Chen D, Kinahan P. Multimodality molecular imaging of the lung. J Magn Reson Imaging. 2010; 32(6):1409–20. https://doi.org/10.1002/jmri.22385.Multimodality.
Article
Google Scholar
Chen DL, Cheriyan J, Chilvers ER, Choudhury G, Coello C, Connell M, Fisk M, Groves AM, Gunn RN, Holman BF, Hutton BF, Lee S, MacNee W, Mohan D, Parr D, Subramanian D, Tal-Singer R, Thielemans K, van Beek EJR, Vass L, Wellen JW, Wilkinson I, Wilson FJ. Quantification of lung PET images: challenges and opportunities. J Nuclear Med. 2017; 58(2):201–7. https://doi.org/10.2967/jnumed.116.184796.
Article
Google Scholar
Jones HA, Cadwallader KA, White JF, Uddin M, Peters AM, Chilvers ER. Dissociation between respiratory burst activity and deoxyglucose uptake in human neutrophil granulocytes : implications for interpretation of 18F-FDG PET images. J Nuclear Med. 2002; 43(5):652–7.
CAS
Google Scholar
Holman BF, Cuplov V, Hutton BF, Groves AM, Thielemans K. The effect of respiratory induced density variations on non-TOF PET quantitation in the lung,. Phys Med Biol. 2016; 61(8):3148–63. https://doi.org/10.1088/0031-9155/61/8/3148.
Article
CAS
Google Scholar
Gunn RN, Gunn SR, Cunningham VJ. Positron emission tomography compartmental models. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2001; 21(6):635–52. https://doi.org/10.1097/00004647-200106000-00002.
Article
CAS
Google Scholar
Holman B, Cuplov V, Millner L, Hutton BF, Maher TM, Groves AM, Thielemans K. Improved correction for the tissue fraction effect in lung PET/CT imaging. Phys Med Biol. 2015; 60(18):7387–402. https://doi.org/10.1088/0031-9155/60/18/7387.
Article
CAS
Google Scholar
Coello C, Fisk M, Mohan D, Wilson FJ, Brown AP, Polkey MI, Wilkinson I, Tal-Singer R, Murphy PS, Cheriyan J, Gunn RN. Quantitative analysis of dynamic 18F-FDG PET/CT for measurement of lung inflammation. EJNMMI Res. 2017; 7(1):47. https://doi.org/10.1186/s13550-017-0291-2.
Article
Google Scholar
Sokoloff L, Reivich M, Kennedy C. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977; 28(5):897–916.
Article
CAS
Google Scholar
Schroeder T, Vidal Melo MF, Musch G, Harris RS, Venegas JGTW. Modelling pulmonary kinetics of 2-deoxy-2-[18F]fluoro-D-glucose during acute lung injury. Anat Rec. 2008; 15(6):763–75. https://doi.org/10.1002/ar.20849.3D. NIHMS150003.
Google Scholar
Lambrou T, Groves AM, Erlandsson K, Screaton N, Endozo R, Win T, Porter JC, Hutton BF. The importance of correction for tissue fraction effects in lung PET: preliminary findings. Eur J Nuclear Med Mol Imaging. 2011; 38(12):2238–46. https://doi.org/10.1007/s00259-011-1906-x.
Article
Google Scholar
Carson RE. Precision and accuracy considerations of physiological quantitation in PET. J Cereb Blood Flow Metab. 2011; 11(1_suppl):45–50. https://doi.org/10.1038/jcbfm.1991.36.
Article
Google Scholar
De Geus-Oei L-F, Visser EP, Krabbe PFM, van Hoorn BA, Koenders EB, Willemsen AT, Pruim J, Corstens FHM, Oyen WJG. Comparison of image-derived and arterial input functions for estimating the rate of glucose metabolism in therapy-monitoring 18F-FDG PET Studies. J Nuclear Med. 2006; 47(6):945–9.
CAS
Google Scholar
van der Weerdt AP, Klein LJ, Boellaard R, Visser CA, Visser FC, Lammertsma AA. Image-derived input functions for determination of MRGlu in cardiac (18)F-FDG PET scans,. J Nuclear Medicine Off Publ Soc Nuclear Med. 2001; 42(11):1622–9.
CAS
Google Scholar
Holman B, Hutton B, Thielemans K. Method to determine the voxel-wise blood volume in the lung from dynamic PET data. J Nuclear Med. 2017; 58(Supplement 1):1310.
Google Scholar
Schroeder T, Vidal Melo MF, Musch G, Harris RS, Venegas JG, Winkler T. Image-derived input function for assessment of 18F-FDG uptake by the inflamed lung. J Nuclear Med. 2007; 48(11):1889–96. https://doi.org/10.2967/jnumed.107.041079.
Article
Google Scholar
Vriens D, de Geus-Oei L-F, Oyen WJG, Visser EP. A curve-fitting approach to estimate the arterial plasma input function for the assessment of glucose metabolic rate and response to treatment. J Nuclear Med. 2009; 50(12):1933–9. https://doi.org/10.2967/jnumed.109.065243.
Article
Google Scholar
Hori Y, Ihara N, Teramoto N, Kunimi M, Honda M, Kato K, Hanakawa T. Noninvasive quantification of cerebral metabolic rate for glucose in rats using 18 F-FDG PET and standard input function. J Cereb Blood Flow Metab. 2015; 35(10):1664–70. https://doi.org/10.1038/jcbfm.2015.104.
Article
CAS
Google Scholar
Guo H, Renaut RA, Chen K. An input function estimation method for FDG-PET human brain studies. Nuclear Med Biol. 2007; 34(5):483–92. https://doi.org/10.1016/j.nucmedbio.2007.03.008. NIHMS150003.
Article
CAS
Google Scholar
Mourik JEM, Lubberink M, Klumpers UMH, Comans EF, Lammertsma AA, Boellaard R. Partial volume corrected image derived input functions for dynamic PET brain studies: Methodology and validation for [11C]flumazenil. NeuroImage. 2008; 39(3):1041–50. https://doi.org/10.1016/j.neuroimage.2007.10.022.
Article
Google Scholar
Kimura Y, Oda K, Naganawa M, Ishiwata K, Ishii K, Matani A. Extraction of a plasma time-activity curve from dynamic brain PET images based on independent component analysis. IEEE Trans Biomed Eng. 2005; 52(2):201–10. https://doi.org/10.1109/tbme.2004.840193.
Article
Google Scholar
Zhou S, Chen K, Reiman EM, Li D-m, Shan B. A method for generating image-derived input function in quantitative 18F-FDG PET study based on the monotonicity of the input and output function curve. Nuclear Med Commun. 2012; 33(4):362–70. https://doi.org/10.1097/MNM.0b013e32834f262e.
Article
CAS
Google Scholar
Herscovitch P, Markham J, Raichle ME. Brain blood flow measured with intravenous H2(15)O. I. Theory and error analysis. J Nuclear Med Off Publ Soc Nuclear Med. 1983; 24(9):782–9.
CAS
Google Scholar
Meyer E. Simultaneous correction for tracer arrival delay and dispersion in CBF measurements by the H215O autoradiographic method and dynamic PET,. J Nuclear Med. 1989; 30(6):1069–78.
CAS
Google Scholar
Van den Hoff J, Burchert W, Müller-Schauenburg W, Meyer GJ, Hundeshagen H. Accurate local blood flow measurements with dynamic PET: fast determination of input function delay and dispersion by multilinear minimization,. J Nuclear Med. 1993; 34(10):1770–7.
CAS
Google Scholar
Alf MF, Martić-Kehl MI, Schibli R, Krämer SD. FDG kinetic modeling in small rodent brain PET: optimization of data acquisition and analysis. EJNMMI Res. 2013; 3(1):1–14. https://doi.org/10.1186/2191-219X-3-61.
Article
Google Scholar
Wellman TJ, Winkler T, Vidal Melo MF. Modeling of tracer transport delays for improved quantification of regional pulmonary 18F-FDG kinetics, vascular transit times, and perfusion. Ann Biomed Eng. 2015; 43(11):2722–34. https://doi.org/10.1007/s10439-015-1327-2.
Article
Google Scholar
Yaqub M, Boellaard R, Kropholler MA, Lammertsma AA. Optimization algorithms and weighting factors for analysis of dynamic PET studies,. Phys Med Biol. 2006; 51(17):4217–32. https://doi.org/10.1088/0031-9155/51/17/007.
Article
Google Scholar
Chen DL, Huang HJ, Byers DE, Shifren A, Belikoff B, Engle JT, Arentson E, Kemp D, Phillips S, Scherrer DE, Fujiwara H, Spayd KJ, Brooks FJ, Pierce RA, Castro M, Isakow W. The peroxisome proliferator-activated receptor agonist pioglitazone and 5-lipoxygenase inhibitor zileuton have no effect on lung inflammation in healthy volunteers by positron emission tomography in a single-blind placebo-controlled cohort study. PLoS ONE. 2018; 13(2):1–17. https://doi.org/10.1371/journal.pone.0191783.
Google Scholar
Fisk M, Cheriyan J, Mohan D, Forman J, Mäki-Petäjä KM, McEniery CM, Fuld J, Rudd JHF, Hopkinson NS, Lomas DA, Cockcroft JR, Tal-Singer R, Polkey MI, Wilkinson IB. The p38 mitogen activated protein kinase inhibitor losmapimod in chronic obstructive pulmonary disease patients with systemic inflammation, stratified by fibrinogen: a randomised double-blind placebo-controlled trial. PLoS ONE. 2018; 13(3):1–17. https://doi.org/10.1371/journal.pone.0194197.
Article
Google Scholar
Fisk M, Mohan D, Cheriyan J, Yang L, Fuld J, McEniery CM, Tal-Singer R, Polkey MI, Wilkinson IB. Evaluation of losmapimod in patients with chronic obstructive pulmonary disease (COPD) with systemic inflammation stratified using fibrinogen (’EVOLUTION’): RATIONALE and protocol. Artery Res. 2014; 8(1):24–34. https://doi.org/10.1016/j.artres.2013.10.380.
Article
Google Scholar
MIAKAT. Version 4.2.6. Hammersmith Hospital: Invicro ltd; 2010.
Google Scholar
MATLAB. Version 7.10.0 (R2010a). Natick, Massachusetts: The MathWorks Inc.; 2010.
Google Scholar
Yushkevich PA, Piven J, Cody Hazlett H, Gimpel Smith R, Ho S, Gee JC, Gerig G. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage. 2006; 31(3):1116–28.
Article
Google Scholar
Martin Bland J, Altman D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986; 327(8476):307–10. https://doi.org/10.1016/S0140-6736(86)90837-8.
Article
Google Scholar
Cunningham VJ, Gunn SR, Gunn RN, Aston JAD, Turkheimer FE. Positron emission tomography compartmental models: a basis pursuit strategy for kinetic modeling. J Cereb Blood Flow Metab. 2015; 22(12):1425–39. https://doi.org/10.1097/01.wcb.0000045042.03034.42.
Google Scholar
Feng D, Wong K-P, Wu C-M, Siu W-C. A technique for extracting physiological parameters and the required input function simultaneously from PET image measurements: theory and simulation study. IEEE Trans Inf Technol Biomed. 2002; 1(4):243–54. https://doi.org/10.1109/4233.681168.
Article
Google Scholar
Sari H, Erlandsson K, Barnes A, Atkinson D, Arridge S, Ourselin S, Hutton B. Modelling the impact of injection time on the bolus shapes in PET-MRI AIF Conversion. 2014; 1(Suppl 1):4–6. https://doi.org/10.1186/2197-7364-1-s1-a54.
Nahmias C, Wahl LM, Amano S, Asselin M-c, Chirakal R. Equilibration of 6-[18F]Fluoro-L-m-Tyrosine Between Plasma and Erythrocytes. J Nuclear Med. 2000; 41(10):1636–41.
CAS
Google Scholar
Doot RK, Scheuermann JS, Christian PE, Karp JS, Kinahan PE. Instrumentation factors affecting variance and bias of quantifying tracer uptake with PET/CT. Med Phys. 2010; 37(11):6035–46. https://doi.org/10.1118/1.3499298. NIHMS150003.
Article
CAS
Google Scholar