Sabet A, Ezziddin K, Pape U-F, et al. Long-term hematotoxicity after peptide receptor radionuclide therapy with 177Lu-octreotate. J Nucl Med. 2013;54:1857–61.
Article
CAS
PubMed
Google Scholar
Bodei L, Cremonesi M, Ferrari M, et al. Long-term evaluation of renal toxicity after peptide receptor radionuclide therapy with 90 Y-DOTATOC and 177 Lu-DOTATATE: the role of associated risk factors. Eur J Nucl Med Mol Imaging. 2008;35:1847–56.
Article
CAS
PubMed
Google Scholar
Bodei L, Cremonesi M, Grana CM, et al. Peptide receptor radionuclide therapy with 177 Lu-DOTATATE: the IEO phase I-II study. Eur J Nucl Med Mol Imaging. 2011;38:2125–35.
Article
CAS
PubMed
Google Scholar
Marin G, Vanderlinden B, Karfis I, et al. A dosimetry procedure for organs-at-risk in 177Lu peptide receptor radionuclide therapy of patients with neuroendocrine tumours. Physica Med. 2018;56:41–9.
Article
Google Scholar
Svensson J, Rydén T, Hagmarker L, Hemmingsson J, Wängberg B, Bernhardt P. A novel planar image-based method for bone marrow dosimetry in 177 Lu-DOTATATE treatment correlates with haematological toxicity. EJNMMI physics. 2016;3:21.
Article
PubMed
PubMed Central
Google Scholar
Hagmarker L, Svensson J, Rydén T, et al. Bone marrow absorbed doses and correlations with hematologic response during 177Lu-DOTATATE treatments are influenced by image-based dosimetry method and presence of skeletal metastases. J Nucl Med. 2019;60:1406–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bodei L, Kidd M, Paganelli G, et al. Long-term tolerability of PRRT in 807 patients with neuroendocrine tumours: the value and limitations of clinical factors. Eur J Nucl Med Mol Imaging. 2015;42:5–19.
Article
CAS
PubMed
Google Scholar
Lehenberger S, Barkhausen C, Cohrs S, et al. The low-energy β− and electron emitter 161Tb as an alternative to 177Lu for targeted radionuclide therapy. Nucl Med Biol. 2011;38:917–24.
Article
CAS
PubMed
Google Scholar
Eckerman K, Endo A, ICRP Publication 107. Nuclear decay data for dosimetric calculations. Ann ICRP. 2008;38:7–96.
CAS
PubMed
Google Scholar
Alcocer-Ávila ME, Ferreira A, Quinto MA, Morgat C, Hindié E, Champion C. Radiation doses from 161 Tb and 177 Lu in single tumour cells and micrometastases. EJNMMI physics. 2020;7:1–9.
Article
Google Scholar
Champion C, Quinto MA, Morgat C, Zanotti-Fregonara P, Hindié E. Comparison between three promising ß-emitting radionuclides, 67Cu, 47Sc and 161Tb, with emphasis on doses delivered to minimal residual disease. Theranostics. 2016;6:1611.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hindié E, Zanotti-Fregonara P, Quinto MA, Morgat C, Champion C. Dose deposits from 90Y, 177Lu, 111In, and 161Tb in micrometastases of various sizes: implications for radiopharmaceutical therapy. J Nucl Med. 2016;57:759–64.
Article
PubMed
Google Scholar
Bernhardt P, Svensson J, Hemmingsson J, et al. Dosimetric analysis of the short-ranged particle emitter 161Tb for radionuclide therapy of metastatic prostate cancer. Cancers. 2021;13:2011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bernhardt P, Benjegård SA, Kölby L, et al. Dosimetric comparison of radionuclides for therapy of somatostatin receptor-expressing tumors. Int J Radiat Oncol Biol Phys. 2001;51:514–24.
Article
CAS
PubMed
Google Scholar
Borgna F, Barritt P, Grundler PV, et al. Simultaneous visualization of 161Tb-and 177Lu-labeled somatostatin analogues using dual-Isotope SPECT imaging. Pharmaceutics. 2021;13:536.
Article
CAS
PubMed
PubMed Central
Google Scholar
Müller C, Reber J, Haller S, et al. Direct in vitro and in vivo comparison of 161 Tb and 177 Lu using a tumour-targeting folate conjugate. Eur J Nucl Med Mol Imaging. 2014;41:476–85.
Article
PubMed
Google Scholar
Müller C, Umbricht CA, Gracheva N, et al. Terbium-161 for PSMA-targeted radionuclide therapy of prostate cancer. Eur J Nucl Med Mol Imaging. 2019;46:1919–30.
Article
PubMed
PubMed Central
Google Scholar
Grünberg J, Lindenblatt D, Dorrer H, et al. Anti-L1CAM radioimmunotherapy is more effective with the radiolanthanide terbium-161 compared to lutetium-177 in an ovarian cancer model. Eur J Nucl Med Mol Imaging. 2014;41:1907–15.
Article
PubMed
Google Scholar
Baum RP, Singh A, Kulkarni HR, et al. First-in-human application of terbium-161: a feasibility study using (161)Tb-DOTATOC. J Nucl Med. 2021;62:1391.
Article
PubMed
PubMed Central
Google Scholar
Garske-Román U, Sandström M, Baron KF, et al. Prospective observational study of 177 Lu-DOTA-octreotate therapy in 200 patients with advanced metastasized neuroendocrine tumours (NETs): feasibility and impact of a dosimetry-guided study protocol on outcome and toxicity. Eur J Nucl Med Mol Imaging. 2018;45:970–88.
Article
PubMed
PubMed Central
Google Scholar
Griffith JF. Bone marrow changes in osteoporosis. In: Guglielmi G, editor. Osteoporosis and bone densitometry measurements. Berlin, Heidelberg: Springer, Berlin Heidelberg; 2013. p. 69–85.
Chapter
Google Scholar
Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46:1023–7.
PubMed
Google Scholar
Hindorf C, Glatting G, Chiesa C, Lindén O, Flux G. EANM dosimetry committee guidelines for bone marrow and whole-body dosimetry. Eur J Nucl Med Mol Imaging. 2010;37:1238–50.
Article
PubMed
Google Scholar
Del Prete M, Buteau F-A, Beauregard J-M. Personalized 177 Lu-octreotate peptide receptor radionuclide therapy of neuroendocrine tumours: a simulation study. Eur J Nucl Med Mol Imaging. 2017;44:1490–500.
Article
PubMed
Google Scholar
Spiers F. A review of the theoretical and experimental methods of determining radiation dose in bone. Br J Radiol. 1966;39:216–21.
Article
CAS
PubMed
Google Scholar
Shah AP. Reference skeletal dosimetry model for an adult male radionuclide therapy patient based on 3D imaging and paired-image radiation transport. University of Florida Gainesville; 2004.
Google Scholar
Kramer R, Khoury H, Vieira J, Kawrakow I. Skeletal dosimetry in the MAX06 and the FAX06 phantoms for external exposure to photons based on vertebral 3D-microCT images. Phys Med Biol. 2006;51:6265.
Article
CAS
PubMed
Google Scholar
Hough M, Johnson P, Rajon D, Jokisch D, Lee C, Bolch W. An image-based skeletal dosimetry model for the ICRP reference adult male—internal electron sources. Phys Med Biol. 2011;56:2309.
Article
PubMed
PubMed Central
Google Scholar
O’Reilly SE, DeWeese LS, Maynard MR, et al. An image-based skeletal dosimetry model for the ICRP reference adult female—internal electron sources. Phys Med Biol. 2016;61:8794.
Article
PubMed
PubMed Central
Google Scholar
Geyer AM, Schwarz BC, O’Reilly SE, Hobbs RF, Sgouros G, Bolch WE. Depth-dependent concentrations of hematopoietic stem cells in the adult skeleton: implications for active marrow dosimetry. Med Phys. 2017;44:747–61.
Article
CAS
PubMed
Google Scholar
ICRP. ICRP publication 70: Basic anatomical & physiological data for use in radiological protection: the skeleton, vol. 70. Elsevier Health Sciences; 1996.
Google Scholar
Lee C, Lodwick D, Hurtado J, Pafundi D, Williams JL, Bolch WE. The UF family of reference hybrid phantoms for computational radiation dosimetry. Phys Med Biol. 2009;55:339.
Article
PubMed
PubMed Central
Google Scholar
Pafundi D, Rajon D, Jokisch D, Lee C, Bolch W. An image-based skeletal dosimetry model for the ICRP reference newborn—internal electron sources. Phys Med Biol. 2010;55:1785.
Article
PubMed
Google Scholar
Salvat F. The PENELOPE code system. Specific features and recent improvements. In: Paper presented at: SNA+ MC 2013-joint international conference on supercomputing in nuclear applications+ Monte Carlo, 2014.
García-Toraño E, Peyres V, Salvat F. PenNuc: Monte Carlo simulation of the decay of radionuclides. Comput Phys Commun. 2019;245:106849.
Article
Google Scholar
Gao D, Chang Q, Liu C, et al. Fundamental cryobiology of human hematopoietic progenitor cells I: osmotic characteristics and volume distribution. Cryobiology. 1998;36:40–8.
Article
CAS
PubMed
Google Scholar
Vinjamuri S, Gilbert T, Banks M, et al. Peptide receptor radionuclide therapy with 90 Y-DOTATATE/90 Y-DOTATOC in patients with progressive metastatic neuroendocrine tumours: assessment of response, survival and toxicity. Br J Cancer. 2013;108:1440–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bourke VA, Watchman CJ, Reith JD, Jorgensen ML, Dieudonnè A, Bolch WE. Spatial gradients of blood vessels and hematopoietic stem and progenitor cells within the marrow cavities of the human skeleton. Blood J Am Soc Hematol. 2009;114:4077–80.
CAS
Google Scholar
Valentin J. Basic anatomical and physiological data for use in radiological protection: reference values: ICRP publication 89. Ann ICRP. 2002;32:1–277.
Article
Google Scholar
Forrer F, Krenning EP, Kooij PP, et al. Bone marrow dosimetry in peptide receptor radionuclide therapy with [177 Lu-DOTA 0, Tyr 3] octreotate. Eur J Nucl Med Mol Imaging. 2009;36:1138–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sea B. Patient-specific dosimetry of 177Lu-dotatate peptide receptor radionuclide therapy with high activities. Eur J Nucl Med Mol Imaging. 2018;45:1–844.
Google Scholar
Ferrer L, Kraeber-Bodéré F, Bodet-Milin C, et al. Three methods assessing red marrow dosimetry in lymphoma patients treated with radioimmunotherapy. Cancer. 2010;116:1093–100.
Article
CAS
PubMed
Google Scholar
Walrand S. Renal and red marrow dosimetry in peptide receptor radionuclide therapy: 20 years of history and ahead. 2021.
Yeo JH, Colonne CK, Tasneem N, Cosgriff MP, Fraser ST. The iron islands: erythroblastic islands and iron metabolism. Biochim Biophys Acta Gen Subj. 2019;1863(2):466–71. https://doi.org/10.1016/j.bbagen.2018.10.019.
Article
CAS
PubMed
Google Scholar
Walrand S, Barone R, Pauwels S, Jamar F. Experimental facts supporting a red marrow uptake due to radiometal transchelation in 90 Y-DOTATOC therapy and relationship to the decrease of platelet counts. Eur J Nucl Med Mol Imaging. 2011;38:1270–80.
Article
CAS
PubMed
Google Scholar
Pauwels S, Barone R, Walrand S, et al. Practical dosimetry of peptide receptor radionuclide therapy with 90Y-labeled somatostatin analogs. J Nucl Med. 2005;46:92S-98S.
CAS
PubMed
Google Scholar
Svensson J, Berg G, Wängberg B, Larsson M, Forssell-Aronsson E, Bernhardt P. Renal function affects absorbed dose to the kidneys and haematological toxicity during 177 Lu-DOTATATE treatment. Eur J Nucl Med Mol Imaging. 2015;42:947–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kam B, Teunissen J, Krenning EP, et al. Lutetium-labelled peptides for therapy of neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2012;39:103–12.
Article
CAS
PubMed Central
Google Scholar
Bergsma H, Konijnenberg MW, Kam BL, et al. Subacute haematotoxicity after PRRT with 177 Lu-DOTA-octreotate: prognostic factors, incidence and course. Eur J Nucl Med Mol Imaging. 2016;43:453–63.
Article
CAS
PubMed
Google Scholar
Strosberg J, El-Haddad G, Wolin E, et al. Phase 3 trial of 177Lu-Dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376:125–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bober B, Saracyn M, Zaręba K, et al. Early complications of radioisotope therapy with lutetium-177 and yttrium-90 in patients with neuroendocrine neoplasms—a preliminary study. J Clin Med. 2022;11:919.
Article
CAS
PubMed
PubMed Central
Google Scholar
Geyer AM, Schwarz BC, Hobbs RF, Sgouros G, Bolch WE. Quantitative impact of changes in marrow cellularity, skeletal size, and bone mineral density on active marrow dosimetry based upon a reference model. Med Phys. 2017;44:272–83.
Article
CAS
PubMed
Google Scholar
Justesen J, Stenderup K, Ebbesen E, Mosekilde L, Steiniche T, Kassem M. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology. 2001;2:165–71.
Article
CAS
PubMed
Google Scholar
Griffith JF, Yeung DK, Antonio GE, et al. Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology. 2005;236:945–51.
Article
PubMed
Google Scholar
Salas-Ramirez M, Tran-Gia J, Kesenheimer C, et al. Quantification of fat fraction in lumbar vertebrae: correlation with age and implications for bone marrow dosimetry in molecular radiotherapy. Phys Med Biol. 2018;63:025029.
Article
PubMed
Google Scholar
Carmona R, Pritz J, Bydder M, Gulaya S, Zhu H, Williamson CW, Welch CS, Vaida F, Bydder G, Mell LK. Fat composition changes in bone marrow during chemotherapy and radiation therapy. Int J Radiat Oncol Biol Phys. 2014;90(1):155–63. https://doi.org/10.1016/j.ijrobp.2014.05.041.
Article
PubMed
PubMed Central
Google Scholar