Meikle SR, Sossi V, Roncali E, et al. Quantitative PET in the 2020s: a roadmap. Phys Med Biol. 2021;66:06RM01.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kotasidis FA, Angelis GI, Anton-Rodriguez JM, Zaidi H. Robustness of post-reconstruction and direct kinetic parameter estimates under rigid head motion in dynamic brain PET imaging. Phys Medica. 2018;53:40–55.
Article
CAS
Google Scholar
Herzog H, Tellmann L, Fulton R, Stangier I, Kops ER, Bente K, Boy C, Hurlemann R, Pietrzyk U. Motion artifact reduction on parametric PET images of neuroreceptor binding. J Nucl Med. 2005;46:1059–65.
PubMed
Google Scholar
Wardak M, Wong K-P, Shao W, Dahlbom M, Kepe V, Satyamurthy N, Small GW, Barrio JR, Huang S-C. Movement correction method for human brain PET images: application to quantitative analysis of dynamic 18F-FDDNP scans. J Nucl Med. 2010;51:210–8.
Article
PubMed
Google Scholar
Zhang X, Cherry SR, Xie Z, Shi H, Badawi RD, Qi J. Subsecond total-body imaging using ultrasensitive positron emission tomography. Proc Natl Acad Sci U S A. 2020;117:2265–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spencer BA, Berg E, Schmall JP, et al. Performance evaluation of the uEXPLORER total-body PET/CT scanner based on NEMA NU 2–2018 with additional tests to characterize PET scanners with a long axial field of view. J Nucl Med. 2021;62:861–70.
Article
PubMed
PubMed Central
Google Scholar
Dias AH, Pedersen MF, Danielsen H, Munk OL, Gormsen LC. Clinical feasibility and impact of fully automated multiparametric PET imaging using direct Patlak reconstruction: evaluation of 103 dynamic whole-body 18F-FDG PET/CT scans. Eur J Nucl Med Mol Imaging. 2021;48:837–50.
Article
PubMed
Google Scholar
Wang Y, Li E, Cherry SR, Wang G. Total-body PET kinetic modeling and potential opportunities using deep learning. PET Clin. 2021;16:613–25.
Article
PubMed
Google Scholar
Liu G, Yu H, Shi D, Hu P, Hu Y, Tan H, Zhang Y, Yin H, Shi H. Short-time total-body dynamic PET imaging performance in quantifying the kinetic metrics of 18F-FDG in healthy volunteers. Eur J Nucl Med Mol Imaging. 2021;49(8):2498.
Google Scholar
Wu Y, Feng T, Zhao Y, Xu T, Fu F, Huang Z, Meng N, Li H, Shao F, Wang M. Whole-body parametric imaging of FDG PET using uEXPLORER with reduced scan time. J Nucl Med. 2021;63(4):622.
Article
PubMed
Google Scholar
Kyme AZ, Fulton RR. Motion estimation and correction in SPECT. PET and CT Phys Med Biol. 2021;66:18TR02.
Article
Google Scholar
Kolbitsch C, Davies-Venn C, Schaeffter T, Marsden P, Kellman P, Evers R, Peressutti D, Bluemke DA, Ahlman MA, Hansen M. Cardiac and respiratory motion correction for simultaneous cardiac PET/MR. J Nucl Med. 2017;58:846–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robson PM, Trivieri MG, Karakatsanis NA, Padilla M, Abgral R, Dweck MR, Kovacic JC, Fayad ZA. Correction of respiratory and cardiac motion in cardiac PET/MR using MR-based motion modeling. Phys Med Biol. 2018;63: 225011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu Y, Chan C, Ma T, Liu Y, Gallezot J-D, Naganawa M, Kelada OJ, Germino M, Sinusas AJ, Carson RE, Liu C. Event-by-event continuous respiratory motion correction for dynamic PET imaging. J Nucl Med. 2016;57:1084–90.
Article
CAS
PubMed
Google Scholar
Rubeaux M, Doris MK, Alessio A, Slomka PJ. Enhancing cardiac PET by motion correction techniques. Curr Cardiol Rep. 2017;19:14–7.
Article
PubMed
Google Scholar
Bellinge JW, Majeed K, Carr SS, Jones J, Hong I, Francis RJ, Schultz CJ. Coronary artery 18F-NaF PET analysis with the use of an elastic motion correction software. J Nucl Cardiol. 2019;27(3):1–9.
Google Scholar
Petibon Y, Sun T, Han PK, Ma C, El FG, Ouyang J. MR-based cardiac and respiratory motion correction of PET: Application to static and dynamic cardiac 18F-FDG imaging. Phys Med Biol. 2019;64: 195009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hunter C, Klein R, Beanlands RS, Dekemp RA. Patient motion effects on the quantification of regional myocardial blood flow with dynamic PET imaging. Med Phys. 2016;43:1829–40.
Article
PubMed
Google Scholar
Hunter CRRN, Klein R, Alessio AM, deKemp RA. Patient body motion correction for dynamic cardiac PET-CT by attenuation-emission alignment according to projection consistency conditions. Med Phys. 2019;46:1697–706.
Article
PubMed
Google Scholar
Sun T, Petibon Y, Han PK, Ma C, Kim SJW, Alpert NM, El Fakhri G, Ouyang J. Body motion detection and correction in cardiac PET: phantom and human studies. Med Phys. 2019;46:4898–906.
Article
PubMed
Google Scholar
Reilhac A, Merida I, Irace Z, Stephenson MC, Weekes AA, Chen C, Totman JJ, Townsend DW, Fayad H, Costes N. Development of a dedicated rebinner with rigid motion correction for the mMR PET/MR Scanner, and Validation in a large cohort of 11C-PIB Scans. J Nucl Med. 2018;59:1761–7.
Article
CAS
PubMed
Google Scholar
Shiyam Sundar LK, Iommi D, Muzik O, Chalampalakis Z, Klebermass E-M, Hienert M, Rischka L, Lanzenberger R, Hahn A, Pataraia E, Traub-Weidinger T, Hummel J, Beyer T. Conditional generative adversarial networks aided motion correction of dynamic 18F-FDG PET brain studies. J Nucl Med. 2021;62:871–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guérin B, Cho S, Chun SY, Zhu X, Alpert NM, El Fakhri G, Reese T, Catana C. Nonrigid PET motion compensation in the lower abdomen using simultaneous tagged-MRI and PET imaging. Med Phys. 2011;38:3025–38.
Article
PubMed
PubMed Central
Google Scholar
Chun SY, Reese TG, Ouyang J, Guerin B, Catana C, Zhu X, Alpert NM, El Fakhri G. MRI-based nonrigid motion correction in simultaneous PET/MRI. J Nucl Med. 2012;53:1284–91.
Article
PubMed
Google Scholar
Kolbitsch C, Prieto C, Tsoumpas C, Schaeffter T. A 3D MR-acquisition scheme for nonrigid bulk motion correction in simultaneous PET-MR. Med Phys. 2014;41:082304.
Article
PubMed
Google Scholar
Fieseler M, Gigengack F, Jiang X, Schäfers KP. Motion correction of whole-body PET data with a joint PET-MRI registration functional. Biomed Eng Online. 2014;13:1–9.
Article
Google Scholar
Bec J, Henry D, Kyme A, Fulton R, Badawi RD, Cherry SR. Optical motion tracking for use with the EXPLORER total-body PET scanner. J Nucl Med. 2018;59:1–5.
Google Scholar
Sari H, Mingels C, Alberts I, et al. First results on kinetic modelling and parametric imaging of dynamic 18F-FDG datasets from a long axial FOV PET scanner in oncological patients. Eur J Nucl Med Mol Imaging. 2022;49(6):1997.
Article
CAS
PubMed
Google Scholar
Andersson JLR. How to obtain high-accuracy image registration: application to movement correction of dynamic positron emission tomography data. Eur J Nucl Med. 1998;25:575–86.
Article
CAS
PubMed
Google Scholar
Zhou Y, Flores S, Mansor S, Hornbeck RC, Tu Z, Perlmutter JS, Ances B, Morris JC, Gropler RJ, Benzinger TLS. Spatially constrained kinetic modeling with dual reference tissues improves 18F-flortaucipir PET in studies of Alzheimer disease. Eur J Nucl Med Mol Imaging. 2021;48:3172–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Avants BB, Tustison NJ, Stauffer M, Song G, Wu B, Gee JC. The insight toolkit image registration framework. Front Neuroinform. 2014;8:1–13.
Article
Google Scholar
Avants BB, Epstein CL, Grossman M, Gee JC. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal. 2008;12:26–41.
Article
CAS
PubMed
Google Scholar
Peyrat JM, Delingette H, Sermesant M, Pennec X, Xu C, Ayache N. Registration of 4D time-series of cardiac images with multichannel diffeomorphic demons. Lect Notes Comput Sci. 2008;5242:972–9.
Article
Google Scholar
Miller MI, Beg MF, Ceritoglu C, Stark C. Increasing the power of functional maps of the medial temporal lobe by using large deformation diffeomorphic metric mapping. Proc Natl Acad Sci U S A. 2005;102:9685–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Munoz C, Qi H, Cruz G, Küstner T, Botnar RM, Prieto C. Self-supervised learning-based diffeomorphic non-rigid motion estimation for fast motion-compensated coronary MR angiography. Magn Reson Imaging. 2022;85:10–8.
Article
CAS
PubMed
Google Scholar
Powell MJD. A tolerant algorithm for linearly constrained optimization calculations. Math Program. 1989;45:547–66.
Article
Google Scholar
Blomqvist G. On the construction of functional maps in positron emission tomography. J Cereb Blood Flow Metab. 1984;4:629–32.
Article
CAS
PubMed
Google Scholar
Sun T, Wang Z, Wu Y, Gu F, Li X, Bai Y, Shen C, Hu Z, Liang D, Liu X, Zheng H, Yang Y, El Fakhri G, Zhou Y, Wang M. Identifying the individual metabolic abnormities from a systemic perspective using whole-body PET imaging. Eur J Nucl Med Mol Imaging. 2022;49(8):2994–3004.
Furst S, Grimm R, Hong I, Souvatzoglou M, Casey ME, Schwaiger M, Nekolla SG, Ziegler SI. Motion correction strategies for integrated PET/MR. J Nucl Med. 2015;56:261–9.
Article
PubMed
CAS
Google Scholar
Hong I, Jones J, Casey M. Elastic motion correction for cardiac PET studies. IEEE Nucl Sci Symp Conf Rec. 2013:2–4.
Feng T, Zhao Y, Shi H, Zhang X, Wang G, Badawi RD, Price PM, Cherry SR, JONES T. Total-Body Quantitative Parametric Imaging of Early Kinetics of FDG. J Nucl Med. 2021;62:738–744.
Sun T, Wu Y, Bai Y, Wang Z, Shen C, Wang W, Li C, Hu Z, Liang D, Liu X, Zheng H, Yang Y, Wang M. An iterative image-based inter-frame motion compensation method for dynamic brain PET imaging. Phys Med Biol. 2022;67: 035012.
Article
Google Scholar
Mok TCW, Chung ACS. Fast symmetric diffeomorphic image registration with convolutional neural networks. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2020:4643–4652.
Guo X, Zhou B, Pigg D, Spottiswoode B, Casey ME, Liu C, Dvornek NC. Unsupervised inter-frame motion correction for whole-body dynamic PET using convolutional long short-term memory in a convolutional neural network. Med Image Anal. 2022;80:102524.
Article
PubMed
Google Scholar
Sun T, Mok GSP. Techniques for respiration-induced artifacts reductions in thoracic PET/CT. Quant Imaging Med Surg. 2012;2:46–52.
CAS
PubMed
PubMed Central
Google Scholar
Costes N, Dagher A, Larcher K, Evans AC, Collins DL, Reilhac A. Motion correction of multi-frame PET data in neuroreceptor mapping: simulation based validation. Neuroimage. 2009;47:1496–505.
Article
PubMed
Google Scholar