Gregory DL, Hicks RJ, Hogg A, Binns DS, Shum PL, Milner A, Link E, Ball DL, Mac Manus MP: Effect of PET/CT on management of patients with non-small cell lung cancer: results of a prospective study with 5-year survival data. J Nucl Med 2012, 53: 1007–1015. 10.2967/jnumed.111.099713
Article
PubMed
Google Scholar
Llamas-Elvira JM, Rodríguez-Fernández A, Gutiérrez-Sáinz J, Gomez-Rio M, Bellon-Guardia M, Ramos-Font C, Rebollo-Aguirre AC, Cabello-García D, Ferrón-Orihuela A: Flourine-18 fluorodeoxyglucose PET in the preoperative staging of colorectal cancer. Eur J Nucl Med Mol Imaging 2007, 34: 859–867. 10.1007/s00259-006-0274-4
Article
CAS
PubMed
Google Scholar
Groheux D, Giacchetti S, Delord M, Hindié E, Vercellino L, Cuvier C, Toubert ME, Merlet P, Hennequin C, Espié M: 18F-FDG-PET/CT in staging patients with locally advanced or inflammatory breast cancer: comparison to conventional staging. J Nucl Med 2013, 54: 5–11. 10.2967/jnumed.112.106864
Article
PubMed
Google Scholar
Liao S, Penney BC, Wroblewski K, Zhang H, Simon CA, Kampalath R, Shih MC, Shimada N, Chen S, Salgia R, Appelbaum DE, Suzuki K, Chen CT, Pu Y: Prognostic value of metabolic tumor burden on 18F-FDG PET in nonsurgical patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging 2012, 39: 27–38. 10.1007/s00259-011-1934-6
Article
CAS
PubMed
Google Scholar
Hatt M, Groheux D, Martineau A, Espié M, Hindié E, Giacchetti S, De Roquancourt A, Visvikis D, Cheze-Le Rest C: Comparison between 18F-FDG PET image-derived indices for early prediction of response to neoadjuvant chemotherapy in breast cancer. J Nucl Med 2013, 54: 341–349. 10.2967/jnumed.112.108837
Article
CAS
PubMed
Google Scholar
De Ruysscher D, Wanders S, Minken A, Lumens A, Schiffelers J, Stultiens C, Halders S, Boersma L, Van Baardwijk A, Verschueren T, Hochstenbag M, Snoep G, Wouters B, Nijsten S, Bentzen SM, Van Kroonenburgh M, Öllers M, Lambin P: Effects of radiotherapy planning with a dedicated combined PET-CT-simulator of patients with non-small cell lung cancer on dose limiting normal tissues and radiation dose-escalation: a planning study. Radiother Oncol 2005, 77: 5–10. 10.1016/j.radonc.2005.06.014
Article
PubMed
Google Scholar
Buijsen J, van den Bogaard J, van der Weide H, Engelsman S, Van Stiphout R, Janssen M, Beets G, Beets-Tan R, Lambin P, Lammering G: FDG-PET-CT reduces the interobserver variability in rectal tumor delineation. Radiother Oncol 2012, 102: 371–376. 10.1016/j.radonc.2011.12.016
Article
PubMed
Google Scholar
Ramos CD, Erdi YE, Gonen M, Riedel E, Yeung HW, Macapinlac HA, Chisin R, Larson SM: FDG-PET standardized uptake values in normal anatomical structures using iterative reconstruction segmented attenuation correction and filtered back-projection. Eur J Nucl Med 2001, 28: 155–164. 10.1007/s002590000421
Article
CAS
PubMed
Google Scholar
Cheebsumon P, Yaqub M, Van Velden FH, Hoekstra OS, Lammertsma AA, Boellaard R: Impact of [18F]FDG PET imaging parameters on automatic tumour delineation: need for improved tumour delineation methodology. Eur J Nucl Med Mol Imaging 2011, 38: 2136–2144. 10.1007/s00259-011-1899-5
Article
PubMed Central
PubMed
Google Scholar
Prieto E, Dóminguez-Prado I, García-Velloso MJ, Peñuelas I, Richter JA, Martí-Climent JM: Impact of time-of-flight and point-spread-function in SUV quantification for oncological PET. Clin Nucl Med 2013, 38: 103–109. 10.1097/RLU.0b013e318279b9df
Article
PubMed
Google Scholar
Knäusl B, Hirtl A, Dobrozemsky G, Bergmann H, Kletter K, Dudczak R, Georg D: PET based volume segmentation with emphasis on the iterative TrueX algorithm. Z Med Phys 2012, 22: 29–39. 10.1016/j.zemedi.2010.12.003
Article
PubMed
Google Scholar
Knäusl B, Rausch IF, Bergmann H, Dudczak R, Hirtl A, Georg D: Influence of PET reconstruction parameters on the TrueX algorithm. A combined phantom and patient study. Nuklearmedizin 2013, 52: 28–35. 10.3413/Nukmed-0523-12-07
Article
PubMed
Google Scholar
Akamatsu G, Mitsumoto K, Taniguchi T, Tsutsui Y, Baba S, Sasaki M: Influences of point-spread function and time-of-flight reconstructions on standardized uptake value of lymph node metastases in FDG-PET. Eur J Radiol 2014, 83: 226–230. 10.1016/j.ejrad.2013.09.030
Article
PubMed
Google Scholar
Martí-Climent JM, Prieto E, Domínguez-Prado I, García-Velloso MJ, Rodríguez-Fraile M, Arbizu J, Vigil C, Caicedo C, Peñuelas I, Richter JA: Contribution of time of flight and point spread function modelling to the performance characteristics of the PET/CT Biograph mCT scanner. Rev Esp Med Nucl Imagen Mol 2013, 32: 13–21.
PubMed
Google Scholar
Panin VY, Kehren F, Michel C, Casey M: Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imaging 2006, 25: 907–921.
Article
PubMed
Google Scholar
Akamatsu G, Ishikawa K, Mitsumoto K, Taniguchi T, Ohya N, Baba S, Abe K, Sasaki M: Improvement in PET/CT image quality with a combination of point-spread functions and time-of-flight in relation to reconstruction parameters. J Nucl Med 2012, 53: 1716–1722. 10.2967/jnumed.112.103861
Article
PubMed
Google Scholar
Hofheinz F, Dittrich S, Pötzsch C, van den Hoff J: Effects of cold sphere walls in PET phantom measurements on the volume reproducing threshold. Phys Med Biol 2010, 55: 1099–1113. 10.1088/0031-9155/55/4/013
Article
CAS
PubMed
Google Scholar
Lougovski A, Hofheinz F, Maus J, Schramm G, Will E, van den Hoff J: A volume of intersection approach for on-the-fly system matrix calculation in 3D PET image reconstruction. Phys Med Biol 2014, 59: 561–577. 10.1088/0031-9155/59/3/561
Article
CAS
PubMed
Google Scholar
Hastie TJ, Tibshirani RJ: Generalized Additive Models. London: Chapman & Hall; 1990.
Google Scholar
Hofheinz F, Pötzsch C, Oehme L, Beuthien-Baumann B, Steinbach J, Kotzerke J, van den Hoff J: Automatic volume delineation in oncological PET. Evaluation of a dedicated software tool and comparison with manual delineation in clinical data sets. Nuklearmedizin 2012, 51: 9–16.
Article
CAS
PubMed
Google Scholar
Association NEM: Performance measurements of positron emission tomographs (PETs). In NEMA Standards Publication NU 2–2007. Rosslyn: NEMA; 2007:7–10.
Google Scholar
Rapisarda E, Bettinardi V, Thielemans K, Gilardi MC: Image-based point spread function implementation in a fully 3D OSEM reconstruction algorithm for PET. Phys Med Biol 2010, 55: 4131–4151. 10.1088/0031-9155/55/14/012
Article
CAS
PubMed
Google Scholar
Hewitt E, Hewitt RE: The Gibbs-Wilbraham phenomenon: an episode in Fourier analysis. Arch Hist Exact Sci 1979, 21: 129–160. 10.1007/BF00330404
Article
Google Scholar
Kadrmas DJ, Casey ME, Conti M, Jakoby BW, Lois C, Townsend DW: Impact of time-of-flight on PET tumor detection. J Nucl Med 2009, 50: 1315–1323. 10.2967/jnumed.109.063016
Article
PubMed Central
PubMed
Google Scholar
Schaefferkoetter J, Casey M, Townsend D, El Fakhri G: Clinical impact of time-of-flight and point response modeling in PET reconstructions: a lesion detection study. Phys Med Biol 2013, 58: 1465–1478. 10.1088/0031-9155/58/5/1465
Article
PubMed Central
PubMed
Google Scholar
Wang Y, Zhang C, Liu J, Huang G: Is 18F-FDG PET accurate to predict neoadjuvant therapy response in breast cancer? A meta-analysis. Breast Cancer Res Treat 2012, 131: 357–369. 10.1007/s10549-011-1780-z
Article
CAS
PubMed
Google Scholar
Boellaard R, O'Doherty MJ, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG, Oyen WJG, Kotzerke J, Hoekstra OS, Pruim J, Marsden PK, Tatsch K, Hoekstra CJ, Visser EP, Arends B, Verzijlbergen FJ, Zijlstra JM, Comans EFI, Lammertsma AA, Paans AM, Willemsen AT, Beyer T, Bockisch A, Schaefer-Prokop C, Delbeke D, Baum RP, Chiti A, Krause BJ: FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 2010, 37: 181–200. 10.1007/s00259-009-1297-4
Article
PubMed Central
PubMed
Google Scholar
Kupferschläger J, Pfannenberg C, Reimold M, Werner M, Bares R: Einfluss der Rekonstruktions- und Auswertemethodik auf die SUV-Quantifizierung am PET/CT (SIEMENS mCT) [abstract]. Nuklearmedizin 2013. 52: A26
Google Scholar
Bazañez-Borgert M, Bundschuh RA, Herz M, Martínez MJ, Schwaiger M, Ziegler SI: Radioactive spheres without inactive wall for lesion simulation in PET. Z Med Phys 2008, 18: 37–42. 10.1016/j.zemedi.2007.06.001
Article
PubMed
Google Scholar
Ciernik IF, Huser M, Burger C, Davis JB, Szekely G: Automated functional image-guided radiation treatment planning for rectal cancer. Int J Radiat Oncol Biol Phys 2005, 62: 893–900. 10.1016/j.ijrobp.2004.12.089
Article
PubMed
Google Scholar
Hatt M, Lamare F, Boussion N, Turzo A, Collet C, Salzenstein F, Roux C, Jarritt P, Carson K, Cheze-Le Rest C, Visvikis D: Fuzzy hidden Markov chains segmentation for volume determination and quantitation in PET. Phys Med Biol 2007, 52: 3467–3491. 10.1088/0031-9155/52/12/010
Article
PubMed Central
CAS
PubMed
Google Scholar
Kim J, Cai W, Eberl S, Feng D: Real-time volume rendering visualization of dual-modality PET/CT interactive fuzzy thresholding segmentation. IEEE Trans Inf Technol Biomed 2007, 11: 161–169.
Article
PubMed
Google Scholar
Geets X, Lee JA, Bol A, Lonneux M, Grégoire V: A gradient-based method for segmenting FDG-PET images: methodology and validation. Eur J Nucl Med Mol Imaging 2007, 34: 1427–1438. 10.1007/s00259-006-0363-4
Article
PubMed
Google Scholar
Aristophanous M, Penney BC, Martel MK, Pelizzari CA: A Gaussian mixture model for definition of lung tumor volumes in positron emission tomography. Med Phys 2007, 34: 4223–4235. 10.1118/1.2791035
Article
PubMed
Google Scholar
Belhassen S, Zaidi H: A novel fuzzy C-means algorithm for unsupervised heterogeneous tumor quantification in PET. Med Phys 2010, 37: 1309–1324. 10.1118/1.3301610
Article
PubMed
Google Scholar