
A population‑based method to determine 
the time‑integrated activity in molecular 
radiotherapy
Deni Hardiansyah1, Ade Riana1, Peter Kletting2,3, Nouran R. R. Zaid2, Matthias Eiber4, Supriyanto A. Pawiro1, 
Ambros J. Beer3 and Gerhard Glatting2,3*   

Abstract 

Background:  The calculation of time-integrated activities (TIAs) for tumours and 
organs is required for dosimetry in molecular radiotherapy. The accuracy of the cal-
culated TIAs is highly dependent on the chosen fit function. Selection of an adequate 
function is therefore of high importance. However, model (i.e. function) selection works 
more accurately when more biokinetic data are available than are usually obtained in 
a single patient. In this retrospective analysis, we therefore developed a method for 
population-based model selection that can be used for the determination of individual 
time-integrated activities (TIAs). The method is demonstrated at an example of [177Lu]
Lu-PSMA-I&T kidneys biokinetics. It is based on population fitting and is specifically 
advantageous for cases with a low number of available biokinetic data per patient.

Methods:  Renal biokinetics of [177Lu]Lu-PSMA-I&T from thirteen patients with 
metastatic castration-resistant prostate cancer acquired by planar imaging were used. 
Twenty exponential functions were derived from various parameterizations of mono- 
and bi-exponential functions. The parameters of the functions were fitted (with dif-
ferent combinations of shared and individual parameters) to the biokinetic data of all 
patients. The goodness of fits were assumed as acceptable based on visual inspection 
of the fitted curves and coefficients of variation CVs < 50%. The Akaike weight (based 
on the corrected Akaike Information Criterion) was used to select the fit function most 
supported by the data from the set of functions with acceptable goodness of fit.

Results:  The function A1βe−(�1+�phys)t + A1(1− β)e−(�phys)t with shared parameter 
β was selected as the function most supported by the data with an Akaike weight of 
97%. Parameters A1 and �1 were fitted individually for every patient while parameter β 
was fitted as a shared parameter in the population yielding a value of 0.9632 ± 0.0037.

Conclusions:  The presented population-based model selection allows for a higher 
number of parameters of investigated fit functions which leads to better fits. It also 
reduces the uncertainty of the obtained Akaike weights and the selected best fit func-
tion based on them. The use of the population-determined shared parameter for future 
patients allows the fitting of more appropriate functions also for patients for whom 
only a low number of individual data are available.

Keywords:  TIAs, Absorbed dose, Model selection

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

ORIGINAL RESEARCH

Hardiansyah et al. EJNMMI Physics            (2021) 8:82  
https://doi.org/10.1186/s40658-021-00427-x

EJNMMI Physics

*Correspondence:   
gerhard.glatting@uni-ulm.de 
2 Medical Radiation Physics, 
Department of Nuclear 
Medicine, Ulm University, 
Albert‑Einstein‑Allee 23, 
89081 Ulm, Germany
Full list of author information 
is available at the end of the 
article

http://orcid.org/0000-0001-7916-1576
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40658-021-00427-x&domain=pdf


Page 2 of 13Hardiansyah et al. EJNMMI Physics            (2021) 8:82 

Background
Individual treatment planning is desirable for radionuclide therapy to maximize 
tumour absorbed dose while sparing organs at risk [1–3]. The absorbed doses are 
determined for the largest part by the time-integrated activities (TIAs) [4, 5]. The 
TIAs are equal to the number of disintegrations of the used radionuclide in the con-
sidered organ. To calculate the TIAs, a mathematical function is first fitted to the 
measured biokinetic data obtained from 2D or 3D imaging at multiple time points 
[6–9], and this function is then integrated from time zero to infinity. The calculated 
TIA values based on this fitting method depend on the chosen fit function [10]. 
Therefore, using the “optimal” fit function [11] is crucial for the accurate and precise 
determination of the TIAs and subsequently the absorbed doses. Relevant criteria for 
an optimal fit function are that.

(1)	 the investigated function fits the data, i.e. the goodness of fit is satisfactory, and
(2)	 the function is most supported by the observed data. "Most" here refers to a set of 

reasonable functions defined by the investigator.

While item (1) can be easily checked by applying standard criteria such as visual 
inspection of the fitted graph, quantitative assessment using coefficient of variations 
of the fitted parameters (< 50%) and the constraints for the correlation matrix ele-
ments (absolute values being lower than 0.8) [8], item (2) requires model (or function) 
selection based on quantitative analysis of the corrected Akaike information criterion 
(AICc) [11, 12].

Model selection has two inputs: On the one hand the set of models and on the other 
hand the underlying observed data. The former, however, depends on the latter, as few 
data only allow the use of models (or corresponding functions) with few parameters.

In nuclear medicine, the measurement of biokinetics is often only carried out at a 
few time points. Therefore, instead of using the data of only a single patient, i.e. indi-
vidual-based model selection (IBMS), including the data of additional patients with 
the same disease treated with the same radiopharmaceutical might be important to 
determine an optimal fit function (item (2) above). Such a population-based model 
selection (PBMS) increases the ratio of number of observed data used as input to the 
number of estimated parameters and thus reduces the uncertainty in the model selec-
tion. Moreover, it allows to use an expanded model set, as functions with a higher 
number of parameters become possible. In addition, information about the functional 
shape of the time-activity curve of previous patients might be used for future patients.

In this work, we therefore present a general method to improve the calculation 
of TIAs using biokinetic data of a population instead of a single patient only. The 
method performs the required model selection based on a PBMS approach and is 
presented at the example of kidneys biokinetics in [177Lu]Lu-PSMA-I&T radioligand 
therapy. For this purpose, a set of mathematical models or functions is defined, a pop-
ulation-based fit is performed and the function most supported by the data is selected 
using the Akaike weights method. The developed method can be used to determine 
individual TIAs of future patients using the best function obtained from a previously 
measured population.
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Material and methods
Biokinetic data of [177Lu]Lu‑PSMA‑I&T in kidneys

Thirteen patients with metastatic castration-resistant prostate cancer were included 
in this retrospective analysis [13, 14]. All patients underwent [177Lu]Lu-PSMA-I&T 
radioligand therapy (RLT) and post-therapeutic planar whole-body scintigraphies. The 
biokinetic data (the time-activity data) of [177Lu]Lu-PSMA-I&T RLT in kidneys were 
calculated from the kidneys regions of interest using the geometric mean of anterior 
and posterior counts with background corrections. From thirteen patients, 3 patients 
had 5 time points data, 1 patient had 4 time points data and 9 patients had 3 time points 
data. The biokinetic data were obtained at (1.1 ± 0.7) h, (20.7 ± 2.3) h, (51.0 ± 10.1) h, 
(92.3 ± 47.2) h, (163.8 ± 2.1) h p.i..

Investigated set of exponential functions

Sums of exponential functions with increasing complexity were used in the investigated 
model set, as such mathematical functions are commonly used to describe biological 
processes [6–9]:

where fia is a fit function with i parameters, the Ai ≥ 0 are the prefactors, �phys is the 
physical decay constant of the radionuclide calculated from the half-life T1/2 of 177Lu 
(

�phys = ln (2)/T1/2

)

 and �1 and �2 describe the biological clearance rates of the radiop-
harmaceutical. In addition, the following functions were also used which were defined 
in analogy to the case of degenerate eigenvalues for a damped oscillator (note the addi-
tional factor t):
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The three functions (10)–(12) are derived from Eq.  (9) by reducing the number of 
fit parameters. In addition to the functions in Eqs. (1)–(12), we examined the func-
tions below using all biokinetic data of the patient population and a shared parameter 
approach. The shared parameters are assumed to be the same for all patients and are 
estimated for all data in the patient population together. The other parameters were indi-
vidually estimated from the data. All the following functions are derived from function 
f3a (Eq. (6)) with different shared parameters (Eqs. (13)–(15)) and different parameteri-
zations (Eqs. (16)–(18)):

where parameters β are the fractional contributions of the corresponding exponentials 
with values constrained between 0 and 1. The index S refers to a shared parameter. For 
completeness, the following exponential functions with one and four estimated param-
eters were also analysed:

Data fitting

All functions (Eqs. (1)–(20)) were fitted to the biokinetic data of kidneys using the IBMS 
and the PBMS approaches with all parameters being constrained to positive values. The 
fittings were performed using the simulation analysis and modelling software SAAMII 
v.2.3 (The Epsilon Group, Charlottesville, VA, USA) [15]. The following computational 
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settings were used for the fittings: Rosenbrock algorithm, convergence criterion 10–4, 
and absolute-based variance model with a fractional standard deviation of 0.15 [15].

The goodness of the fits were checked by visual inspection of the fitted graphs, the 
coefficient of variation CV of the fitted parameters (< 0.5) and the off-diagonal values of 
the correlation matrix (-0.8 < CM < 0.8 for most elements) according to the compilation 
in Table 1 in Ref. [8].

Model selection

To select which function is most supported by the data, the corrected Akaike Informa-
tion Criterion AICc , which is corrected for a low ratio of the number of data N  to the 
number of parameters K  , i.e. N/K < 40 [11], and the corresponding Akaike weights [11] 
were calculated as follows:

where P is the estimated objective function minimized for the fitting, AICcmin is the low-
est AICc value of all fitted functions, �i is the difference between the AICci of function 
i and AICcmin , F  is the total number of investigated functions and wAICci is the Akaike 
weight of function i . The Akaike weights indicate the probability that the model is the 
best among the whole set of considered models [11].

From those functions which passed the goodness-of-fit test (“Data fitting” section), the 
functions with an Akaike weight > 0.05 were selected as the functions most supported 
by the data. These were used to determine the area under the curve of the time-activity 
curve of [177Lu]Lu-PSMA-I&T RLT in kidneys.

Workflow

In the proposed PBMS method, the parameters of Eqs. (1)–(12) were fitted to the kid-
neys biokinetic data of the population (13 patients). To investigate if the data of the 
patients could be described by shared parameters, the population fitting was performed 
to estimate the parameters of functions in Eqs. (13) to (18) with shared parameter esti-
mation. Model selections were performed using the Akaike weights (“Data fitting” 
section).

In addition to the PBMS method, we also performed the IBMS method [8, 9] using 
the functions in Eqs. (1)–(12) for patients P1, P3 and P4, for who five biokinetic meas-
urement data points are available. The minimum number of data points for AICc-based 
model selection is equal to the number of adjustable parameters Kmax + 2 as seen from 
Eq. (21). Therefore, only for these 3 patients all functions with up to 3 parameters could 
be used. The best model obtained from the IBMS method of these patients was then 
used to calculate the TIAs of the [177Lu]Lu-PSMA-I&T in all thirteen patients. The 
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performance of the functions selected as most supported by the data using the PBMS 
and IBMS approach, respectively, was evaluated based on the visual inspection of 
the fitted graphs. In addition, the relative deviation RD between the TIAs from both 
approaches was also compared and analysed. The Jackknife method was used to ana-
lyse the stability of the best model selected through model selection [11, 16]: For this 
purpose, the leave-one-out method was applied 13 times with only 12 patients for the 
calculation of the Akaike weights. The Jackknife was applied to check if the output of the 
model selection from both PBMS and IBMS would change for different set of data (i.e. 
leaving one patient out 13 times) used in the analysis.

Results
Using the PBMS approach, the parameters of the exponential functions in Eqs. (1)–
(20) were fitted to the biokinetic data of the kidneys in all patients. The fittings did 
not pass the goodness-of-fit criteria for 14 of the investigated functions, i.e. the fitting 
failed based on the visual inspection of the fitted graph or an inadequate goodness of fit 
(Table 1). Function f4 with 4 parameters could not be fitted for patients having data for 

Table 1  Goodness of fits and Akaike weights for the PBMS method

The total number of biokinetic data N used in this retrospective analysis is 46, the numbers of parameters of the functions 
are given in column K
a The fitting failed based on the visual inspection of the fitted graph
b Inadequate goodness of fit (these functions should not be used for model selection)
c Three largest (absolute) values of K * (K − 1)/2 lower-off-diagonal elements. Note that a low percentage of elements only 
slightly higher than 0.8 is acceptable
d CV for the fit parameters calculated as SD divided by the mean
e The fitting failed as the number of parameters is larger than the number of data N = 46

Equation 
number

Function name K Coefficient of 
Variation CV 
(max) d

Off-diagonal 
values of the 
correlation matrix 
(maxc)

Akaike 
weight 
(%)

Jackknife Akaike 
weights (% median 
[min,max])

1 f2a 26 0.04 0.92; 0.95; 0.99b – –

2 f2b 26 0.31 0.81; 0.82; 0.86 0.03 0 [0,50]

3 f2c
a 26 – – – –

4 f2d
a 26 – – – –

5 f2e
a 26 – – – –

6 f3a 39 1.96E5b 0.93; 0.98; 0.99b – –

7 f3b
a 39 – – – –

8 f3c
a 39 – – – –

9 f3d 39 1.55E + 6b 0.95; 0.98; 0.99b – –

10 f2a,3d
a 26 – – – –

11 f2b,3d
a 26 – – – –

12 f2c,3d
a 26 – – – –

13 f3aS1 26 + 1 4.27E5b 0.95; 0.98; 0.99b – –

14 f3aS2 26 + 1 0.32 0.57; 0.59; 0.64 0.04 0 [0,66]

15 f3aS3 26 + 1 0.31 0.72; 0.73; 0.76 2.49 3 [0,58]

16 f3aS4 26 + 1 0.37 0.79; 0.81; 0.84 97.40 97 [33,100]

17 f3aS5 26 + 1 8.64b 0.98; 0.99; 1.00b – –

18 f3aS6 26 + 1 0.14 0.64; 0.67; 0.72 0.04 0 [0,3]

19 f1
a 13 – – – –

20 f4
e 52 – – – –
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only 3 time points. From the remaining 5 functions, f3aS4 was selected as the function 
most supported by the data in the PBMS approach based on the Akaike weight of 97% 
(Table 1). The estimated value of β , which was fitted as shared parameter in all patients, 
is (0.9632 ± 0.0037). Based on the Jackknife method, the result of the PBMS method for 
function f3aS4 was very stable (median Akaike weight of 97% with a range of 33%-100%, 
Table 1).

Using the IBMS approach, the parameters of the exponential functions in Eqs. (1)–
(12) were fitted individually to the biokinetic data of kidneys in patients P1, P3 and P4. 
The goodness-of-fit criteria were not passed for 8 functions (Table 2). Function f2b was 
selected as the best model in the IBMS approach based on the values of the Akaike 
weights of 100%, 60% and 100%, for P1, P3 and P4, respectively (Table 2). The Jackknife 
method was not performed for the IBMS technique because the reduction of the num-
ber of data to 4 for patients P1, P3 and P4 allowed the calculation of the AICc weight 
only for functions with 2 parameters (Eq. (21)).

Figure 1 shows the comparison of function f3aS4 obtained from the PBMS approach 
and function f2b from the IBMS approach in explaining the investigated biokinetic data 
of kidneys. Visual inspection of the graphs in Fig. 1 shows that function f3aS4 has a rela-
tively better or at least equivalent performance as function f2b . Figure 2 presents the cor-
responding time-integrated activities (TIAs).

Discussion
In this work, we applied population-based model selection to calculate individual 
TIAs, the accurate determination of which is important for individual dosimetry and 
treatment planning. The use of a model selection procedure is advantageous, because 
it increases the reproducibility of results by objectively selecting a fit function from a 

Table 2  AICc values and weights after applying the IBMS method in patients P1, P3 and P4 with 
biokinetic data of five time points

Equations (13)–(18) with shared parameters, which are designed for PBMS, were not included in the IBMS analysis. Function 
(19) failed based on visual inspection. For function (20) AICc could not be calculated as there are 4 fit parameters for only 5 
data (compare Eq. (21))
a All the zeros stand for values lower than 10–5

b The fitting failed based on visual inspection of the graph
c Inadequate goodness of fit (these functions should not be used for model selection)

No Function AICc weight (%)a

P1 P3 P4

1 f2a
b – – –

2 f2b 100 60 100

3 f2c
b – – –

4 f2d
b – – –

5 f2e
b – – –

6 f3a 0 40 0

7 f3b
c – – –

8 f3c 0 0 0

9 f3d
c – – –

10 f2a,3d – – –

11 f2b,3d
b – – –

12 f2c,3d
b – – –



Page 8 of 13Hardiansyah et al. EJNMMI Physics            (2021) 8:82 

Fig. 1  Time-Activity data and fit curves of the two functions most supported by the data, f3aS4 and f2b , which 
were derived using the PBMS and IBMS method, respectively

Fig. 2  Kidneys TIAs calculated from the two functions most supported by the data, f3aS4 and f2b , which were 
derived using the PBMS and IBMS method, respectively
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set of functions (models), in contrast to the application of rule of thumbs [7] or sim-
ply user-guessing. The selection of a good mathematical model (i.e. function) for the 
calculation of TIAs is important, as using of an improper function will invalidate or 
at least deteriorate the result. Therefore, model selection is an important and critical 
aspect of scientific data analysis [12].

Available population data in nuclear medicine are usually heterogeneous and 
sparse. The presented method can be used for this common situation. Pharmacoki-
netic information of heterogeneous data can be derived from a population and intro-
duced for the individual fit. The advantages of our method are achieved by improving 
both inputs, i.e. (1) the data and (2) the set of models from which the best one is 
selected. This in turn also improves the result.

(1)	 Data of a population instead of just a single patient are used for the model selec-
tion procedure. In [177Lu]Lu-PSMA-I&T radioligand therapy as our example, the 
use of the f2b function is the case for which both the PBMS and IBMS approaches 
are identical. As seen from Table 1, the Akaike weight, i.e. the probability for f2b 
to be the best function, is lower by a factor of larger than 3247 compared to the 
f3aS4 function, which indicates significantly better fits. Also, f2b is the function with 
the lowest probability of all functions with an acceptable goodness of fit. Assessing 
the stability of the model selection procedure needs the application of the Jackknife 
method [11, 16]: For the PBMS best function f3aS4 , removing one patient having 
5, 4 or 3 data points results in N/K ratios of 41/25≈1.64, 42/25≈1.68, 43/25≈1.72, 
respectively. These ratios differ only slightly from those of the total patient popu-
lation: N/K = 46/27 ≈ 1.70. For the IBMS best function f2a , one data point of the 
patient under consideration must be removed for the stability assessment. Thus, 
removing one data point for patients having 5, 4 or 3 data points results in N/K 
ratios of 4/2 = 2, 3/2 = 1.5, 2/2 = 1, respectively. However, from Eq. (21), it follows 
for the calculation of AICc that Kmax = N − 2. Thus, assessing the stability of the 
IBMS method becomes impossible for patients having only 4 or 3 data points and 
most likely unstable for patients with 5 available data points.

	 This higher stability of the PBMS results compared to the IBMS is also seen when 
comparing the results in Tables 1 and 2: Whereas for the PBMS method the Akaike 
weight for the best function is 97.4% (Table 1) with a median of 97% and a range 
from 33 to 100%, for the IBMS method the best fit function of one patient (P3, 
Table 2) is quite uncertain with a weight of only 60% and—most importantly—the 
Jackknife method to calculate an uncertainty for the Akaike weights is impossible 
for all three patients.

(2)	 The set of models, from which the best one is selected, is also constrained by 
Kmax = (N − 2) [8, 9, 11, 12]. Therefore, in our example, the PBMS method in prin-
ciple would allow to include in the model set functions with up to 44 parameters. 
Clearly, more and more complex functions in the function permit a better model 
selection result and thus also better reflect the true biokinetics. In contrast, indi-
vidual model selection (e.g. for patients with three data points) is possible only for 



Page 10 of 13Hardiansyah et al. EJNMMI Physics            (2021) 8:82 

functions depending on only one parameter. Such functions will however not be 
able to adequately reflect the biokinetics.

Another advantage of the PMBS method is the possibility to use functions with 
shared parameters in the population. For our patient population, we yielded func-
tion f3aS4(t) = A1βe

−
(

�1+�phys

)

t
+ A1(1− β)e−

(

�phys

)

t for the estimation of kidneys 
TIAs with β = 0.9632. This result can be applied to future patients by using the shared 
parameter as fixed parameter and estimate A1 and �1 only for the subsequent patients. 
Thus, once the best model has been identified, this model can be used for subsequent 
patients with corresponding fixed parameters. Even patients having less data can be 
fitted using such shared parameters as fixed parameters.

A general problem in clinical dosimetry is that it is unclear which function to fit 
to the data. This is even true for cases with many data per organ, but even more rel-
evant for those cases with only few data. This is also a reproducibility issue, as every 
user will possibly use another function yielding very different results. Our proposed 
method however will be much more reproducible due to two reasons: first, we use 
many functions and select the best (model selection): This already reduces variabil-
ity in results obtained by different users. Second, also model selection has an uncer-
tainty, which may be even impossible to calculate as we show for the IBMS in our 
example if applied to the data of only one patient. This uncertainty is greatly reduced 
in the PBMS approach by adding the information contained in the population of simi-
lar patients (Tables 1, 2).

For our example, we can clearly see from the graphs in Fig.  1 that function f3aS4 
obtained from the PBMS approach has a better or similar performance compared 
to function f2b which is preferred by the IBMS approach. Figure 2 demonstrates the 
large effect the chosen fit function may have for the TIAs of some patients (e.g. P6).

The great advantages of using PBMS over IBMS presuppose that the kinetics in the 
population have appropriate commonalities that are correctly detected by PBMS. For 
this, it is particularly necessary to include the "correct" functions in the set of func-
tions examined. For example, if we had not included function f3aS4 in our set of func-
tions, function f3aS3 would have been selected as the best function with an Akaike 
weight of 98.1% (which is even higher than for function f3aS4 ). Therefore, based on 
the Akaike weight alone, we cannot already conclude that a function is very good. 
Consequently, great emphasis must be placed on including all relevant functions in 
the model set.

Biokinetic data of kidneys in [177Lu]Lu-PSMA-I&T radioligand therapy were used 
to demonstrate the procedure. However, the method can be used and implemented 
for different organs and also for tumours. The only part of the procedure that maybe 
needs to be adapted to different organs relates to the set of functions, as this set 
should contain suitable functions that can well describe the biokinetics of the organ 
in consideration. For example, if the tumours have a long accumulation phase, one 
would need to include appropriate functions in the function set so that then the func-
tion best supported by the data actually describes the corresponding biokinetics well.

Input, processing and output of the proposed PBMS method in this study have the 
following limitations.
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For the input of the PBMS:

1.	 The uncertainty of the quantitative data might affect the model selection. It has been 
shown that accurate and precise quantitative data are essential as input for the cal-
culation of TIAs [17] and the “garbage in-garbage out” principles applies. As the 
main purpose of this study is to introduce the PBMS method, implementation of the 
method for certain cases, e.g. implementation in different organs or analysing the 
effect of image quantification, is beyond the scope of this study.

2.	 The number of data used in our study is relatively low. In this paper, we present a 
method that is mainly needed in cases where not many data are available. Therefore, 
it is consequentially important that the method is presented for patients with only 
limited data. Of course, more data would lead to more accurate and precise results. 
Although the low number of data naturally limits the significance of our results, on 
the other hand, the results show that our approach works.

3.	 The model selection used in our study is based on a specific method, i.e. the AICc. 
There exist also other methods for model selections such as the F-Test [11, 18] and 
the Bayesian Information Criterion (BIC, [11, 19]). However, the AICc method has 
been shown to be an effective and efficient approach, applicable to nested and non-
nested models [11].

4.	 Sums of exponential functions with increasing complexity were used in the inves-
tigated model set, as such mathematical functions are commonly used to describe 
biological processes [6–9]. In all functions, the physical decay is implemented as a 
factor, as it was shown that such an approach yields better results if �i ≥ 0 is addi-
tionally assumed [20, 21]. There are, however, no general rules which functions to 
include in the set of model functions, except that one should use all available theoret-
ical and empirical information to define an adequate set of candidate models a priori 
[11]. This is a consequence of the AICc only being able to select the Kullback–Leibler 
best model from the candidate models. “If all candidate models are poor, the AICc 
will select the best approximating, but nevertheless poor model”. [11].

	 Additional (non-exponential) functions could have been added to the set of the 
tested functions in our analysis. This is however not supported by prior empirical 
knowledge as exponential functions are sufficient to describe most biokinetics. Based 
on the biokinetic data presented in Figure 1, also the addition of sums of exponen-
tials with more parameters will not be effective. Although we could gain higher con-
fidence in the results of our model selection by testing a larger number of functions, 
this will increase the workload giving most likely the same result for the function that 
is best supported by the data.

5.	 In this study, we propose a method based only on available data. Clearly, the investi-
gation of the effect of different time schedules on the improvement when using this 
method would also be of interest, but is beyond the scope of this study.

For the processing of the PMBS: Certain software, i.e. SAAMII, was used for the 
fitting analysis. However, in order that a fit is reproducible, the same input data, the 
same objective function and an arbitrary algorithm, which will find the minimum of 
the objective function, is sufficient. Therefore, any software being capable of such an 
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algorithm will yield the same results. A software that uses the same algorithm is, for 
example, the NUKFIT software [8], which is free for academic use.

For the output of the PBMS: In the worst case, the population information con-
tained in the best function derived using the PBMS method may not be suitable for 
the accurate determination of the TIA of the subsequent patient. However, this is 
unlikely to happen as it has been shown in many studies that the implementations of 
population information could improve the accuracy of TIAs calculation [3, 22].

Conclusions
In this retrospective analysis, we propose a method for performing a model selection 
for a patient population to estimate individual TIAs for subsequent patients. By using 
the proposed method, we can obtain a better justified function for the determina-
tion of TIAs, as the model selection is based on a patient population, i.e. on more 
data, instead of only on one patient. More data, on one hand, allow a higher num-
ber of parameters of the investigated fit functions and thus increase the space of fit 
functions that can be included in the set of functions for model selection. On the 
other hand, it reduces the uncertainty of the obtained Akaike weights and thus the 
uncertainty in the selected most supported fit function. This approach is especially 
important if—as is often the case in clinical nuclear medicine—only a low number of 
biokinetic data per patient is available in the patient population under consideration.
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