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Introduction
Positron Emission Tomography combined with Computed Tomography (PET/CT) 
using the tracer 18F-fluorodeoxyglucose (FDG) is nowadays widely used in oncology 
[1–3]. PET/CT has become part of the clinical routine for initial diagnosis, prognosis 

Abstract 

Background:  Machine learning studies require a large number of images often 
obtained on different PET scanners. When merging these images, the use of harmo-
nized images following EARL-standards is essential. However, when including retro-
spective images, EARL accreditation might not have been in place. The aim of this 
study was to develop a convolutional neural network (CNN) that can identify retrospec-
tively if an image is EARL compliant and if it is meeting older or newer EARL-standards.

Materials and methods:  96 PET images acquired on three PET/CT systems were 
included in the study. All images were reconstructed with the locally clinically pre-
ferred, EARL1, and EARL2 compliant reconstruction protocols. After image pre-pro-
cessing, one CNN was trained to separate clinical and EARL compliant reconstructions. 
A second CNN was optimized to identify EARL1 and EARL2 compliant images. The 
accuracy of both CNNs was assessed using fivefold cross-validation. The CNNs were 
validated on 24 images acquired on a PET scanner not included in the training data. 
To assess the impact of image noise on the CNN decision, the 24 images were recon-
structed with different scan durations.

Results:  In the cross-validation, the first CNN classified all images correctly. When iden-
tifying EARL1 and EARL2 compliant images, the second CNN identified 100% EARL1 
compliant and 85% EARL2 compliant images correctly. The accuracy in the independ-
ent dataset was comparable to the cross-validation accuracy. The scan duration had 
almost no impact on the results.

Conclusion:  The two CNNs trained in this study can be used to retrospectively include 
images in a multi-center setting by, e.g., adding additional smoothing. This method is 
especially important for machine learning studies where the harmonization of images 
from different PET systems is essential.
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or treatment response assessment for cancer patients [4, 5].
To date, PET images are mainly inspected visually to, e.g., determine the tumor 

stage. In the last decade, the quantitative analysis of PET images has become more 
and more popular as it increases the reproducibility and objectivity of clinical deci-
sion making [6, 7].

For this purpose, PET images are routinely converted to Standardized Uptake Val-
ues (SUV) which normalizes the radioactivity displayed in the image by body weight 
and amount of injected tracer and thereby corrects for possible discrepancies across 
patients [8]. Next, quantitative assessment is performed by using basic SUV metrics, 
more complex image biomarkers such as radiomic features or most recently by deep 
learning analysis [9, 10]. Additional to SUV normalization also technical factors such 
as image reconstruction needs to be standardized in order to perform quantitative 
image analysis.

To perform reliable quantitative assessment, images need to be comparable across 
patients but also across institutions and PET/CT systems [11, 12]. However, due to the 
different image characteristics of scanner vendors or used reconstruction algorithms a 
wide variability in image quality across institutions and PET/CT systems remains which 
hampers a clinical implementation of quantitative image assessment [13]. To overcome 
these discrepancies, the European Association of Nuclear Medicine (EANM) provides 
certain guidelines and benchmark values to harmonize PET/CT images across centers 
[14, 15]. Two EANM Research Ltd. (EARL) standards exist and are established in par-
ticipating institutions: one standard for older PET/CT systems harmonizing images with 
a lower resolution (EARL1) and the new EARL standard defined for modern PET cam-
eras coming with higher resolution (EARL2) [16, 17]. Only images that are in accordance 
with these standards should be used for quantitative analysis.

To select harmonized reconstruction parameters, a scan of the NEMA image quality 
phantom is acquired and the reconstruction setting leading to activity recoveries in a 
certain range is chosen [15]. However, when including images retrospectively in a study, 
EARL accreditation might not have been in place or information in the DICOM header 
is missing such that reconstruction settings cannot be verified. Images that are not EARL 
compliant can be retrospectively converted to EARL compliant images by adding addi-
tional Gaussian smoothing [18] or data derived from the images by a data transforma-
tion method called COMBAT. To determine the amount of additional smoothing or the 
need for data transformation, it is of great interest to determine retrospectively if images 
that should be included in a study are meeting EARL requirements.

To the best of our knowledge, this is the first study that uses a convolutional neural 
network (CNN) to determine the EARL compliance of a PET image. For this purpose, 
we trained, validated, and tested two CNNs to determine if an image meets EARL stand-
ards. The first CNN is trained to determine if an image meets EARL standards in gen-
eral (e.g., EARL1 or EARL2). The second CNN is then consecutively used to determine 
if an image that was identified as being EARL compliant is EARL1 or EARL2 compli-
ant. Both CNNs were trained and cross-validated with data from three PET/CT systems 
from three PET scanner vendors (Siemens, Philips, and General Electrics) and externally 
validated on a forth PET/CT scanner in order to assess the generalizability of the trained 
algorithm.
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Materials and methods
Datasets

Training and cross‑validation

The dataset used for training and cross-validating the algorithm consists of 96 images 
from cancer patients acquired on three PET/CT systems: 36 images acquired on a 
Philips Gemini (Philips Medical Systems, Best, The Netherlands), 30 images on a Sie-
mens Biograph mCT40 (Siemens, Knoxville, TN, USA), and 30 images on a General 
Electric Discovery system (General Electric, Boston, Massachusetts, USA). The training 
data included images from 17 lymphoma and 79 lung cancer patients. All images were 
reconstructed with (1) the locally clinically preferred, (2) EARL1 and (3) EARL2 compli-
ant reconstruction settings and with a 120 s scan duration per bed position. The exact 
reconstruction settings for each scanner are displayed in Table 1. All data included in 
this study are taken from clinical routine. The use of the data was approved by the Insti-
tutional Medical Ethics Committees (case number VUMC 2018.029, UMCG 2017/489). 
All data were fully anonymized.

Independent testing datasets

To test the CNN performance, 30 images prospectively acquired on the Siemens Bio-
graph mCT40 were used. These images were also reconstructed with clinical, EARL1, 
and EARL2 compliant reconstruction settings.

Moreover, 24 images acquired on a scanner that was not included in the training data 
(Siemens Biograph Vision) were used for independent external validation. This dataset 
included 9 lung cancer, 7 lymphoma, and 8 head and neck cancer patients. In order to 
determine if image noise has an impact on the CNN decision, all images acquired at the 
Biograph Vision were reconstructed with 30 s, 60 s, 120 s, and 180 s scan duration. The 
different scan durations were chosen to assess if the networks would also perform well 
when acquired in a hospital which scans their patients with other scan durations than 
120 s per bed position.

Training and validation of the CNN

Data preparation, as well as data analysis were performed with python 3.4. All imple-
mented code used in this study can be found on Zenodo (https://​doi.​org/​10.​5281/​
zenodo.​55403​90).

Table 1  Reconstruction settings for different scanner types

Scanner type Clinical EARL1 EARL2

Siemens biograph mCT40 PSF + 2 mm smoothing OSEM + 6 mm smoothing PSF + TOF + 5 mm 
smoothing

Philips Gemini PSF + 2 mm smoothing OSEM + 5 mm smoothing PSF + TOF + 5 mm 
smoothing

GE discovery PSF + TOF + 2 mm 
smoothing

PSF + TOF + 8 mm 
smoothing

PSF + TOF + 5 mm 
smoothing

Siemens Biograph Vision PSF + TOF + 0 mm 
smoothing

PSF + TOF + 7 mm 
smoothing

PSF + TOF + 5 mm 
smoothing

https://doi.org/10.5281/zenodo.5540390
https://doi.org/10.5281/zenodo.5540390
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Data preparation and augmentation

First, all images were normalized to SUV units. Next, before images were used for train-
ing or validation, the images were converted to ‘edge images’. For this purpose, all images 
were blurred with a 6  mm Full-Width-At-Half-Maximum Gaussian kernel. Next, the 
blurred image was subtracted from the original image. The so generated ‘edge image’ 
pronounces the edges of high intensity areas while minimizing scanner specific noise. 
These ‘edge images’ are pronouncing the resolution of an image and resulted therefore 
in higher accuracies in training and validation than the original PET image (Additional 
file 1, Tables 1 and 2). An example is displayed in Fig. 1. The edge images were used for 
training, cross-validating, and independent validating the CNN.

Before the conversion to edge images, all images were resampled to a cubic voxel 
size of 3 mm. After resampling, the images were cut or expanded to an image size of 
300 × 200 pixels. Hereby, the images were padded with a constant value of 0 if their 

Table 2  Training and cross-validation accuracy for the first CNN trained to separate clinical and EARL 
compliant reconstructions

Fold number Training accuracy 
(%)

Validation accuracy for clinical 
reconstructions (%)

Validation accuracy for 
EARL compliant recons 
(%)

1 89 100 100

2 87 100 100

3 89 100 100

4 91 100 100

5 87 100 100

Fig. 1  Original and edge enhanced image for EARL 1 and EARL 2 compliant images and the three PET 
systems included in the training dataset
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original image size was smaller than 300 × 200. If the image size was larger, they were 
cut by randomly choosing an image part with the required size. Hereby, the rows 
and columns for the cut were randomly assigned to lie between 0 and (300—original 
image height) or (200—original image width), respectively. This randomly cutting was 
performed to ensure that different body parts were present in the different images.

In order to avoid overfitting and to increase the number of training images, data 
augmentation was performed. Data augmentation included zooming the image, i.e., 
making it 10% larger or smaller, flipping the image either in vertical or horizontal 
direction, and adding a height or width shift of 10%.

CNN architecture and training details

The CNNs were trained using the keras library version 2.2.4 with tensorflow back-
end. The trained CNNs as well as some example images and a manual how to train 
and validate the CNNs can be found on Zenodo. In this study, a 2D CNN is trained 
to classify single image slices (more details see below). The CNN architecture is dis-
played in Fig. 2. It consists of one convolutional block followed by a dropout layer and 
two dense layers. The convolutional block contains a convolutional layer with a kernel 
size of 3, a stride size of 2, and 8 filters. The initial weights of the convolutional layer 
are following a normal distribution. The dropout percentage in the dropout layer is 
set to 0.6 to avoid overfitting and to increase the generalizability of the CNN. The out-
put of the dropout layer is flattened and fed into a dense layer with 8 units and a ReLU 
activation function. The second and last dense layer contains 2 units and a softmax 
activation function to perform the classification. The CNN is trained with 25 epochs 
and a batch size of 20. CNNs learn features that are important for the classification 
task automatically. To build a generalizable CNN, it is important to learn only fea-
tures representing the specific task and not representing other details such as scanner 
specific noise. Therefore, it is essential to build a CNN that is generalizable and can 
be applied to data that is not included in the training process. In order to improve the 
generalizability, the CNN stopped training when the accuracy in the training set did 
not improve during 5 epochs. The CNN leading to the best validation accuracy in the 
training process is saved and used for further analysis.

To identify EARL compliant images, two CNNs with the described architecture 
were trained. Two separate CNNs were trained as the use of only one CNN with three 

Fig. 2  Workflow of the CNN used in this study: The convolutional block consists of a convolutional layer 
followed by a LeakyReLU layer with alpha set to 0.2. The convolutional layer consists of 8 filters. The dropout 
percentage is set to 0.6. The first dense layer consists of 8, the second one of 2 units
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outcomes (Clinical, EARL1, and EARL2) resulted in worse performance (see Additional 
file  1, Table  3). The first CNN was trained to separate images that are meeting EARL 
standards (EARL1 and EARL2) from images that are not EARL compliant. For training 
this CNN, the clinical reconstructions of the three scanners as well as the EARL2 com-
pliant images from the GE and the Siemens system and the EARL1 compliant images 
from the Philips system were used. This subselection was performed to avoid data 
imbalance. The second CNN was trained to determine if an image that was identified to 
be EARL compliant is compliant with either EARL1 or EARL2 standards. For this task, 
EARL1 and EARL2 compliant images of all scanners were used for training.

Slice selection

In the present study, only sagittal slices were used for classification as they showed the 
best results in initial experiments as compared to using axial or coronal slices (data not 
shown). For the first CNN trained to separate clinical and EARL compliant images, ten 
slices in the middle of the patient were chosen. Hereby, the middle of the image was 
determined and the five slices on the left-hand and the five slices on the right-hand side 
were included in the training dataset. For the second CNN trained to separate EARL1 
and EARL2 compliant images, slices with a high gradient (i.e., with a high uptake) were 
chosen. For this purpose, from the forty slices in the middle of the patient, the ten slices 
with the highest edge intensity values were selected. In both cases, the mean probability 
value of the ten slices was calculated and used for final classification.

As described above, images were randomly cut before they were used as input to the 
network. To assess if the random cut had an impact on the CNN results, ten randomly 
selected images were analyzed using five different random cuts. The mean, standard 
deviation, and coefficient of variation (COV, defined as ratio of standard deviation and 
mean value) of these ten CNN probabilities were calculated and compared.

Model performance

For training and cross-validating the CNNs, the training dataset was split in five parts 
such that each part contained a comparable number of images from each scanner. Five-
fold cross-validation was performed so that each part served once as validation dataset. 
The performance of the trained CNN was evaluated by analyzing prediction accuracy. 
As the softmax layer of the CNN gives certainty about its decision in terms of a prob-
ability (1 for a completely certain decision, 0.5 for an uncertain decision), the mean 

Table 3  Training and cross-validation accuracy for the second CNN trained to classify EARL1 and 
EARL2 compliant reconstructions

Fold number Training 
accuracy (%)

Validation accuracy for EARL1 
compliant reconstructions (%)

Validation accuracy for 
EARL2 compliant recons 
(%)

1 88 100 83

2 89 100 87

3 87 100 87

4 91 100 78

5 93 100 87
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probability of the ten image slices was used for final classification. For the first CNN, all 
images with a probability equal or above 0.5 to be clinical/EARL compliant images were 
considered to be clinical/EARL compliant images. While for the second CNN, images 
with a corresponding mean probability of 0.4 or higher were considered as being EARL2 
compliant while images with a mean probability of 0.6 or higher were considered as 
EARL1 compliant.

Last, the CNNs were trained on the whole training dataset and then applied to the 
independent validation datasets.

Results
Cross‑validation accuracy

The training and cross-validation accuracies of the first CNN trained to separate EARL 
compliant and clinical reconstructions are listed in Table 2. Note that the training accu-
racy represents the accuracy for single slices, while the cross-validation accuracy is cal-
culated image per image by using the mean probability of ten patient slices (as explained 
above). For all folds, all clinical and all EARL compliant reconstructions were correctly 
identified. The probabilities of the CNN representing the confidence of its decision that 
an image is a clinical reconstruction are displayed in Fig. 3.

The accuracy values for the second CNN trained to separate EARL1 and EARL2 
compliant images are listed in Table 3. EARL1 compliant images were always correctly 
identified. In contrast, in each fold, some EARL2 compliant image were incorrectly clas-
sified as being EARL1 compliant. The majority of the misclassified images were patients 
with small tumor lesions and corresponding edge images with low gradient values. The 
probabilities of the CNN decision that the images are EARL1 compliant are displayed in 
Fig. 4. This Figure also illustrates the chosen threshold of 0.6.

Accuracy independent validation dataset

In the independent testing dataset, all images were correctly classified by the first CNN. 
The second CNN trained to separate EARL1 and EARL2 compliant images identi-
fied all EARL1 compliant images correctly while 18% of the EARL2 compliant images 
were incorrectly classified. As in the cross-validation datasets, the incorrectly classified 
images were patients with low tumor load and therefore low edge values (Table 4).

The accuracy of the first CNN when applied to the data acquired on the Siemens Bio-
graph Vision are listed in Table 4 for 30 s, 60 s, 120 s, and 180 s scan duration. For the 
same scan duration as the training data (120 s), all reconstruction settings were correctly 
identified.

Table 4  Accuracy of the first CNN applied to data from the Siemens Biograph Vision which was not 
included in the training data

Clinical (%) EARL1 (%) EARL2 (%)

Correctly identified images—180 s 84 100 100

120 s 100 100 100

60 s 100 100 100

30 s 100 100 96
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The scan duration had only for three clinical images acquired at the Biograph Vision 
with scan duration 180 s an impact on the CNN prediction. The images were incorrectly 
identified as being EARL compliant by the first CNN, the second CNN identified them 
to be EARL2 compliant. Here, the probability given by the CNN was for all scan dura-
tions around 50% while it dropped slightly below 50% for 180 s scan duration. Also one 
EARL2 compliant image reconstructed with 30 s scan duration was incorrectly classified 
as clinical reconstructions while the same scan reconstructed with longer scan durations 
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was correctly classified. For all other images, the scan duration had no impact on the 
binary decision. However, the CNN probability and therefore the certainty of the CNN 
dropped around 10% for images with scan durations different from 120 s.

Table  5 contains the accuracy of the CNN trained to separate EARL1 and EARL2 
compliant images for different scan durations. For this CNN, the scan duration had no 
impact on the results. All images were correctly identified for all scan durations.

Impact of random cut on CNN results

Table 6 contains the mean, standard deviation, and COV of the CNN probabilities when 
the images were cut five times randomly. The standard deviation was small (range from 
0.0051 to 0.098) and the COV yielded values between 0.0016 to 0.11. Both results illus-
trate that the random cut of the image has almost no impact on the CNN results.

Discussion
In this study, we were the first to train, cross-validate, and independently validate an 
automatic image quality control for PET images. As such the trained CNNs could be 
used in clinical multi-center studies to determine if images from different institutions 
are in compliance with the EARL standards and can be used together. To make the 
methods and results publicly available, a python script that takes one image or a series of 
nifty images as input and displays the corresponding reconstruction setting is available 
on Zenodo and can be used by the community.

Table 5  Accuracy of the second CNN applied to images reconstructed with different scan durations 
acquired on the Biograph Vision

EARL1 (%) EARL2 (%)

Correctly identified images—180 s 100 100

120 s 100 100

60 s 100 100

30 s 100 100

Table 6  Mean, standard deviation, and coefficient of variation of CNN probabilities for five different 
random cuts. For each image, the standard deviation is small. Therefore, the CNN results are 
independent of the random cut

Mean Std. dev Coefficient 
of variation

Image 1 0.89 0.098 0.11

Image 2 0.98 0.049 0.05

Image 3 0.78 0.0078 0.01

Image 4 0.68 0.0051 0.0075

Image 5 0.82 0.013 0.0016

Image 6 0.94 0.0041 0.0043

Image 7 0.57 0.0032 0,0056

Image 8 0.99 0.087 0.088

Image 9 0.81 0.0059 0.0072

Image 10 0.97 0.042 0.043
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Quality control for PET images is an important task. With the increasing use of 
machine and deep learning in nuclear medicine, where the amount of training data is 
limited, it is especially important to use images yielding similar image quality. To date, 
image quality in PET images can be assessed by drawing manually a sphere in the patient 
liver and comparing the mean liver intensity value across patients. However, the mean 
liver value gives mainly information about the correct SUV and does not necessarily 
indicate if the used reconstruction settings are comparable [12].

While details about the used reconstruction setting are listed in the DICOM header, 
only very experienced users can identify if the reconstruction setting is compliant with 
EARL standards. Additionally, due to anonymization or conversion to other image for-
mats such as, e.g., nifti this information is often incomplete.

In this study, the two dimensional image slices were used as input to the CNN and 
not—as for other tasks- the 3D information of the whole image. By using 2D slices, the 
number of training data was enlarged, thereby possibly increasing the classification per-
formance. Moreover, in contrast to segmentation or other tasks, the 3D information of 
the image is not important as only the noise structure and resolution of the image is 
important for the classification.

Several strategies were used in this study to guarantee the generalizability of the CNN 
and to avoid overfitting. As PET images come with a low spatial resolution and less 
image details than, e.g., CT images, a lower number of features and CNN layers might 
be an advantage [7]. To build generalizable CNNs is an important challenge as CNNs 
contain normally a large number of learnable features while the amount of training data 
is often limited. Therefore, the CNN used in this study is very sparse, containing only 
a few number of layers and learnable features. A large dropout percentage was chosen 
in order to avoid overfitting. The comparable performance of training, cross-validation, 
and independent external testing underlines the generalizability of the proposed CNNs. 
The low amount of layers and features seems appropriate because of the lack of details 
that are needed to identify the image resolution (i.e., EARL1, EARL2 or clinical image 
quality). In our experience, when using more features and layers the CNNs learned scan-
ner specific details and were not able to generalize to unseen data.

Some EARL2 compliant images were incorrectly identified as being EARL1 compli-
ant. This was especially the case for patients with low tumor load. In these cases, the 
edge images contained only few edges what might be the reason for the misclassification. 
However, as the CNN made the right decision in the majority of the cases, it may still be 
possible to assess if an imaging site complies with an EARL standard by looking at the 
overall classification across all images from an imaging site.

The scan duration had in our study only a low impact on the results. However, to make 
the CNN more stable and to achieve that the scan duration has no impact at all, it might 
be necessary to train the network with images acquired with different scan durations 
per bed position. This would increase the stability and generalizability of the proposed 
method.

Even though the images used for training contained mainly lung cancer images, the 
network performed well on other cancer types such as lymphoma or head and neck 
cancer in the independent validation dataset. This result indicates that the network 
can perform well for various cancer types even though these cancer types were not 



Page 11 of 13Pfaehler et al. EJNMMI Physics            (2022) 9:53 	

present in the training dataset. These results need to be confirmed in a larger data-
set. The present study as well as the EARL accreditation focuses on oncological PET 
images. However, also for neurological images, harmonized image reconstructions 
are essential in order to compare images across institutions [19]. Therefore, future 
studies could focus on the use of CNNs to determine image quality for neurological 
PET images.

The present study has some limitations. First, the network misclassified images yield-
ing no or only small (smaller than 5 mL) tumor lesions with a maximum uptake below 
3 SUV. However, by knowing this limitation, the user can focus on identifying the right 
reconstruction setting using images with larger tumor lesions. Second, the network was 
trained with a small number of images what could lead to a low generalizability of the 
trained network. By including an external validation dataset from a scanner not included 
in the training data, we tried to assess the generalizability of the CNN and achieved 
comparable results to the training data. Still, this does not guarantee that the network 
will perform well for other scanners. In general, to improve the stability of the proposed 
method, retraining the network with data coming from more scanners would be of 
advantage. Especially for newer generations of PET scanners it might be necessary to 
retrain the model with data from these scanners in order to achieve good results. Addi-
tionally, the network was only trained with images acquired with 120 s scan duration. 
If in the future, a lower scan duration will be feasible for clinical studies, it will likely 
also be of advantage to include images with other scan durations in the training pro-
cess. At the moment, one GPU is necessary to train and retrain the network. However, 
by reducing the image size, it will be possible to train the network also on a CPU what 
would make the method also feasible for institutions without access to computer clus-
ters. Therefore, we made the trained networks as well as the code used in this paper pub-
licly available. Users can retrain the network with data from other scanners such that the 
generalizability of the proposed method can be further improved.

Conclusion
We trained, cross-validated and independently validated two consecutive CNNs that can 
automatically identify EARL compliant images. Moreover, the CNNs are able to separate 
if an image is meeting older or newer EARL standards. By using the proposed CNNs, 
images that are not EARL compliant can be adjusted retrospectively (by adding addi-
tional smoothing) so that they become EARL compliant, thus giving the opportunity 
to retrospectively include images in a multi-center setting. This method can be used in 
multicenter studies where the harmonization of images from different PET systems is 
essential.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s40658-​022-​00468-w.

Additional file 1. Supplemental Table 1. Accuracy for CNN trained to identify clinical and EARL compliant recon-
structions when using original SUV images. Supplemental Table 2. Accuracy for CNN trained to identify EARL1 and 
EARL2 compliant reconstructions when using original SUV images. Supplemental Table 3. Accuracy for CNN when 
trained with three outcomes (Clinical, EARL1, EARL2).

https://doi.org/10.1186/s40658-022-00468-w


Page 12 of 13Pfaehler et al. EJNMMI Physics            (2022) 9:53 

Acknowledgements
We would like to thank the Center for Information Technology of the University of Groningen for their support and for 
providing access to the Peregrine high performance computing cluster.

Author contributions
EP designed the study, implemented the CNNs, analyzed the data, and wrote the manuscript. DE, AR, JvS, OSH, JZ, and 
AHB, contributed to the patient inclusion, data acquisition, and manuscript revision. CL contributed to manuscript revi-
sion. RB designed and managed the study, and wrote the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable 
request.

Declarations

Ethics approval and consent to participate
All procedures performed in studies involving human participants were in accordance with the ethical standards of the 
institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or 
comparable ethical standards.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 24 November 2021   Accepted: 9 May 2022

References
	1.	 van Elmpt W, Ollers M, Dingemans A-MC, et al. Response assessment using 18F-FDG PET early in the course of radio-

therapy correlates with survival in advanced-stage non-small cell lung cancer. J Nucl Med. 2012;53:1514–20. https://​
doi.​org/​10.​2967/​jnumed.​111.​102566.

	2.	 Freudenberg LS, Antoch G, Schuett P, et al. FDG-PET/CT in re-staging of patients with lymphoma. Eur J Nucl Med 
Mol Imaging. 2004;31:325–9. https://​doi.​org/​10.​1007/​s00259-​003-​1375-y.

	3.	 Fletcher JW, Djulbegovic B, Soares HP, et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med. 
2008;49:480–508. https://​doi.​org/​10.​2967/​jnumed.​107.​047787.

	4.	 Weber WA, Schwaiger M, Avril N. Quantitative assessment of tumor metabolism using FDG-PET imaging. Nucl Med 
Biol. 2000;27:683–7.

	5.	 Bailly C, Bodet-Milin C, Bourgeois M, et al. Exploring tumor heterogeneity using PET imaging: the big picture. Can-
cers (Basel). 2019;11:1282. https://​doi.​org/​10.​3390/​cance​rs110​91282.

	6.	 Kramer GM, Frings V, Hoetjes N, et al. Repeatability of quantitative whole-body 18F-FDG PET/CT uptake measures as 
function of uptake interval and lesion selection in non-small cell lung cancer patients. J Nucl Med. 2016;57:1343–9. 
https://​doi.​org/​10.​2967/​jnumed.​115.​170225.

	7.	 Pfaehler E, Mesotten L, Kramer G, et al. Repeatability of two semi-automatic artificial intelligence approaches for 
tumor segmentation in PET. EJNMMI Res. 2021;11:4. https://​doi.​org/​10.​1186/​s13550-​020-​00744-9.

	8.	 Berghmans T, Dusart M, Sculier J, et al. Primary tumor standardized uptake value (SUV max) measured on fluoro-
deoxyglucose positron emission tomography (FDG-PET) is of prognostic value for survival in non-small cell lung 
cancer (NSCLC). J Thorac Oncol. 2008;3:6–12. https://​doi.​org/​10.​1097/​JTO.​0b013​e3181​5e6d6b.

	9.	 Hatt M, Tixier F, Pierce L, et al. Characterization of PET/CT images using texture analysis: the past, the present … any 
future ? Eur J Nucl Med Mol Imaging. 2017;44:151–65. https://​doi.​org/​10.​1007/​s00259-​016-​3427-0.

	10.	 Biehl KJ, Kong F-M, Dehdashti F, et al. 18F-FDG PET definition of gross tumor volume for radiotherapy of non-
small cell lung cancer: is a single standardized uptake value threshold approach appropriate? J Nucl Med. 
2006;47:1808–12.

	11.	 Pfaehler E, van Sluis J, Merema BBJ, et al. Experimental Multicenter and Multivendor Evaluation of the Performance 
of PET Radiomic Features Using 3-Dimensionally Printed Phantom Inserts. J Nucl Med. 2020;61:469–76. https://​doi.​
org/​10.​2967/​jnumed.​119.​229724.

	12.	 Kuhnert G, Boellaard R, Sterzer S, et al. Impact of PET/CT image reconstruction methods and liver uptake nor-
malization strategies on quantitative image analysis. Eur J Nucl Med Mol Imaging. 2016. https://​doi.​org/​10.​1007/​
s00259-​015-​3165-8.

	13.	 Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the 
accuracy of standard uptake values: a simulation study. J Nucl Med. 2004;45:1519–27.

	14.	 Kaalep A, Sera T, Rijnsdorp S, et al. Feasibility of state of the art PET/CT systems performance harmonisation. Eur J 
Nucl Med Mol Imaging. 2018;45:1344–61. https://​doi.​org/​10.​1007/​s00259-​018-​3977-4.

	15.	 Boellaard R, Delgado-Bolton R, Oyen WJG, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: ver-
sion 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–54. https://​doi.​org/​10.​1007/​s00259-​014-​2961-x.

https://doi.org/10.2967/jnumed.111.102566
https://doi.org/10.2967/jnumed.111.102566
https://doi.org/10.1007/s00259-003-1375-y
https://doi.org/10.2967/jnumed.107.047787
https://doi.org/10.3390/cancers11091282
https://doi.org/10.2967/jnumed.115.170225
https://doi.org/10.1186/s13550-020-00744-9
https://doi.org/10.1097/JTO.0b013e31815e6d6b
https://doi.org/10.1007/s00259-016-3427-0
https://doi.org/10.2967/jnumed.119.229724
https://doi.org/10.2967/jnumed.119.229724
https://doi.org/10.1007/s00259-015-3165-8
https://doi.org/10.1007/s00259-015-3165-8
https://doi.org/10.1007/s00259-018-3977-4
https://doi.org/10.1007/s00259-014-2961-x


Page 13 of 13Pfaehler et al. EJNMMI Physics            (2022) 9:53 	

	16.	 Kaalep A, Burggraaff CN, Pieplenbosch S, et al. Quantitative implications of the updated EARL 2019 PET-CT perfor-
mance standards. EJNMMI Phys. 2019;6:28. https://​doi.​org/​10.​1186/​s40658-​019-​0257-8.

	17.	 Boellaard R, O’Doherty MJ, Weber WA, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imag-
ing: version 1.0. Eur J Nucl Med Mol Imaging. 2010;37:181–200. https://​doi.​org/​10.​1007/​s00259-​009-​1297-4.

	18.	 Aide N, Lasnon C, Veit-Haibach P, et al. EANM/EARL harmonization strategies in PET quantification: from daily 
practice to multicentre oncological studies. Eur J Nucl Med Mol Imaging. 2017;44:17–31. https://​doi.​org/​10.​1007/​
s00259-​017-​3740-2.

	19.	 Verwer EE, Golla SSV, Kaalep A, et al. Harmonisation of PET/CT contrast recovery performance for brain studies. Eur J 
Nucl Med Mol Imaging. 2021;48:2856–70. https://​doi.​org/​10.​1007/​s00259-​021-​05201-w.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1186/s40658-019-0257-8
https://doi.org/10.1007/s00259-009-1297-4
https://doi.org/10.1007/s00259-017-3740-2
https://doi.org/10.1007/s00259-017-3740-2
https://doi.org/10.1007/s00259-021-05201-w

	Convolutional neural networks for automatic image quality control and EARL compliance of PET images
	Abstract 
	Background: 
	Materials and methods: 
	Results: 
	Conclusion: 

	Introduction
	Materials and methods
	Datasets
	Training and cross-validation

	Independent testing datasets
	Training and validation of the CNN
	Data preparation and augmentation
	CNN architecture and training details
	Slice selection
	Model performance

	Results
	Cross-validation accuracy
	Accuracy independent validation dataset
	Impact of random cut on CNN results

	Discussion
	Conclusion
	Acknowledgements
	References


