
Lambin P, Leijenaar RT, Deist TM, Peerlings J, De Jong EE, Van Timmeren J, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14:749.
Article
PubMed
Google Scholar
Vallières M, Freeman CR, Skamene SR, El Naqa I. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol. 2015;60:5471.
Article
PubMed
Google Scholar
Zhang B, Tian J, Dong D, Gu D, Dong Y, Zhang L, et al. Radiomics features of multiparametric MRI as novel prognostic factors in advanced nasopharyngeal carcinoma. Clin Cancer Res. 2017;23:4259–69.
Article
PubMed
Google Scholar
Li H, Zhu Y, Burnside ES, Huang E, Drukker K, Hoadley KA, et al. Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set. NPJ breast cancer. 2016;2:16012.
Article
PubMed
PubMed Central
Google Scholar
Veit-Haibach P, Buvat I, Herrmann K. EJNMMI supplement: bringing AI and radiomics to nuclear medicine: Springer; 2019.
Morin O, Vallières M, Jochems A, Woodruff HC, Valdes G, Braunstein SE, et al. A deep look into the future of quantitative imaging in oncology: a statement of working principles and proposal for change. Int J Rad Oncol Biol Phys. 2018;102:1074–82.
Article
Google Scholar
Visvikis D, Le Rest CC, Jaouen V, Hatt M. Artificial intelligence, machine (deep) learning and radio(geno)mics: definitions and nuclear medicine imaging applications. Eur J Nucl Med Mol Imaging. 2019;46:1–8.
Blanc-Durand P, Van Der Gucht A, Jreige M, Nicod-Lalonde M, Silva-Monteiro M, Prior JO, et al. Signature of survival: a 18F-FDG PET based whole-liver radiomic analysis predicts survival after 90Y-TARE for hepatocellular carcinoma. Oncotarget. 2018;9:4549.
Article
PubMed
Google Scholar
Gensure RH, Foran DJ, Lee VM, Gendel VM, Jabbour SK, Carpizo DR, et al. Evaluation of hepatic tumor response to yttrium-90 radioembolization therapy using texture signatures generated from contrast-enhanced CT images. Acad Radiol. 2012;19:1201–7.
Article
PubMed
PubMed Central
Google Scholar
Fowler KJ, Maughan NM, Laforest R, Saad NE, Sharma A, Olsen J, et al. PET/MRI of hepatic 90Y microsphere deposition determines individual tumor response. Cardiovasc Intervent Radiol. 2016;39:855–64.
Article
PubMed
Google Scholar
Srinivas SM, Natarajan N, Kuroiwa J, Gallagher S, Nasr E, Shah SN, et al. Determination of radiation absorbed dose to primary liver tumors and normal liver tissue using post-radioembolization 90Y PET. Front Oncol. 2014;4:255.
Article
PubMed
PubMed Central
Google Scholar
Chan KT, Alessio AM, Johnson GE, Vaidya S, Kwan SW, Monsky W, et al. Prospective Trial using internal pair-production positron emission tomography to establish the yttrium-90 radioembolization dose required for response of hepatocellular carcinoma. Int J Rad Oncol Biol Phys. 2018;101:358–65.
Article
Google Scholar
Kappadath SC, Mikell J, Balagopal A, Baladandayuthapani V, Kaseb A, Mahvash A. Hepatocellular carcinoma tumor dose response after 90Y-radioembolization with glass microspheres using 90Y-SPECT/CT-based voxel dosimetry. Int J Rad Oncol Biol Phys. 2018;102:451–61.
Article
Google Scholar
Dewaraja YK, Devasia T, Kaza RK, Mikell JK, Owen D, Roberson PL, et al. Prediction of tumor control in 90Y radioembolization by logit models with PET/CT based dose metrics. J Nucl Med. 2019;61(1):104–11.
Pasciak AS, Bourgeois AC, McKinney JM, Chang TT, Osborne DR, Acuff SN, et al. Radioembolization and the dynamic role of 90Y PET/CT. Front Oncol. 2014;4:38.
PubMed
PubMed Central
Google Scholar
Willowson KP, Tapner M, Bailey DL. A multicentre comparison of quantitative 90 Y PET/CT for dosimetric purposes after radioembolization with resin microspheres. Eur J Nucl Med Mol Imaging. 2015;42:1202–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson K, Li H, Lan L, Schacht D, Giger M. Radiomics robustness assessment and classification evaluation: a two-stage method demonstrated on multivendor FFDM. Med Phys. 2019;46:2145–56.
Article
PubMed
Google Scholar
Traverso A, Wee L, Dekker A, Gillies R. Repeatability and reproducibility of radiomic features: a systematic review. Int J Rad Oncol Biol Phys. 2018;102:1143–58.
Article
Google Scholar
Zwanenburg A. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur J Nucl Med Mol Imaging. 2019;46:2638–55.
Article
PubMed
Google Scholar
Waninger J, Green M, Cheze CLR, Rosen B, El IN. Integrating radiomics into clinical trial design. The quarterly journal of nuclear medicine and molecular imaging: official publication of the Italian Association of Nuclear Medicine (AIMN)[and] the International Association of Radiopharmacology (IAR),[and] Section of the Society of. 2019.
Zwanenburg A, Leger S, Agolli L, Pilz K, Troost EG, Richter C, et al. Assessing robustness of radiomic features by image perturbation. Sci Rep. 2019;9:1–10.
Article
CAS
Google Scholar
El Naqa I, Grigsby PW, Apte A, Kidd E, Donnelly E, Khullar D, et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern recognition. 2009;42:1162–71.
Article
PubMed
PubMed Central
Google Scholar
Ohri N, Duan F, Snyder BS, Wei B, Machtay M, Alavi A, et al. Pretreatment 18F-FDG PET textural features in locally advanced non–small cell lung cancer: secondary analysis of ACRIN 6668/RTOG 0235. J Nucl Med. 2016;57:842–8.
Article
CAS
PubMed
Google Scholar
Zwanenburg A, Leger S, Vallières M, Löck S. Image biomarker standardisation initiative. arXiv preprint arXiv:161207003; 2016.
Google Scholar
Hatt M, Majdoub M, Vallières M, Tixier F, Le Rest CC, Groheux D, et al. 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi–cancer site patient cohort. J Nucl Med. 2015;56:38–44.
Article
CAS
PubMed
Google Scholar
El Naqa I. The role of quantitative PET in predicting cancer treatment outcomes. Clin Transl Imaging. 2014;2:305–20.
Article
Google Scholar
Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst. 2000;92:205–16.
Article
CAS
PubMed
Google Scholar
Lin L. A concordance correlation coefficient to evaluate reproducibility. Biometric. 1989;45:255–68.
Article
CAS
Google Scholar
Zhao B, Tan Y, Tsai W-Y, Qi J, Xie C, Lu L, et al. Reproducibility of radiomics for deciphering tumor phenotype with imaging. Sci Rep. 2016;6:23428.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fave X, Mackin D, Yang J, Zhang J, Fried D, Balter P, et al. Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer? Med Phys. 2015;42:6784–97.
Article
PubMed
PubMed Central
Google Scholar
Hu P, Wang J, Zhong H, Zhou Z, Shen L, Hu W, et al. Reproducibility with repeat CT in radiomics study for rectal cancer. Oncotarget. 2016;7:71440.
Article
PubMed
PubMed Central
Google Scholar
van Timmeren JE, Leijenaar RT, van Elmpt W, Wang J, Zhang Z, Dekker A, et al. Test–retest data for radiomics feature stability analysis: generalizable or study-specific? Tomography. 2016;2:361.
Article
PubMed
PubMed Central
Google Scholar
Friedman J, Hastie T, Tibshirani R. The elements of statistical learning: Springer series in statistics New York; 2001.
Google Scholar
DiCiccio TJ, Efron B. Bootstrap confidence intervals. Stat Sci. 1996;11:189–212.
Hochberg Y, Benjamini Y. More powerful procedures for multiple significance testing. Stat Med. 1990;9:811–8.
Article
CAS
PubMed
Google Scholar
Haibo H, Yang B, Edwardo GA, Shutao L. Adaptive synthetic sampling approach for imbalanced learning. IEEE International Joint Conference on Neural Networks, IJCNN; 2016. p. 1322–8.
Google Scholar
Brooks FJ, Grigsby PW. The effect of small tumor volumes on studies of intratumoral heterogeneity of tracer uptake. J Nucl Med. 2014;55:37–42.
Article
CAS
PubMed
Google Scholar
Hatt M, Tixier F, Le Rest CC, Pradier O, Visvikis D. Robustness of intratumour 18 F-FDG PET uptake heterogeneity quantification for therapy response prediction in oesophageal carcinoma. Eur J Nucl Med Mol Imaging. 2013;40:1662–71.
Article
PubMed
Google Scholar
Doumou G, Siddique M, Tsoumpas C, Goh V, Cook GJ. The precision of textural analysis in 18 F-FDG-PET scans of oesophageal cancer. Eur Radiol. 2015;25:2805–12.
Article
PubMed
Google Scholar
Ashrafinia S, Ghazi P, Marcus CV, Taghipour M, Yan R, Valenta I, et al. Robustness and reproducibility of radiomic features in 99mTc-Sestamibi SPECT imaging of myocardial perfusion. Med Phys: WILEY 111 RIVER ST, HOBOKEN 07030-5774, NJ USA; 2017.
Google Scholar
Li Y, Jiang J, Lu J, Jiang J, Zhang H, Zuo C. Radiomics: a novel feature extraction method for brain neuron degeneration disease using 18F-FDG PET imaging and its implementation for Alzheimer’s disease and mild cognitive impairment. Ther Adv Neurol Disord. 2019;12:1756286419838682.
PubMed
PubMed Central
Google Scholar
Parmar C, Velazquez ER, Leijenaar R, Jermoumi M, Carvalho S, Mak RH, et al. Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS One. 2014;9:e102107.
Zwanenburg A, Vallières M, Abdalah MA, Aerts HJ, Andrearczyk V, Apte A, et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology. 2020;295:328–38.
Article
PubMed
Google Scholar
Avanzo M, Stancanello J, El Naqa I. Beyond imaging: the promise of radiomics. Phys Med. 2017;38:122–39.
Article
PubMed
Google Scholar
Wei L, Osman S, Hatt M, El Naqa I. Machine learning for radiomics-based multi-modality and multi-parametric modeling. The quarterly journal of nuclear medicine and molecular imaging: official publication of the Italian Association of Nuclear Medicine (AIMN)[and] the International Association of Radiopharmacology (IAR),[and] Section of the Society of. 2019;63:323.
Ha S, Park S, Bang J-I, Kim E-K, Lee H-Y. Metabolic radiomics for pretreatment 18 F-FDG PET/CT to characterize locally advanced breast cancer: histopathologic characteristics, response to neoadjuvant chemotherapy, and prognosis. Sci Rep. 2017;7:1556.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bach FR. Bolasso: model consistent lasso estimation through the bootstrap. Proceedings of the 25th international conference on Machine learning: ACM; 2008. p. 33–40.
Google Scholar
Bunea F, She Y, Ombao H, Gongvatana A, Devlin K, Cohen R. Penalized least squares regression methods and applications to neuroimaging. Neuroimage. 2011;55:1519–27.
Article
PubMed
Google Scholar
Abram SV, Helwig NE, Moodie CA, DeYoung CG, MacDonald AW III, Waller NG. Bootstrap enhanced penalized regression for variable selection with neuroimaging data. Front Neurosci. 2016;10:344.
Article
PubMed
PubMed Central
Google Scholar
Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:1–9.
Google Scholar
Yang F, Simpson G, Young L, Ford J, Dogan N, Wang L. Impact of contouring variability on oncological PET radiomics features in the lung. Sci Rep. 2020;10:1–10.
Article
CAS
Google Scholar
Ha S, Choi H, Paeng JC, Cheon GJ. Radiomics in oncological PET/CT: a methodological overview. Nucl Med Mol Imaging (2010). 2019;53:14–29.
Article
Google Scholar
Dissaux G, Visvikis D, Da-Ano R, Pradier O, Chajon E, Barillot I, et al. Pretreatment 18F-FDG PET/CT radiomics predict local recurrence in patients treated with stereotactic body radiotherapy for early-stage non–small cell lung cancer: a multicentric study. J Nucl Med. 2020;61:814–20.
Article
CAS
PubMed
Google Scholar