Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535–62.
Article
PubMed
PubMed Central
Google Scholar
Seibyl J, Catafau AM, Barthel H, Ishii K, Rowe CC, Leverenz JB, et al. Impact of Training Method on the Robustness of the Visual Assessment of 18F-Florbetaben PET Scans: Results from a Phase-3 Study. J Nucl Med. June 2016;57(6):900–6.
Article
CAS
PubMed
Google Scholar
Mountz JM, Laymon CM, Cohen AD, Zhang Z, Price JC, Boudhar S, et al. Comparison of qualitative and quantitative imaging characteristics of [ 11 C]PiB and [ 18 F]flutemetamol in normal control and Alzheimer’s subjects. NeuroImage Clin. 2015;9:592–8.
Article
PubMed
PubMed Central
Google Scholar
Nayate AP, Dubroff JG, Schmitt JE, Nasrallah I, Kishore R, Mankoff D, et al. Use of Standardized Uptake Value Ratios Decreases Interreader Variability of [18F] Florbetapir PET Brain Scan Interpretation. Am J Neuroradiol. 2015;36(7):1237–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, et al. Two Phase 3 Trials of Bapineuzumab in Mild-to-Moderate Alzheimer’s Disease. N Engl J Med. 2014;370(4):322–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Farrell ME, Kennedy KM, Rodrigue KM, Wig G, Bischof GN, Rieck JR, et al. Association of Longitudinal Cognitive Decline With Amyloid Burden in Middle-aged and Older Adults: Evidence for a Dose-Response Relationship. JAMA Neurol. 2017;74(7):830.
Article
PubMed
PubMed Central
Google Scholar
Schmidt ME, Chiao P, Klein G, Matthews D, Thurfjell L, Cole PE, et al. The influence of biological and technical factors on quantitative analysis of amyloid PET: Points to consider and recommendations for controlling variability in longitudinal data. Alzheimers Dement. 2015;11(9):1050–68.
Article
PubMed
Google Scholar
Thal DR, Rüb U, Orantes M, Braak H. Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology. 2002;58(12):1791–800.
Article
PubMed
Google Scholar
Knight WD, Okello AA, Ryan NS, Turkheimer FE. Rodríguez Martinez de Llano S, Edison P, et al. Carbon-11-Pittsburgh compound B positron emission tomography imaging of amyloid deposition in presenilin 1 mutation carriers. Brain. 2011;134(1):293–300.
Article
PubMed
Google Scholar
Catafau AM, Bullich S, Seibyl JP, Barthel H, Ghetti B, Leverenz J, et al. Cerebellar amyloid-plaques: how frequent are they, and do they influence 18F-florbetaben SUV ratios? J Nucl Med. 2016;57(11):1740–5.
Article
CAS
PubMed
Google Scholar
Klein GK, Mehul Sampat, Davis Staewen, David Scott. Comparison of SUVR methods and reference regions in amyloid PET. J Nucl Med. May 2015;56:1741.
Landau SM, Breault C, Joshi AD, Pontecorvo M, Mathis CA, Jagust WJ, et al. Amyloid- imaging with Pittsburgh compound B and florbetapir: comparing radiotracers and quantification methods. J Nucl Med. 2013;54(1):70–7.
Article
CAS
PubMed
Google Scholar
Blautzik J, Brendel M, Sauerbeck J, Kotz S, Scheiwein F, Bartenstein P, et al. Reference region selection and the association between the rate of amyloid accumulation over time and the baseline amyloid burden. Eur J Nucl Med Mol Imaging. 2017;44(8):1364–74.
Article
CAS
PubMed
Google Scholar
Chen K, Roontiva A, Thiyyagura P, Lee W, Liu X, Ayutyanont N, et al. Improved power for characterizing longitudinal amyloid- PET changes and evaluating amyloid-modifying treatments with a cerebral white matter reference region. J Nucl Med. 2015;56(4):560–6.
Article
CAS
PubMed
Google Scholar
Brendel M, Högenauer M, Delker A, Sauerbeck J, Bartenstein P, Seibyl J, et al. Improved longitudinal [18F]-AV45 amyloid PET by white matter reference and VOI-based partial volume effect correction. NeuroImage. 2015;108:450–9.
Article
PubMed
Google Scholar
Landau SM, Fero A, Baker SL, Koeppe R, Mintun M, Chen K, et al. Measurement of Longitudinal -Amyloid Change with 18F-Florbetapir PET and Standardized Uptake Value Ratios. J Nucl Med. 2015;56(4):567–74.
Article
CAS
PubMed
Google Scholar
Schwarz CG, Jones DT, Gunter JL, Lowe VJ, Vemuri P, Senjem ML, et al. Contributions of imprecision in PET-MRI rigid registration to imprecision in amyloid PETSUVR measurements: Imprecision in Amyloid PET-MRI Registration. Hum Brain Mapp. 2017;38(7):3323.
PubMed
PubMed Central
Google Scholar
Fodero-Tavoletti MT, Rowe CC, McLean CA, Leone L, Li Q-X, Masters CL, et al. Characterization of PiB binding to white matter in Alzheimer disease and other dementias. J Nucl Med. February 2009;50(2):198–204.
Article
PubMed
Google Scholar
Lowe VJ, Lundt ES, Senjem ML, Schwarz CG, Min H-K, Przybelski SA, et al. White matter reference region in PET studies of 11 C-Pittsburgh compound B uptake: Effects of Age and Amyloid-β Deposition. J Nucl Med. 2018;59(10):1583–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Veronese M, Bodini B, García-Lorenzo D, Battaglini M, Bongarzone S, Comtat C, et al. Quantification of [ 11 C]PIB PET for imaging myelin in the human brain: a test—retest reproducibility study in high-resolution research tomography. J Cereb Blood Flow Metab. 2015;35(11):1771–82.
Article
PubMed
PubMed Central
Google Scholar
Aston JAD, Cunningham VJ, Asselin M-C, Hammers A, Evans AC, Gunn RN. Positron Emission Tomography Partial Volume Correction: Estimation and Algorithms. J Cereb Blood Flow Metab. 2002;22(8):1019–34.
Article
PubMed
Google Scholar
Silva-Rodríguez J, Tsoumpas C, Domínguez-Prado I, Pardo-Montero J, Ruibal Á, Aguiar P. Impact and correction of the bladder uptake on 18 F-FCH PET quantification: a simulation study using the XCAT2 phantom. Phys Med Biol. 2016;61(2):758–73.
Article
PubMed
CAS
Google Scholar
Akerele MI, Wadhwa P, Silva-Rodriguez J, Hallett W, Tsoumpas C. Validation of the physiological background correction method for the suppression of the spill-in effect near highly radioactive regions in positron emission tomography. EJNMMI Phys. December 2018;5(1):34.
Rullmann M, Dukart J, Hoffmann K-T, Luthardt J, Tiepolt S, Patt M, et al. Partial-volume effect correction improves quantitative analysis of 18F-florbetaben-amyloid PET scans. J Nucl Med. 2016;57(2):198–203.
Article
CAS
PubMed
Google Scholar
Thomas BA, Erlandsson K, Modat M, Thurfjell L, Vandenberghe R, Ourselin S, et al. The importance of appropriate partial volume correction for PET quantification in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2011;38(6):1104–19.
Article
PubMed
Google Scholar
Villeneuve S, Rabinovici GD, Cohn-Sheehy BI, Madison C, Ayakta N, Ghosh PM, et al. Existing Pittsburgh Compound-B positron emission tomography thresholds are too high: statistical and pathological evaluation. Brain. 2015;138(7):2020–33.
Article
PubMed
PubMed Central
Google Scholar
Baker SL, Harrison TM, Maaß A, La Joie R, Jagust W. Effect of off-target binding on 18 F-Flortaucipir variability in healthy controls across the lifespan. J Nucl Med. March 2019;jnumed.118.224113.
Heurling K, Buckley C, Vandenberghe R, Laere KV, Lubberink M. Separation of β-amyloid binding and white matter uptake of (18)F-flutemetamol using spectral analysis. Am J Nucl Med Mol Imaging. 2015;5(5):515–26.
CAS
PubMed
PubMed Central
Google Scholar
Matsubara K, Ibaraki M, Shimada H, Ikoma Y, Suhara T, Kinoshita T, et al. Impact of spillover from white matter by partial volume effect on quantification of amyloid deposition with [11C]PiB PET. NeuroImage. 2016;143:316–24.
Article
PubMed
Google Scholar
LONI. Alzheimer’s disease neuroimaging initiative [Internet]. http://adni.loni.usc.edu/
PET Methods, ADNI [Internet]. http://adni.loni.usc.edu/methods/pet-analysis-method/pet-analysis/. Accessed 12 Oct 2019.
Statistical Parametric Mapping, version 12 [Internet]. https://www.fil.ion.ucl.ac.uk/spm/software/spm12/. Accessed 12 Oct 2019.
Ashburner J. A fast diffeomorphic image registration algorithm. NeuroImage. 2007;38(1):95–113.
Article
PubMed
Google Scholar
A Computational Anatomy Toolbox for SPM [Internet]. http://dbm.neuro.uni-jena.de/cat/. Accessed 12 Oct 2019.
Gaser C, Dahnke R. CAT - A computational anatomy toolbox for the Analysis of Structural MRI Data. Hum Brain Mapp Conf. 2016;
Hammers A, Allom R, Koepp MJ, Free SL, Myers R, Lemieux L, et al. Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum Brain Mapp. 2003;19(4):224–47.
Article
PubMed
PubMed Central
Google Scholar
Shidahara M, Tsoumpas C, Hammers A, Boussion N, Visvikis D, Suhara T, et al. Functional and structural synergy for resolution recovery and partial volume correction in brain PET. NeuroImage. 2009;44(2):340–8.
Article
PubMed
Google Scholar
PET Core, ADNI [Internet]. http://adni.loni.usc.edu/category/pet-core/. Accessed 12 Oct 2019.
Marti-Fuster B, Esteban O, Thielemans K, Setoain X, Santos A, Ros D, et al. Including Anatomical and Functional Information in MC Simulation of PET and SPECT Brain Studies. Brain-VISET: A Voxel-Based Iterative Method. IEEE Trans Med Imaging. 2014;33(10):1931–8.
Article
PubMed
Google Scholar
Simulation System for Emission Tomography (SimSET) [Internet]. https://depts.washington.edu/simset/html/simset_main.html. Accessed 12 Oct 2019.
Harrison RL. Monte Carlo simulation of emission tomography and other medical imaging techniques. AIP Conf Proc. 2010;1204:126–32.
Article
PubMed
PubMed Central
Google Scholar
Harrison RL, Kinahan PE, Lewellen TK. A generalized simulation description language. En: 2007 IEEE Nuclear Science Symposium Conference Record [Internet]. Honolulu, HI, USA: IEEE; 2007. p. 4012-4. http://ieeexplore.ieee.org/document/4436993/
MacDonald LR, Schmitz RE, Alessio AM, Wollenweber SD, Stearns CW, Ganin A, et al. Measured count-rate performance of the Discovery STE PET/CT scanner in 2D, 3D and partial collimation acquisition modes. Phys Med Biol. 2008;53(14):3723–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13(4):601–9.
Article
CAS
PubMed
Google Scholar
Thielemans K, Tsoumpas C, Mustafovic S, Beisel T, Aguiar P, Dikaios N, et al. STIR: software for tomographic image reconstruction release 2. Phys Med Biol. 2012;57(4):867–83.
Article
PubMed
Google Scholar
Software for Tomographic Image Reconstruction [Internet]. http://stir.sourceforge.net/. Accessed 12 Oct 2019.
STIR Wiki [Internet]. http://stir.sourceforge.net/wiki. Accessed 12 Oct 2019.
Thomas BA, Cuplov V, Bousse A, Mendes A, Thielemans K, Hutton BF, et al. PETPVC: a toolbox for performing partial volume correction techniques in positron emission tomography. Phys Med Biol. 2016;61(22):7975–93.
Article
PubMed
Google Scholar
Yang J, Huang SC, Mega M, Lin KP, Toga AW, Small GW, et al. Investigation of partial volume correction methods for brain FDG PET studies. IEEE Trans Nucl Sci. 1996;43(6):3322–7.
Article
Google Scholar
Erlandsson K, Buvat I, Pretorius PH, Thomas BA, Hutton BF. A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol. 2012;57(21):R119–59.
Article
PubMed
Google Scholar
Nemmi F, Saint-Aubert L, Adel D, Salabert A-S, Pariente J, Barbeau EJ, et al. Insight on AV-45 binding in white and grey matter from histogram analysis: a study on early Alzheimer’s disease patients and healthy subjects. Eur J Nucl Med Mol Imaging. 2014;41(7):1408–18.
Article
CAS
PubMed
Google Scholar
the Alzheimer’s Disease Neuroimaging Initiative, Landau SM, Thomas BA, Thurfjell L, Schmidt M, Margolin R, et al. Amyloid PET imaging in Alzheimer’s disease: a comparison of three radiotracers. Eur J Nucl Med Mol Imaging. July 2014;41(7):1398-1407.
Article
CAS
PubMed
PubMed Central
Google Scholar
Greve DN, Salat DH, Bowen SL, Izquierdo-Garcia D, Schultz AP, Catana C, et al. Different partial volume correction methods lead to different conclusions: An 18 F-FDG-PET study of aging. NeuroImage. 2016;132:334–43.
Article
PubMed
Google Scholar
Schwarz CG, Gunter JL, Lowe VJ, Weigand S, Vemuri P, Senjem ML, et al. A comparison of partial volume correction techniques for measuring change in serial amyloid PET SUVR. J Alzheimers Dis. 2019;67(1):181–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwarz CG, Senjem ML, Gunter JL, Tosakulwong N, Weigand SD, Kemp BJ, et al. Optimizing PiB-PET SUVR change-over-time measurement by a large-scale analysis of longitudinal reliability, plausibility, separability, and correlation with MMSE. NeuroImage. 2017;144:113–27.
Article
PubMed
Google Scholar