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Abstract 

Background:  Metabolic positron emission tomography/computed tomography 
(PET/CT) parameters describing tumour activity contain valuable prognostic informa-
tion, but to perform the measurements manually leads to both intra- and inter-reader 
variability and is too time-consuming in clinical practice. The use of modern artificial 
intelligence-based methods offers new possibilities for automated and objective 
image analysis of PET/CT data.

Purpose:  We aimed to train a convolutional neural network (CNN) to segment and 
quantify tumour burden in [18F]-fluorodeoxyglucose (FDG) PET/CT images and to 
evaluate the association between CNN-based measurements and overall survival (OS) 
in patients with lung cancer. A secondary aim was to make the method available to 
other researchers.

Methods:  A total of 320 consecutive patients referred for FDG PET/CT due to sus-
pected lung cancer were retrospectively selected for this study. Two nuclear medicine 
specialists manually segmented abnormal FDG uptake in all of the PET/CT studies. 
One-third of the patients were assigned to a test group. Survival data were collected 
for this group. The CNN was trained to segment lung tumours and thoracic lymph 
nodes. Total lesion glycolysis (TLG) was calculated from the CNN-based and manual 
segmentations. Associations between TLG and OS were investigated using a univariate 
Cox proportional hazards regression model.

Results:  The test group comprised 106 patients (median age, 76 years (IQR 61–79); 
n = 59 female). Both CNN-based TLG (hazard ratio 1.64, 95% confidence interval 1.21–
2.21; p = 0.001) and manual TLG (hazard ratio 1.54, 95% confidence interval 1.14–2.07; 
p = 0.004) estimations were significantly associated with OS.

Conclusion:  Fully automated CNN-based TLG measurements of PET/CT data showed 
were significantly associated with OS in patients with lung cancer. This type of meas-
urement may be of value for the management of future patients with lung cancer. The 
CNN is publicly available for research purposes.
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Introduction
[18F]fluorodeoxyglucose (FDG) positron emission tomography/computed tomogra-
phy (PET/CT) plays an important role in lung cancer, both for small cell and non-small 
cell cancer diagnosis, staging, response assessment and follow-up [1–4]. Several stud-
ies have shown the prognostic value of different metabolic PET parameters [5–10]. The 
methods to quantify tumour burden are, however, usually based on manually selected 
lesions by local imaging experts and easily accessible measurements such as maximum 
or peak standardized uptake value (SUV). An objective way to analyse the PET/CT find-
ings would enable effectively comparing the results from different studies and, thereby, 
facilitate the assessment of the FDG PET/CT findings in patients with suspected lung 
cancer. The use of modern artificial intelligence (AI)-based methods offers new possibili-
ties for automated and objective image analysis [11]. AI-based technology can be trained 
to assess the entire burden of disease by including both the extent and activity of the 
tumour and not only the maximum or peak SUV, which represents a very small volume 
of the tumour [12]. Manual methods of assessing total tumour burden, for example, the 
segmentation of all tumour lesions and estimation of total lesion glycolysis (TLG), are 
too time-consuming for clinical use and hampered by low reproducibility.

We recently trained a convolutional neural network (CNN) to automatically detect 
lesions and calculate the TLG from the FDG PET/CT data of patients with lung cancer 
[13]. That CNN has a sensitivity of 90% and the correlation between the manual and 
CNN-based automated TLG measurements is strong (r2 = 0.74). These results inspired 
us to take the next step and train a new CNN using a larger training set and expanding 
the task of the CNN to segment also thoracic lymph nodes. In addition, a new test group 
was selected in which survival data were available. Therefore, this study aimed to evalu-
ate this new CNN by comparing its automated TLG measurements to corresponding 
manual measurements and by assessing the association between the TLG measurements 
and overall survival (OS) in patients with lung cancer. A secondary aim was to make the 
AI-based method freely available to other researchers.

Methods
Patients

Two groups of consecutive patients referred for FDG PET/CT due to suspected lung 
cancer were retrospectively selected to develop and evaluate the new CNN. One group 
of 113 patients underwent PET/CT between April 2008 and December 2010 at the Sahl-
grenska University Hospital, Gothenburg, Sweden. This group was used in our first study 
to train and evaluate a CNN for the detection of lung tumours [13]. The other group of 
207 patients underwent PET/CT between November 2017 and November 2018 at the 
Skåne University Hospital in Lund/Malmö, Sweden.

The total study group of 320 patients was divided into a test group of 106 patients 
(33%) and a training group of 214 patients (67%). Only patients from the Skåne Uni-
versity Hospital were selected randomly for the test group since the patients from the 



Page 3 of 10Borrelli et al. EJNMMI Physics             (2022) 9:6 	

Sahlgrenska University Hospital were already used to train and test the CNN developed 
in our previous study. Clinical information and survival data for the test group were col-
lected from local medical records and the radiology information system up until Novem-
ber 2020. The patient characteristics of the test group are presented in Table 1.

This study was conducted according to the principles expressed in the Declaration of 
Helsinki and approved by the local research ethics committees at Gothenburg (#295–
08) and Lund Universities (#2016/193 and #2018/753). All patients provided written 
informed consent.

Imaging

PET/CT scans were obtained using integrated PET/CT systems (Siemens Biograph 64 
Truepoint, Siemens Healthineers, Erlangen, Germany and GE Discovery MI, GE Health-
care, Chicago, USA). The patients were injected with 4 MBq/kg (maximum of 400 Mbq) 
of FDG, fasted for at least 4 h prior to the injection and had adequate glucose levels prior 
to the injection. The accumulation time was 60 min. Images were acquired at 3 min per 
bed position (Sahlgrenska) or 1.5 min per bed position (Skåne) from the base of the skull 
to the mid-thigh.

PET images obtained from the Siemens Biograph 64 Truepoint PET/CT scanner were 
reconstructed with a slice thickness of 3 mm using an iterative ordered subset expec-
tation maximization 3D algorithm (four iterations, eight subsets) with a matrix size of 
168 × 168. CT-based attenuation and scatter corrections were applied. A low-dose CT 
scan (64-slice helical, 120 kV, 30 mAs, 512 × 512 matrix) was obtained covering the same 
area of the patient as the PET scan. The CT was reconstructed using a filtered back-pro-
jection algorithm with slice thickness and spacing that matched the PET scan.

The PET images obtained from the GE Discovery MI system were reconstructed 
using the commercially available block-sequential regularized expectation maximiza-
tion (BSREM) algorithm Q.Clear (GE Healthcare, Milwaukee, WI, USA) with a beta 

Table 1  Characteristics of the patients in the test group

n Median years (IQR)

Age 106 76 (61–79)

Sex

 Female 59

 Male 47

Survival status

 Dead—survival time 51 0.9 (0.54–1.54)

 Alive—follow-up time 55 2.6 (2.5–2.7)

Diagnosis

 Non-small cell lung carcinoma 85

 Lung cancer of unknown type 11

 Lung metastases 5

 Hamartoma 1

 Lymphoma 1

 Pneumoconiosis 1

 Schwannoma 1

 Unknown 1
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factor of 550. The time-of-flight and point spread functions were used with a 256 × 256 
matrix (pixel size 2.7 × 2.7 mm2, slice thickness 2.8 mm). CT images were acquired for 
attenuation correction and anatomical correlation of the PET images. A diagnostic CT 
with intravenous and oral contrast medium or a low-dose CT without contrast was per-
formed. In our clinical routine, a low-dose CT is performed if a previous diagnostic CT 
was performed within 4 weeks. For diagnostic CTs, tube current modulation was applied 
by adjusting the tube current for each individual with a noise index of 42.25 and a tube 
voltage of 100 kV. For the low-dose CT, the tube voltage was 120 kV with a noise index 
of 45. If a diagnostic CT was performed, it was used for attenuation correction (delayed 
venous phase of intravenous contrast). The adaptive statistical iterative reconstruction 
technique (ASiR-V) was applied for all CT reconstructions.

Manual segmentations

Two nuclear medicine specialists with over 6 and over 12  years of PET/CT experi-
ence segmented abnormal FDG uptake in the PET/CT images from the training and 
test groups. The segmentations were made manually by visual inspection in a consen-
sus reading. Abnormal uptakes were classified into one of the following groups: lung 
tumour, thoracic lymph node, extra-thoracic lymph node, adrenal, bone, liver metas-
tasis, inflammatory, high pleura or other high activity. No clinical data, only PET/CT 
images were available during the segmentation process. A cloud-based annotation tool 
(RECOMIA, https://​www.​recom​ia.​org) was used for the manual segmentations [14].

Convolutional neural network

The CNN was trained to segment lung tumours and thoracic lymph nodes only. The 
numbers of other abnormal uptake examples were insufficient for CNN training.

This model uses a CNN with U-net 3D architecture [15]. The final convolutional 
layer contains three channels with softmax activation, one for background, one for lung 
tumour and one for the thoracic lymph node. The network has three separate inputs, 
the CT image, the PET image and a one-hot encoded organ mask constructed using the 
model from [14]. The purpose of the organ mask is to help the network with a rough 
anatomical localization for a given uptake; it uses one channel each for bone, liver, lung, 
heart, aorta and adrenal gland.

The model was trained using patches of minimal size, where the patches were chosen 
with care to provide a good balance between the different classes. All pixels were divided 
into four groups: background, lung tumour, thoracic lymph node and other abnormal 
uptake (this group included extra-thoracic lymph nodes, metastases, inflammatory 
uptake, high pleura uptake and other high uptake). The centre point of each patch was 
chosen randomly with an equal probability of being inside any of the four groups.

The training involved 100 epochs with 10,000 patches per epoch. Categorical cross-
entropy was used as the loss function, and the optimization was performed using the 
Adam method [16] with Nesterov momentum. In order to reduce overfitting, both early 
stopping (patience 10 epochs with no validation loss decrease) and l2 regularization with 
weight 0.01 were used. As pre-processing the CT image is clamped to HU range [− 800, 
800] and the SUV image to [0, 25], both the CT and SUV images were then rescaled 
[−  1, 1]. The input patches were augmented using rotations (−  0.15 to 0.15) radians, 

https://www.recomia.org


Page 5 of 10Borrelli et al. EJNMMI Physics             (2022) 9:6 	

scaling (− 10 to 10%) and intensity shifts of (− 100 to + 100HU) for the CT images and 
(−  0.5 to + 0.5) for the SUV image. After this phase, the resulting model was applied 
to the training set. The model was then retrained with 20% of the patches focusing on 
pixels incorrectly classified by the model. These steps were repeated four times. The 
resulting model is the last model after these four steps and early stopping (not the model 
with lowest validation loss). Finally, lung tumours and thoracic lymph nodes with TLGs 
below 0.1 were removed.

Statistical analysis

Associations between TLG and OS were investigated using a univariate Cox propor-
tional hazards regression model. OS was calculated from the date of the PET/CT analy-
sis to the date of death or the last follow-up. Hazard ratios (HRs) and 95% confidence 
intervals (CIs) were estimated. The level of significance was set at 0.05. The TLG meas-
urements had a skewed distribution and were log10-transformed after adding 1.0 to 
handle any zeros. The TLG measurements for the Kaplan–Meier analysis were catego-
rized according to the corresponding median value, higher vs. lower than the median. 
The statistical analysis was performed in R (version 4.0.3) [17].

Results
TLG measurements

Uptake from lung tumours and thoracic lymph nodes were used to compute a total 
TLG for each patient, both from the CNN and manual segmentations. Figure 1 shows 
a Bland–Altman plot comparing the CNN and manual TLG. Figure  2 plots the rank 
of each study based on manual TLG against the rank based on CNN-based TLG. The 
Spearman correlation of the TLG measurements, being the Pearson correlation of these 
rank values, is 0.95.

Both CNN TLG (HR 1.64, 95% CI 1.21–2.21; p = 0.001) and manual TLG (HR 1.54, 
95% CI 1.14–2.07; p = 0.004) were significantly associated with OS in univariate propor-
tional regression Cox analyses.

The Kaplan–Meier curves are shown in Fig. 3. The 53 patients with CNN TLGs above 
the median value had a significantly shorter survival time than the 53 patients with val-
ues below the median. The median survival times for the two groups were 1.57  years 
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Fig. 1  Bland–Altman plot comparing CNN-based and manual TLG measurements
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Fig. 2  The rank of each study based on manual TLG measurements against the rank of each study based on 
the CNN-based measurements. This serves to show, that in terms of ranking patients with respect to tumour 
burden the automated method is similar to a manual analysis
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Fig. 3  Kaplan–Meier curves for the groups higher (black line) vs. lower (grey line) than the median TLG values 
for CNN TLG (a) and manual TLG (b)
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vs. not reached after 3  years of follow-up. The log-rank test showed a significant dif-
ference in survival times (p < 0.001). The corresponding median survival values for the 
two groups stratified using manual TLG were 1.75 years vs. not reached after 3 years of 
follow-up (p = 0.002).

Lesion classification results

The CNN and the physicians classified 99/106 (93%) patients similarly regarding the 
presence of a lung tumour, 94 as positive and 5 as negative. Four patients were classified 
as positive only by the CNN. The CNN detections in these four cases were classified as 
thoracic lymph nodes (2), high pleura uptake (1) and inflammatory uptake (1) by the 
physicians. Three patients were classified as positive only by the physicians. A total of 
135 lung tumours were detected by both the CNN and the physicians. These tumours 
had a median TLG of 13.9 (IQR 2.3–181.7). A total of 56 lesions with a median TLG of 
0.4 (IQR 0.1–1.6) were detected as lung tumours by the physicians only. Seven of these 
lesions were classified as thoracic lymph nodes by the CNN. A total of 153 lesions with 
a median TLG of 0.6 (IQR 0.3–2.3) were detected as lung tumours by the CNN only. 
Thirty-five of these lesions were classified as thoracic lymph nodes by the physicians.

The CNN and the physicians classified 71/106 (67%) patients similarly regarding the 
presence of thoracic lymph nodes, 59 as positive and 12 as negative. Thirty-five patients 
were classified as positive only by the CNN. Both the CNN and the physicians detected 
170 thoracic lymph nodes. These lesions had a median TLG of 5.8 (IQR 1.5–27.9). A 
total of 70 lesions with a median TLG of 0.3 (IQR 0.1–0.9) were detected as thoracic 
lymph nodes by the physicians only. Five of these lesions were classified as lung tumours 
by the CNN. A total of 274 lesions with a median TLG of 0.8 (IQR 0.3–2.4) were detected 
as thoracic lymph nodes by the CNN only. Thirty-two of these lesions were classified as 
lung tumours and 23 as extra-thoracic lymph nodes by the physicians.

Discussion
In this study, we explored if automated TLG measurements calculated by a CNN were 
clinically relevant in patients with lung cancer. The results show that a CNN can be 
trained to automatically segment lung tumours and thoracic lymph nodes and calculate 
TLG measurements that are significantly associated with OS. The CNN TLG had a simi-
lar prognostic performance as the corresponding manual measurements.

In a clinical setting, a physician would be able to check CNN-based segmentations and 
dismiss false-positive lesions. The use of AI support for the calculation of total lesion 
uptake significantly reduces inter-reader variability in the analysis of prostate lesions and 
bone metastases with PSMA PET/CT [18]. This process is also more time-effective than 
a completely manual segmentation process and feasible for a clinical setting.

In research, these types of AI tools may facilitate comparisons between studies from 
different centres, pooling data within multicentre trials and performing meta-analyses 
when objective evaluation is applied rather than local image readers.

Objective AI-based TLG measurements may be useful not only for the prognostic 
evaluation of patients with lung cancer at the time of diagnosis but also for monitoring 
treatment response. FDG PET/CT findings have been associated with clinical benefit in 
patients with non-small cell lung cancer receiving immunotherapy [4].
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AI tools have been used as computer-aided detection (CAD) systems to highlight 
potential lesions in chest X-rays and lung CTs [19]. The aim is to decrease the likeli-
hood of a radiologist missing tumours and the subsequent delay in diagnosis. Such 
an AI tool needs to have high sensitivity and a low false-positive rate to be of clinical 
value. The aim of our CNN was not to be a CAD system but a tool for the automated 
quantification of tumour burden. The sensitivity and false-positive rate of our CNN 
were not sufficient for use as a clinical CAD system. The disagreements between the 
physicians and the CNN were, in most cases, related to lesions with low TLG. A com-
mon reason for any disagreement was physicians classifying a lesion as a lung tumour 
and the CNN as a mediastinal/hilar lymph node or vice versa; this is not always an 
easy decision even for experienced physicians.

A limitation of this study is the reference method using the manual segmentations 
by two nuclear medicine specialists. A slightly different result would most likely have 
been found if other, additional image readers had been used given the well-known 
problems of inter- and intra-observer variability. The comparisons between the CNN-
based and manual TLG measurements indicate that the CNN was trained to perform 
similarly to a nuclear medicine specialist. A strength of this study is that we also used 
OS as an image-independent reference method.

The retrospective design of this study is, on the one hand, a limitation of the study 
but allowed us to assess the performance of the CNN not only compared with manual 
segmentation of the same images but also to the independent reference OS. The train-
ing material only contained a handful of abnormal uptake other than lung tumours 
and thoracic lymph nodes, due to this we limited this work to these two uptakes. 
Extra-thoracic lymph nodes and distant metastases will be added in future versions 
of our CNN. Further development will also include the localization of lymph nodes 
into established anatomical definitions and classifications into ipsilateral versus con-
tralateral regions [20]. This type of information may improve the prognostic value of 
AI-based analyses.

The development of AI-based analyses depends on the availability of large train-
ing and test groups. The training and test groups used in this study were sufficient 
to show the proof of concept of a fully automated AI-based PET/CT analysis, but we 
recognize that larger patient groups including patients from several hospitals would 
improve the CNN-based method and strengthen the results. One approach to achieve 
this is to invite others researchers to participate in the development and we therefore 
make our CNN available to others. Another approach is to use methods to maximize 
the utility of incomplete and missing data as presented by Guo and co-workers [21].

Conclusions
Fully automated CNN-based TLG measurements of FDG PET/CT data were signifi-
cantly associated with OS in patients with lung cancer. These types of measurements 
may be of value in the management of future patients with lung cancer. Our CNN is 
available for research purposes upon request from the RECOMIA platform (https://​
recom​ia.​org).

https://recomia.org
https://recomia.org
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