Ryu H, Meikle SR, Willowson KP, Eslick EM, Bailey DL. Performance evaluation of quantitative SPECT/CT using NEMA NU 2 PET methodology. Phys Med Biol. 2019;64:145017.
Article
CAS
Google Scholar
Attarwala AA, Hardiansyah D, Romanó C, Jiménez-Franco LD, Roscher M, Wängler B, et al. Performance assessment of the ALBIRA II pre-clinical SPECT S102 system for 99mTc imaging. Ann Nucl Med. 2021;35:111–20. https://doi.org/10.1007/s12149-020-01547-7.
Article
CAS
PubMed
Google Scholar
Khorshidi A. Assessment of SPECT images using UHRFB and other low-energy collimators in brain study by Hoffman phantom and manufactured defects. Eur Phys J Plus. 2020;135:1–19. https://doi.org/10.1140/epjp/s13360-020-00238-6.
Article
Google Scholar
Blaire T, Bailliez A, Ben Bouallegue F, Bellevre D, Agostini D, Manrique A. First assessment of simultaneous dual isotope (123I/99mTc) cardiac SPECT on two different CZT cameras: a phantom study. J Nucl Cardiol. 2018;25:1692–704.
Article
Google Scholar
Timmins R, Ruddy TD, Wells RG. Patient position alters attenuation effects in multipinhole cardiac SPECT. Med Phys. 2015;42:1233–40.
Article
Google Scholar
Zhang D, Ghaly M, Mok GSP. Interpolated CT for attenuation correction on respiratory gating cardiac SPECT/CT—a simulation study. Med Phys. 2019;46:2621–8.
Article
Google Scholar
Veress AI, Fung GSK, Lee TS, Tsui BMW, Kicska GA, Segars WP, et al. The direct incorporation of perfusion defect information to define ischemia and infarction in a finite element model of the left ventricle. J Biomech Eng. 2015;137:1–10.
Article
Google Scholar
Visser JJN, Sokole EB, Verberne HJ, Habraken JBA, Van De Stadt HJF, Jaspers JEN, et al. A realistic 3-D gated cardiac phantom for quality control of gated myocardial perfusion SPET: the Amsterdam gated (AGATE) cardiac phantom. Eur J Nucl Med Mol Imaging. 2004;31:222–8.
Article
Google Scholar
Kim S, Oh J, Jeong D, Park W, Bae J. Consistent and reproducible direct ink writing of eutectic gallium-indium for high-quality soft sensors. Soft Robot. 2018;5:601–12.
Article
Google Scholar
Abdullah KA, McEntee MF, Reed W, Kench PL. Development of an organ-specific insert phantom generated using a 3D printer for investigations of cardiac computed tomography protocols. J Med Radiat Sci. 2018;65:175–83.
Article
Google Scholar
Okkalidis N, Chatzigeorgiou C, Okkalides D. Assessment of 11 available materials with custom three-dimensional-printing patterns for the simulation of muscle, fat, and lung hounsfield units in patient-specific phantoms. J Eng Sci Med Diagn Ther. 2018;1:1–7.
Google Scholar
Vyavahare S, Teraiya S, Panghal D, Kumar S. Fused deposition modelling: a review. Rapid Prototyp J. 2020;26:176–201.
Article
Google Scholar
Hong D, Lee S, Kim GB, Lee SM, Kim N, Seo JB. Development of a CT imaging phantom of anthromorphic lung using fused deposition modeling 3D printing. Medicine (United States). 2020;99:e18617.
Google Scholar
Zhang J, Hu Q, Wang S, Tao J, Gou M. Digital light processing based three-dimensional printing for medical applications. Int J Bioprinting. 2020;6:12–27.
Article
Google Scholar
Robinson SS, Aubin CA, Wallin TJ, Gharaie S, Xu PA, Wang K, et al. Stereolithography for personalized left atrial appendage occluders. Adv Mater Technol. 2018;3:1–9.
Article
Google Scholar
Ramírez-Nava GJ, Santos-Cuevas CL, Chairez-Oria I, Rioja-Guerrero E, Oroz-Duarte J. Tomographic 99mTc radioactivity quantification in three-dimensional printed polymeric phantoms with bioinspired geometries. Radiat Phys Chem. 2020;177:109130. https://doi.org/10.1016/j.radphyschem.2020.109130.
Article
CAS
Google Scholar
Gear JI, Cummings C, Craig AJ, Divoli A, Long CDC, Tapner M, et al. Abdo-Man: a 3D-printed anthropomorphic phantom for validating quantitative SIRT. EJNMMI Phys. 2016. https://doi.org/10.1186/s40658-016-0151-6.
Article
PubMed
PubMed Central
Google Scholar
Anwari V, Lai A, Ursani A, Rego K, Karasfi B, Sajja S, et al. 3D printed CT-based abdominal structure mannequin for enabling research. 3D Print Med. 2020. https://doi.org/10.1186/s41205-020-0056-9.
Article
PubMed
PubMed Central
Google Scholar
Alqahtani MS, Lees JE, Bugby SL, Samara-Ratna P, Ng AH, Perkins AC. Design and implementation of a prototype head and neck phantom for the performance evaluation of gamma imaging systems. EJNMMI Phys. 2017. https://doi.org/10.1186/s40658-017-0186-3.
Article
PubMed
PubMed Central
Google Scholar
Woliner-van der Weg W, Deden LN, Meeuwis APW, Koenrades M, Peeters LHC, Kuipers H, et al. A 3D-printed anatomical pancreas and kidney phantom for optimizing SPECT/CT reconstruction settings in beta cell imaging using 111In-exendin. EJNMMI Phys. 2016. https://doi.org/10.1186/s40658-016-0165-0.
Article
PubMed
PubMed Central
Google Scholar
Gear JI, Cummings C, Sullivan J, Cooper-Rayner N, Downs P, Murray I. Radioactive 3D printing for the production of molecular imaging phantoms. Phys Med Biol. 2020. https://doi.org/10.1088/1361-6560/aba40e.
Article
PubMed
Google Scholar
Läppchen T, Meier LP, Fürstner M, Prenosil GA, Krause T, Rominger A, et al. 3D printing of radioactive phantoms for nuclear medicine imaging. EJNMMI Phys. 2020. https://doi.org/10.1186/s40658-020-00292-0.
Article
PubMed
PubMed Central
Google Scholar
Robinson AP, Tipping J, Cullen DM, Hamilton D, Brown R, Flynn A, et al. Organ-specific spect activity calibration using 3d printed phantoms for molecular radiotherapy dosimetry. EJNMMI Phys. 2016;3:1–11. https://doi.org/10.1186/s40658-016-0148-1.
Article
Google Scholar
Filippou V, Tsoumpas C. Recent advances on the development of phantoms using 3D printing for imaging with CT, MRI, PET, SPECT, and ultrasound. Med Phys. 2018;45:e740–60.
Article
Google Scholar
Gear JI, Long C, Rushforth D, Chittenden SJ, Cummings C, Flux GD. Development of patient-specific molecular imaging phantoms using a 3D printer. Med Phys. 2014;41:1–4.
Article
Google Scholar
Tran-Gia J, Lassmann M. Optimizing image quantification for 177Lu SPECT/CT based on a 3D printed 2-compartment kidney phantom. J Nucl Med. 2018;59:616–24.
Article
CAS
Google Scholar
Pfaehler E, Beukinga RJ, de Jong JR, Slart RHJA, Slump CH, Dierckx RAJO, et al. Repeatability of 18F-FDG PET radiomic features: a phantom study to explore sensitivity to image reconstruction settings, noise, and delineation method. Med Phys. 2019;46:665–78.
Article
Google Scholar
Matsutomo N, Seki H, Hishikawa M, Motegi K, Yamamoto T. Technical Note: development of an ischemic defect model insert attachable to a commercially available myocardial phantom. Med Phys. 2020;47:4340–7.
Article
Google Scholar
Green S, Grice J. Technical note: 3D-printed phantom for dedicated cardiac protocols and geometries in nuclear medicine. Med Phys. 2021. https://doi.org/10.1002/mp.15406.
Article
PubMed
Google Scholar
Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging. 2012;30:1323–41. https://doi.org/10.1016/j.mri.2012.05.001.
Article
PubMed
PubMed Central
Google Scholar
Liu D, Yu J. Otsu method and K-means. In: Proceedings of 2009 9th Int Conf Hybrid Intell Syst HIS 2009, vol. 1. 2009. p. 344–9.
Paraskevoudis K, Karayannis P, Koumoulos EP. Real-time 3D printing remote defect detection (stringing) with computer vision and artificial intelligence. Processes. 2020;8:1464.
Article
Google Scholar
Imbert L, Poussier S, Franken PR, Songy B, Verger A, Morel O, et al. Compared performance of high-sensitivity cameras dedicated to myocardial perfusion SPECT: a comprehensive analysis of phantom and human images. J Nucl Med. 2012;53:1897–903.
Article
Google Scholar
Liu CJ, Cheng JS, Chen YC, Huang YH, Yen RF. A performance comparison of novel cadmium–zinc–telluride camera and conventional SPECT/CT using anthropomorphic torso phantom and water bags to simulate soft tissue and breast attenuation. Ann Nucl Med. 2015;29:342–50. https://doi.org/10.1007/s12149-015-0952-z.
Article
PubMed
Google Scholar
Kobayashi H, Momose M, Kanaya S, Kondo C, Kusakabe K, Mitsuhashi N. Scatter correction by two-window method standardizes cardiac I-123 MIBG uptake in various gamma camera systems. Ann Nucl Med. 2003;17:309–13.
Article
Google Scholar
Okuda K, Nakajima K, Yoneyama H, Shibutani T, Onoguchi M, Matsuo S, et al. Impact of iterative reconstruction with resolution recovery in myocardial perfusion SPECT: phantom and clinical studies. Sci Rep. 2019;9:1–9. https://doi.org/10.1038/s41598-019-56097-4.
Article
CAS
Google Scholar
Purser NJ, Armstrong IS, Williams HA, Tonge CM, Lawson RS. Apical thinning: real or artefact? Nucl Med Commun. 2008;29:382–9.
Article
Google Scholar
Steffen DA, Giannopoulos AA, Grossmann M, Messerli M, Schwyzer M, Gräni C, et al. “Apical thinning”: relations between myocardial wall thickness and apical left ventricular tracer uptake as assessed with positron emission tomography myocardial perfusion imaging. J Nucl Cardiol. 2020;27:452–60.
Article
Google Scholar
Denisova NV, Ansheles AA. A study of false apical defects in myocardial perfusion imaging with SPECT/CT. Biomed Phys Eng Express. 2018. https://doi.org/10.1088/2057-1976/aae414.
Article
Google Scholar
Okuda K, Nakajima K, Matsuo S, Kondo C, Sarai M, Horiguchi Y, et al. Creation and characterization of normal myocardial perfusion imaging databases using the IQ·SPECT system. J Nucl Cardiol. 2018;25:1328–37.
Article
Google Scholar
Johnson KM, Johnson HE, Dowe DA. Left ventricular apical thinning as normal anatomy. J Comput Assist Tomogr. 2009;33:334–7.
Article
Google Scholar
Yoneyama H, Nakajima K, Okuda K, Matsuo S, Onoguchi M, Kinuya S, et al. Reducing the small-heart effect in pediatric gated myocardial perfusion single-photon emission computed tomography. J Nucl Cardiol. 2017;24:1378–88.
Article
Google Scholar
Germano G, Kavanagh PB. Ready, shoot, aim? Summary justice for small hearts in nuclear cardiology. J Nucl Cardiol. 2017;24:1389–92.
Article
Google Scholar
Germano G, Kavanagh PB, Waechter P, Areeda J, Van Kriekinge S, Sharir T, et al. A new algorithm for the quantitation of myocardial perfusion. SPECT I: technical principles and reproducibility. J Nucl Med. 2000;41:712–9.
CAS
PubMed
Google Scholar
Johansson L, Lomsky M, Marving J, Ohlsson M, Svensson SE, Edenbrandt L. Diagnostic evaluation of three cardiac software packages using a consecutive group of patients. EJNMMI Res. 2011;1:1–7.
Article
Google Scholar