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Abstract

Background: Attenuation correction of PET/MRI is a remaining problem for whole-
body PET/MRI. The statistical decomposition algorithm (SDA) is a probabilistic atlas-
based method that calculates synthetic CTs from T2-weighted MRI scans. In this
study, we evaluated the application of SDA for attenuation correction of PET images
in the pelvic region.

Materials and method: Twelve patients were retrospectively selected from an ongoing
prostate cancer research study. The patients had same-day scans of [11C]acetate PET/MRI
and CT. The CT images were non-rigidly registered to the PET/MRI geometry, and PET
images were reconstructed with attenuation correction employing CT, SDA-generated
CT, and the built-in Dixon sequence-based method of the scanner. The PET images
reconstructed using CT-based attenuation correction were used as ground truth.

Results: The mean whole-image PET uptake error was reduced from − 5.4% for Dixon-
PET to − 0.9% for SDA-PET. The prostate standardized uptake value (SUV) quantification
error was significantly reduced from − 5.6% for Dixon-PET to − 2.3% for SDA-PET.

Conclusion: Attenuation correction with SDA improves quantification of PET/MR images
in the pelvic region compared to the Dixon-based method.
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Background
Correct quantification of radiotracer activity in PET is of importance when monitoring

cancer treatment response. PET quantification relies on accurate attenuation measures,

which is a remaining challenge with PET/MRI. In PET/CT systems, the attenuation

map for 511 keV PET photons is calculated from the CT image, typically with a bilin-

ear equation [1]. MR images are based on proton spin relaxation and contain no infor-

mation about attenuation, which is caused by electron interactions. This causes

difficulties using MR images for calculation of attenuation maps and leads to quantifi-

cation errors in PET images.
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The present model for attenuation correction (AC) of PET images of the body on the

SIGNA PET/MRI (GE Healthcare, USA) is based on the 2-echo Dixon MRI sequence that

produces images of water and fat separately. These images are used for segmentation into

soft tissue, fat, lung and air, which are translated to attenuation coefficient values [2].

These attenuation coefficients will represent a populational mean rather than the individ-

ual variations between patients. The major problem with this method is however that

bone of different densities is misclassified as fat, which leads to underestimated attenu-

ation coefficients of bone and therefore also an underestimation of the PET tracer uptake.

Several approaches have been proposed to include bone information in the attenu-

ation maps for PET/MRI. One method is implemented on the Biograph mCT (Siemens

Healthcare, Germany), where segmentations from the Dixon sequence are combined

with a model-based bone segmentation algorithm that adds bone information to the at-

tenuation map [3]. In brain imaging, quantification has been improved with segmenta-

tion of ultra-short echo time [4] or zero echo time (ZTE) [5] MR images, and with

atlas-based methods [6]. Recently, deep convolutional neural networks (CNNs) have

been evaluated with promising results [7]. In the pelvic region, the atlas-based methods

have more challenges with larger differences in inter-individual patient anatomy [8],

but methods utilizing machine learning and CNNs have shown more success. Qian

et al. proposed a fuzzy clustering method with Dixon MRI as input [9]. For CNNs,

Leynes et al. used ZTE and Dixon MRI as input to generate pseudo CTs, also called

synthetic CTs (sCTs) [10], whereas Torrado-Carvajal et al. used only Dixon MRI as in-

put [11]. Hwang et al. used only PET data (without any MRI input), with attenuation

maps and PET images from maximum-likelihood reconstructions of activity and at-

tenuation (MLAA) as input to a CNN [12], for generation of whole-body CT derived

AC as output. Finally, Bradshaw et al. trained a network with only diagnostic MRI (T2

and T1 LAVA Flex water only) as input, with a four-segment CT image as output [13].

In addition to the potential improvement of PET/MRI quantification, sCTs could also be

used in radiotherapy, where MRI-only treatment-planning workflows would be preferable to

avoid registration errors between MRI and CT and to streamline the workflow by avoiding

CT acquisition [14]. The major difference between these applications is the photon energies,

where the 511 keV photons of PET are more sensitive to attenuation differences than radio-

therapy photons, with mean energies of typically 2–5MeV (6–15MeV maximum energy). It

is therefore expected that sCT performs better in radiotherapy planning than for PET AC.

In this project, we evaluate a statistical decomposition algorithm (SDA) [15] for cal-

culation of sCTs from T2-weighted MRI scans. The method is developed for radiother-

apy dose planning and is a commercially available CE-marked product. We apply this

algorithm to calculate attenuation maps for [11C]acetate PET/MRI images. The attenu-

ation corrected PET images are validated against AC based on CT and the method is

also compared with the Dixon-based method on the PET/MRI scanner.

Materials and methods
Image acquisition

Twelve prostate cancer patients (mean age 72.3 years; range 64–78 years; mean weight

79.3 kg; range 71–95 kg) were selected retrospectively from a clinical research study

(ClinicalTrials.gov ID NCT01962324). All patients underwent [11C]acetate PET/MRI
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and CT scans on the same day. Patients were included if they had a radiotherapy treat-

ment planning with delineated regions for prostate, and one hotspot volume within the

prostate, and saved PET raw data. Patients were excluded if they had implants in the

scanned field of view (FOV).

PET/MRI data

A 35-min, static single-bed PET scan was acquired on a SIGNA PET/MRI scanner (GE

Healthcare), commencing 12.6 ± 3.3 min after injection of a 431 ± 53-MBq bolus dose

of [11C]acetate.

A 2-echo Dixon T1-weighted MRI sequence (Liver Acquisition with Volume Acceler-

ation: LAVA-Flex) was acquired for built-in AC based on segmentation of fat and water

with in-phase and out-phase images. The following parameters were used: repetition

time 4.05 ms, echo time 1.12 ms and 2.23 ms, flip angle 5°, matrix size 258 × 258, pixel

size 1.95 × 1.95 mm2, slice thickness 5.2 mm with a 2.6 mm overlap, and 120 slices in

total. T2-weighted scans (fast spin echo, FSE) were acquired with repetition time 15 s,

echo time varying between 96.2 and 102.8, flip angle 130°, matrix size 1024 × 1024,

pixel size 0.44 × 0.44 mm2, slice thickness 2.5 mm, and 98–112 slices depending on pa-

tient anatomy.

CT data

CT images were acquired on a Brilliance Big Bore CT (Philips Healthcare) with tube

voltage 120 kV, automatic exposure (204 ± 94 mAs), matrix size 512 × 512, pixel size

1.014 × 1.014 mm2, and slice thickness 2 mm.

Statistical decomposition algorithm

The SDA (15) can be described as an atlas-based technique where tissues are registered

separately. It takes a T2-weighted MRI scan as input and returns the most probable CT

representation as output. The SDA was utilized from the online software MriPlanner

(Spectronic Medical AB, Sweden). The algorithm uses a template database consisting of

15 MRI and CT scans from the same individuals, pairwise registered using non-rigid

registration, with delineated structures of the prostate, bladder, colon, bones, and sub-

cutaneous fat.

The SDA can be divided into three steps. The first step is automated segmentation of

the incoming MRI. In this step, the template MRIs are registered to the incoming MRI,

and the deformation fields are applied on the template segmentations to generate a set

of segmentation candidates. The final segmentation is calculated using a weighted

voting-method based on machine learning [16] which propagates the candidates that

best resembles the incoming MRI. The second step of the SDA is warping, where all

templates are deformed to match the segmented structures. These deformation fields

are used as initialization of a constrained non-rigid registration, and the new deform-

ation fields are applied on the template CTs, generating a set of candidate sCTs. The

third and last step is fusion of the candidate sCTs by calculating the weighted median

CT value for each voxel. The weights are calculated with a machine learning method

which promotes the HU values of the candidate sCTs that most accurately resembles

the features of the incoming MRI.
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Data pre-processing

The CT scans were adapted to the PET/MRI space with registrations performed with

the Elastix toolbox [17] implemented in MICE-Toolkit (NONPI Medical AB, Umeå,

Sweden). CT images were registered to T2-weighted MR images with affine registra-

tion, followed by non-rigid bspline transform registration using a mutual information

metric with bending energy penalty. Full elastix parameter files are provided in the sup-

plementary material. After CT registration, CT and SDA-CT were re-sampled to the

same matrix size as the synthetic CT generated as a step in the built-in AC (Dixon-

CT). Air cavities can be expected to move between and during scans and were there-

fore replaced with the CT value of water (0 Hounsfield units, HU). The CT images did

not cover the exact same field of view in axial direction as the Dixon-CT; some inferior

slices were missing in the CT-FOV. To approximate these missing slices (on average

3.1 slices were missing), the closest slice on the CT was repeated. PET slices where CT

data was missing were excluded from the analysis.

The outermost part of the skin was barely visible on the T2-weighted scans, and the

out-of-phase images displayed blurred contours, which creates uncertainties in patient

contour. If not corrected for, these uncertainties can propagate into the registered CT,

since the T2-weighed scans are used for registration. The uncertainties were eliminated

by adapting the outer contour for CT and SDA-CT to the same contour as the Dixon-

CT. This was achieved by replacing voxel-values in CT and SDA-CT outside the outer

contour of the Dixon-CT with the CT-value of air (HU − 1000), and add tissue with

the CT value of water (0 HU) where the Dixon-CT was larger than the CT or SDA-CT.

PET reconstruction

PET images were reconstructed with AC based on each of the three imaging methods

(Dixon-PET, SDA-PET, and CT-PET) employing the PET recon toolbox (GE Health-

care), version MP26, release 30.4. Time-of-flight ordered-subset expectation-

maximization (TOF-OSEM) was chosen to reconstruct the data according to our clin-

ical protocol: 2 iterations, 28 subsets, 600 mm transaxial FOV, 25 cm axial FOV, matrix

size 192 × 192, 89 slices, pixel size 3.125 × 3.125 mm, and slice thickness 2.78 mm. At-

tenuation information for CT and SDA-CT was fed into the PET recon toolbox as CT

images, which were re-calculated into AC-maps (CT-AC and SDA-AC). Dixon-based

AC maps (Dixon-AC) were also generated with the PET recon toolbox as a part of the

reconstruction process. PET reconstructions were performed with truncation comple-

tion activated, which means that missing parts of the patient’s outer contour were esti-

mated from the PET images [18].

Analysis

The accuracy of Dixon-PET and SDA-PET were calculated over the whole FOV, using

only the slices that were present in all AC-maps. CT-PET was considered as the ground

truth. Voxels were segmented into the bone and soft tissue based on the attenuation

map from the CT, where all voxels with attenuation coefficients higher than 0.102 cm−1

were segmented as bone. Images of percentage differences were calculated. From these

difference images, values of mean error, mean absolute error (MAE), standard deviation

(SD), and root mean square error (RMSE) were calculated for the whole image and
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separately for the above-segmented bone and soft tissue. The same statistical measures

were calculated comparing Dixon-AC and SDA-AC with CT-AC as ground truth.

For visualization of the PET and AC error distribution, error maps averaged over all

patients were calculated in a common space. One patient was manually selected as ref-

erence geometry, where the selection aimed for an average patient size. All error maps

were then subject to a non-rigid registration to the geometry of this reference patient.

The T2-weighed MRI of each patient was registered to the T2-weighted MRI of the ref-

erence patient with the same method as described for the CT to MRI registration in

the data pre-processing section, and the deformations were applied on the error maps

for each patient. The registered error maps were used for calculation of a mean error-

map for all patients.

Lesion analyses were performed with volumes of interest (VOIs) drawn by specialists

in oncology as a part of radiotherapy treatment planning. The prostate and a prostate-

hotspot were compared regarding mean standardized uptake value (SUV) within the

VOI. SUV error (%ΔSUV) was calculated for Dixon-PET and SDA-PET as a percentage

difference relative to CT-PET. Statistical significance was tested with the Wilcoxon

signed-rank test.

Results
The Dixon-PET error map (Fig. 1) demonstrates the absence of bone attenuation infor-

mation in this algorithm, where the activity inside and close to bone is underestimated,

and some areas in between bone regions are overestimated. SDA-PET shows similar

patterns but with considerably lower deviations. For example, region D (Fig. 1) is

underestimated relative the CT-PET, with a deviation of -30% for Dixon-PET and -10%

for SDA-PET. For the overestimated regions, region A (Fig. 1) displays a 9.1% error for

Dixon-PET and a 5.6% error for SDA-PET.

The absence of bone information is also very clear in the error maps for attenuation co-

efficients (Fig. 2), where a clear underestimation in the bone can be seen. The AC-map

for SDA shows a smaller underestimation of bone attenuation than the Dixon method.

Histograms of PET image voxel errors (Fig. 3) confirm that the errors for Dixon-

PET are skew towards the negative side, whereas the histograms for SDA-PET are

more symmetric and narrower. The error histogram for SDA-PET soft tissue is al-

most completely centred with a mean error of − 0.5%, compared to − 3.6% for

Dixon-PET (Table 1). Corresponding mean errors for bone are − 4.2% (SDA-PET)

and − 17.7% (Dixon-PET).

Fig. 1 PET error maps, averaged over all patients. Regions A–D are samples of regions with large positive
and negative errors. A–D are identically located in the two images
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For AC-maps, soft tissue histograms (Fig. 4) are narrow and centred around zero for

both Dixon-AC (mean error − 0.9%) and SDA-AC (mean error − 0.3%). Bone histo-

grams show more variability. The histogram for Dixon-AC (mean error − 16.3%) is

underestimated in all bone voxels (all values < 0). The histogram for SDA-AC (mean

error − 4.4%) on average also underestimates the attenuation coefficient, but also over-

estimates the value in some bone voxels.

The lesions in this study consisted of the prostate (mean volume ± SD; 47.7 ±

22.4 ml), including also one hotspot (3 ± 4.7 ml), which can be seen in Fig. 5. The

uptake relative to CT-PET (%ΔSUV) is plotted in Fig. 6 for Dixon-PET and SDA-

PET. The boxplots for both lesion types show similar behaviour, with significant

lower errors for SDA-PET. The mean %ΔSUV for the prostate lesion was − 5.6%

(Dixon-PET) and − 2.3% (SDA-PET), where the Wilcoxon signed-rank test showed

a significant difference between the methods (p = 0.0024). For hotspot lesions, the

mean values were − 5.9% (Dixon) and − 2.3% (SDA), also with a significant differ-

ence between methods (p = 0.00098).

Fig. 2 Attenuation coefficient error maps, averaged over all patients. Regions A–D are samples of regions
with large positive and negative attenuation value errors. A–D are identically located in the two images

Fig. 3 Histograms of PET uptake error for Dixon and SDA reconstructions, for voxels classified as soft tissue
and bone. Soft tissue and bone were classified individually for each patient’s image. Vertical line indicates
0% error
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Discussion
We have evaluated SDA-generated synthetic CT (sCT) images for attenuation cor-

rected PET reconstructions in the pelvic region and compared that with attenu-

ation corrected PET reconstructions generated with CT images. The SDA

calculates sCTs from T2-weighted MRI sequences with a probabilistic atlas-based

technique, where the most probable CT representation for a given T2 image is cal-

culated. The results are promising despite the fact that other atlas methods have

had limited success in the pelvic region [8].

The error maps in Fig. 1 (PET) and Fig. 2 (AC) illustrates the distribution of errors. It

is clear that attenuation coefficients and PET activity in bone and areas close to bone

are most underestimated with the scanner’s built-in Dixon-method, and that the errors

are substantially reduced with the SDA-method. A potential bone metastasis in position

C in Fig. 1 would have a quantification error of − 19.1% with the Dixon method, which

is reduced to − 3.7% using the SDA method. The attenuation coefficients are

Table 1 Error statistics for PET images and AC-maps; mean values, standard deviations (SD) mean
absolute error (MAE) and root mean square error (RMSE)

PET AC-map

Mean SD MAE RMSE Mean SD MAE RMSE

Dixon whole volume − 5.4% 6.7% 6.1% 8.6% − 2.9% 6.3% 3.7% 6.9%

SDA whole volume − 0.9% 3.5% 2.5% 3.6% − 0.6% 3.6% 2.1% 3.6%

Dixon bone − 17.7% 8.4% 17.7% 19.5% − 16.3% 6.7% 16.3% 17.6%

SDA bone − 4.2% 5.7% 5.4% 7.1% − 4.4% 6.5% 5.3% 6.8%

Dixon soft tissue − 3.6% 4.0% 4.3% 5.4% − 0.9% 2.6% 1.8% 2.7%

SDA soft tissue − 0.5% 2.7% 2.1% 2.8% − 0.3% 2.4% 1.7% 2.4%

Mean values, standard deviations (SD), mean absolute error (MAE), and root mean square error (RMSE) for voxels
classified as bone or soft tissue and for whole volume

Fig. 4 AC-map error histograms for Dixon and SDA reconstructions for voxels classified as soft tissue and
bone. Soft tissue and bone were classified individually for each patient’s image. Vertical line indicates
0% error
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underestimated in the Dixon AC-map, which propagates to quantitation errors in the

PET image.

Three previous studies have presented attenuation maps from MRI using neural net-

works, with ZTE and Dixon sequences as input in a method called ZeDD [10], with

only Dixon sequences as input in a method called DIVIDE [11], and with diagnostic

MRI (T2 and LAVA Flex water only) [13]. All studies show improvements compared

with the Dixon-based method. Bradshaw et al. reported an improvement in whole vol-

ume RMSE from 11.6% (Dixon) to 4.9%, which can be compared to our reported RMSE

improvement from 8.6% (Dixon) to 3.6% (SDA). PET-ZeDD improved RMSE in soft

tissue from 6.10% (Dixon) to 2.85%, where we reported similar numbers with improve-

ment in RMSE from 5.4% (Dixon) to 2.8% (Table 1). PET-DIVIDE reported a change in

soft tissue absolute value recovery coefficients from 6.71% (Dixon) to 1.83%, which can

be compared to our mean absolute error (MAE, Table 1) in soft tissue that decreased

from 4.3% (Dixon) to 2.1%. The bone masks in this study were calculated on attenu-

ation maps from CT with a threshold of 0.102 cm−1. The threshold was chosen to

minimize the risk of misclassifying bone as soft tissue, and a higher threshold can be

expected to yield higher errors in soft tissue since the largest errors are close to bone.

The main benefit of the SDA-method is that it only relies on T2-weighted images,

which are commonly acquired for diagnostic purposes. This means that the scanning

Fig. 5 Lesions for one patient on PET and T2-weighted MRI. The prostate (red) and hotspot (blue) were
drawn by specialists in oncology as a part of radiotherapy treatment planning, based on multiple MR
sequences and PET images

Fig. 6 Box and whisker plots of errors in SUV (%ΔSUV) for prostate and hotspot lesions
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time does not have to be prolonged, since additional sequences are not required. This

is also a benefit of the method by Bradshaw et al. [13] with only diagnostic MRI as in-

put, and of the PET input only CNN method by Hwang et al. [12], even if absence of

MRI derived information could risk missing valuable information. Another advantage

with the current SDA method is that it is commercially available, which means that it

can be readily implemented.

Studies that compare sCTs with CTs need to rely on registration, which entails some un-

certainties also in this study. First, the registration in itself leads to uncertainties, even if the

registrations were visually assessed to be accurate in the studied region. The largest registra-

tion uncertainties were found in the patient outer contour, where we chose to adapt all AC-

maps to the outer contour for the Dixon method. This was done to minimize the uncertain-

ties in the registration of the CT which was used as a gold standard. Another shortcoming

related to registration is that bowel air can move between examinations. To minimize the

effect, the voxel values of air pockets were replaced with HU 0 for water.

The reconstruction of the PET images in this study is conducted according to our

clinical protocol; TOF-OSEM with 2 iterations and 28 subsets. It is possible that more

iterations could have some effects on the results for the Dixon-PET, where the absence

of bone information gives larger errors in the attenuation maps and affects the PET

image globally [19]. The number of iteration is however in line with other studies [10–

12], and our results are therefore comparable.

In this study, the patient group is limited to prostate cancer patients, a male population

with a higher age than the average population. This age group can be expected to have

lower HU values in bone, and it remains to evaluate if the results of this study are gener-

ally applicable to other age groups, and to female patients, or if the SDA algorithm may

have to be adapted. Although the SDA captures bone, full HU recovery is not reached. It

is hard to speculate about the reasons, but anatomical differences between this patient

group and the patients in the template database could possibly be an explanation.

Conclusion
We have evaluated a probabilistic atlas method for AC of pelvic PET images in PET/

MRI scanners. The evaluated method improves quantification compared to the cur-

rently used Dixon-based method.
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