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Abstract

Background: This study investigated the impact of the size of the normal database
on the classification performance of the specific binding ratio (SBR) in dopamine
transporter (DAT) SPECT with [123I]FP-CIT in different settings.

Methods: The first subject sample comprised 645 subjects from the Parkinson’s
Progression Marker Initiative (PPMI), 207 healthy controls (HC), and 438 Parkinson’s
disease (PD) patients. The second sample comprised 372 patients from clinical
routine patient care, 186 with non-neurodegenerative parkinsonian syndrome (PS)
and 186 with neurodegenerative PS. Single-photon emission computed tomography
(SPECT) images of the clinical sample were reconstructed with two different
reconstruction algorithms (filtered backprojection, iterative ordered subsets
expectation maximization (OSEM) reconstruction with resolution recovery). The
putaminal specific binding ratio (SBR) was computed using an anatomical region of
interest (ROI) predefined in standard (MNI) space in the Automated Anatomic
Labeling (AAL) atlas or using hottest voxels (HV) analysis in large predefined ROIs.
SBR values were transformed to z-scores using mean and standard deviation of the
SBR in a normal database of varying sizes (n = 5, 10, 15,…, 50) randomly selected
from the HC subjects (PPMI sample) or the patients with non-neurodegenerative PS
(clinical sample). Accuracy, sensitivity, and specificity for identifying patients with PD
or neurodegenerative PS were determined as performance measures using a
predefined fixed cutoff on the z-score. This was repeated for 10,000 randomly
selected normal databases, separately for each size of the normal database. Mean
and 5th percentile of the performance measures over the 10,000 realizations were
computed. Accuracy, sensitivity, and specificity when using the whole set of HC or
non-neurodegenerative PS subjects as normal database were used as benchmark.
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Results: Mean loss of accuracy of the putamen SBR z-score was below 1% when the
normal database included at least 15 subjects, independent of subject sample (PPMI
or clinical), reconstruction method (filtered backprojection or OSEM), and ROI method
(AAL or HV). However, the variability of the accuracy of the putamen SBR z-score
decreased monotonically with increasing size of normal database and was still
considerable at size 15. In order to achieve less than 5% “maximum” loss of accuracy
(defined by the 5th percentile) in all settings required at least 25 to 30 subjects in the
normal database. Reduction of mean and “maximum” loss of accuracy of the
putamen SBR z-score by further increasing the size of the normal database was very
small beyond size 40.

Conclusions: The results of this study suggest that 25 to 30 is the minimum size of
the normal database to reliably achieve good performance of semi-quantitative
analysis in dopamine transporter (DAT) SPECT, independent of the algorithm used for
image reconstruction and the ROI method used to estimate the putaminal SBR.

Keywords: Dopamine transporter, SPECT, FP-CIT, Specific binding ratio, Normal
database

Introduction
Single-photon emission computed tomography (SPECT) with N-ω-fluoropropyl-2β-car-

bomethoxy-3β-(4-I-123-iodophenyl)nortropane (FP-CIT) is widely used for the detec-

tion (or exclusion) of nigrostriatal degeneration in clinically uncertain parkinsonian

syndromes (PS) [1–4]. Visual reading of the FP-CIT SPECT images can be complemen-

ted by semi-quantitative analysis using the specific binding ratio (SBR) to characterize

FP-CIT binding to the dopamine transporter (DAT) in the striatum and striatal subre-

gions [5–10].

SBR analysis is sensitive to site- and/or camera-specific variability of SPECT image

characteristics caused by differences in acquisition and reconstruction protocols, which

limits sharing of normal databases and SBR cutoff values between sites and/or cameras

[5, 11–18]. In prospective studies, this problem can be addressed by harmonization of

acquisition protocols and centralized image reconstruction in an imaging core lab [15–

17, 19]. This is difficult to realize in everyday clinical patient care so that the use of a

camera-specific normal database often is the most straightforward solution in clinical

routine. This is facilitated by the fact that generation of a camera-specific normal data-

base does not necessarily require prospective scanning of healthy subjects. FP-CIT

SPECT images from patients with clinically uncertain PS that have been interpreted

normal in clinical routine might be used retrospectively for the normal database.

This raises the question about the impact of the size of the normal database on the

performance of semi-quantitative analysis. Of particular interest is the minimum size of

the normal database required for good performance of SBR analysis.

More complex methods including convolutional neural networks have been proposed

for automatic classification of FP-CIT SPECT [18, 20, 21]. However, conventional SBR

analysis is still widely used because it is easy to understand (no black box) and achieves

high accuracy provided that an appropriate normal database is used. Furthermore,

more complex methods such as convolutional neural networks usually require consid-

erably larger databases for training and validation than univariate SBR analysis. Thus,

SBR analysis most likely will continue to play a role in FP-CIT SPECT in the future.
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The aim of the present study, therefore, was to analyze the impact of the size of the

normal database on the performance of SBR analysis of FP-CIT SPECT in different set-

tings, that is, for two different patient samples, two different reconstruction algorithms,

and two different region-of-interest (ROI) methods to estimate the SBR.

Materials and methods
Parkinson’s Progression Markers Initiative (PPMI) sample

The first sample of FP-CIT SPECT images used in this study was obtained from the PPMI

(http://www.ppmi-info.org/data) [19]. It comprised the baseline FP-CIT scans of 645 FP-

subjects, 207 healthy control (HC) subjects and 438 Parkinson’s disease (PD) patients.

Up-to-date information on the PPMI is given at http://www.ppmi-info.org. The PPMI is a

longitudinal, multi-center study that aims to assess the progression of clinical features, im-

aging, and biologic markers in patients with PD and HC subjects. Details of the PPMI eli-

gibility criteria are given at http://www.ppmi-info.org/wp-content/uploads/2014/01/

PPMI-AM7-Protocol.pdf. Details of the PPMI FP-CIT SPECT protocol are given at

http://www.ppmi-info.org/study-design/research-documents-and-sops/ [19]. Raw projec-

tion data had been transferred to the PPMI imaging core lab for central image reconstruc-

tion using an iterative ordered subsets expectation maximization (OSEM) algorithm with

eight iterations and eight subsets and no filtering on a Hermes workstation [22]. Post-

reconstruction attenuation correction according to Chang [23] had been performed using

a site-specific attenuation coefficient derived from phantom measurements performed

during site initiation for the PPMI [24]. A three-dimensional Gaussian filter with 6-mm

full width at half maximum had been applied after attenuation correction [24]. No scatter

correction had been performed [22].

Clinical sample

Three-hundred-and-seventy-two patients from routine clinical patient care were recruited

retrospectively from the database of the University Medical Center Hamburg-Eppendorf.

The patients were categorized into “neurodegenerative PS” and “non-neurodegenerative

PS”. The neurodegenerative group (n = 186, 45.7% females, 65.9 ± 10.4 years) comprised

the Lewy body disease spectrum including PD, PD dementia and dementia with Lewy

bodies, and atypical Parkinsonian syndromes including multiple systems atrophy, progres-

sive supranuclear palsy, and corticobasal degeneration. The non-neurodegenerative group

(n = 186, 52.2% females, 65.5 ± 12.5 years) comprised essential tremor, drug-induced par-

kinsonism, several types of dystonia, psychogenic parkinsonism, and various other diagno-

ses not associated with nigrostriatal degeneration. The clinical diagnoses as standard of

truth were taken from the written report of a movement disorder specialist in the patient’s

file at least 12months after FP-CIT SPECT in all 186 patients with neurodegenerative PS

(mean follow-up 41 ± 22months, range 12–95months) and in 44 of the patients with

non-neurodegenerative PS (mean follow-up 38 ± 22months, 13–97months). The

remaining patients with non-neurodegenerative PS had less than 12months follow-up

and were included to increase sample size and to avoid imbalance with respect to group

size (neurodegenerative versus non-neurodegenerative).

FP-CIT SPECT had been performed according to common guidelines [25] with a

double-head SPECT system (Siemens Symbia T2 or Siemens E.CAM). In order to
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ensure consistent image reconstruction in all patients, projection data were retrieved

from the archive and reconstructed retrospectively. Two different reconstruction algo-

rithms were used in all patients. First, SPECT images were reconstructed using filtered

backprojection implemented in the SPECT system software (Butterworth filter of the

5th order with cutoff 0.6 cycles/pixel). Uniform post reconstruction attenuation correc-

tion was performed according to Chang’s method (μ = 0.12/cm) [23]; scatter correction

was not performed. Second, SPECT images were reconstructed using the OSEM algo-

rithm with resolution recovery implemented in the HybridRecon-Neurology tool of the

Hermes SMART workstation v1.6 with parameter settings recommended for FP-CIT

SPECT by Hermes (effective number of iterations 80, postfiltering with three-

dimensional Gaussian kernel of 7-mm full width at half maximum, uniform attenuation

correction with narrow-beam attenuation coefficient 0.146/cm, simulation-based scatter

correction, resolution recovery with a Gaussian model).

Representative FP-CIT SPECT images from the different settings are shown in Fig. 1.

Semi-quantitative SBR analysis

Individual SPECT images were normalized (affine) to a custom-made FP-CIT template

in the anatomical space of the Montreal Neurological Institute (MNI) using the Statis-

tical Parametric Mapping software package (version SPM12) [26]. Voxel intensities

were scaled voxel-wise to the 75th percentile of the voxel intensity in a reference region

Fig. 1 Representative FP-CIT SPECT images. The left column shows a patient with Parkinson’s disease (top)
and a healthy control subject (bottom) from the PPMI sample. The middle and right columns show the
same patient with neurodegenerative PS (top) and the same patient with non-neurodegenerative PS
(bottom) from the clinical sample reconstructed with iterative reconstruction (ordered subsets expectation
maximization, OSEM) with resolution recovery (RR; middle column) or with filtered backprojection (right
column). Shown are 4-mm-thick transaxial slices in MNI space with voxel intensities scaled to the individual
75th percentile of the voxel intensity in the reference region. The upper threshold of the colour table was
adjusted separately for each of the three settings
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comprising the whole brain except the striata, thalamus, brain stem, and ventricles [27,

28].

The conventional unilateral putamen SBR was computed by applying anatomical

ROIs predefined in MNI space by the Automatic Anatomical Labeling atlas (AAL) [29].

The mean value of the scaled voxel intensity in the AAL ROI was used to calculate the

conventional SBR (= mean scaled voxel intensity in the ROI − 1).

In addition, hottest voxels (HV) analysis was performed using large unilateral ROIs

predefined in MNI space [30]. The ROIs for HV analysis were much bigger than the ac-

tual putamen volume in order to guarantee that all counts originating from the puta-

men were included. The number of hottest voxels to be averaged for the unilateral

putamen was fixed to a volume of 10 ml. The hottest voxel SBR (HV-SBR) was calcu-

lated as mean scaled voxel intensity in the 10-ml hottest ROI voxels − 1.

SBR analysis was restricted to the putamen, and the minimum of the unilateral putamen

SBR of left and right hemispheres was used in all further analyses. The rationale for this

was that the effect size of the reduction in PD in general is larger in the bilateral putamen

compared to the bilateral caudate, and larger in the contralateral putamen compared to

the ipsilateral putamen [31]. Other conventional semi-quantitative parameters such as

putamen-to-caudate ratio and left-right asymmetry were not considered because they did

not provide additional information beyond the putamen SBR (Appendix).

Statistical analysis

Normal databases of sizes n = 5, 10, 15,…, 50 were obtained by randomly selecting the

appropriate number of HC subjects (in case of the PPMI sample) or patients with non-

neurodegenerative PS (in case of the clinical sample). Mean and standard deviation of

the SBR in the resulting normal database was used to transform individual SBR values

to z-scores using the following formula: z-score = (individual SBR −mean SBR in nor-

mal database) / standard deviation of SBR in normal database. Overall accuracy, sensi-

tivity, and specificity of the z-score to identify patients with PD (PPMI sample) or

neurodegenerative PS (clinical sample) were computed using a z-score of −2.5 as cutoff.

The whole sample was used as test set in all cases, that is, the test set comprised all

645 PPMI subjects or all 372 clinical patients, independent of the (size of) the normal

database. This was repeated for 10,000 randomly selected normal databases for each

size of the normal database. The mean and the 5th percentile of overall accuracy, speci-

ficity, and sensitivity were computed over the 10,000 repeats. The performance of the

z-score obtained with all HC subjects or all patients with non-neurodegenerative PS as

normal database was used as benchmark.

Results
Box plots of the putamen SBR for the different settings are shown in Fig. 2. The abso-

lute value of the SBR strongly depended on the reconstruction algorithm and on the

method used to estimate the SBR.

Histograms of putamen SBR in HC subjects or patients with non-neurodegenerative PS

showed slightly skewed distributions, mainly due to extended tails towards high SBR

values (Fig. 3). The skewness of the SBR distribution was significantly different from zero

in all settings. The skewness was largest in the patients with non-neurodegenerative PS of
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the clinical sample with OSEM reconstruction with resolution recovery (skewness = 0.877

and 0.908 for AAL-SBR and HV-SBR, respectively). The skewness was smallest in the pa-

tients with non-neurodegenerative PS of the clinical sample with filtered backprojection

(skewness = 0.560 and 0.455 for AAL-SBR and HV-SBR, respectively). In order to account

for the skewness of the SBR distributions, SBR values were Ln-transformed prior to trans-

forming them to z-scores (Fig. 3). This was done in all settings.

Figure 4 shows the impact of the size of the normal database on overall accuracy,

sensitivity, and specificity of the putamen SBR z-score to identify patients with PD in

the PPMI sample or patients with neurodegenerative PS in the clinical sample.

Mean relative loss of accuracy and “maximum” relative loss of accuracy of the putamen

SBR z-score for differentiation between PD patients and HC subjects of the PPMI or be-

tween patients with neurodegenerative PS and patients with non-neurodegenerative PS of

the clinical sample as a function of size of the normal database are given in Fig. 5.

Discussion
Mean loss of overall accuracy of the z-score of the (Ln-transformed) putamen SBR was

below 1% when the normal database included at least 15 subjects, independent of the

subject sample, the reconstruction method, and the ROI method (Fig. 5a). However, the

variability of accuracy, sensitivity, and specificity of the putamen SBR z-score decreased

monotonically with increasing size of the normal database and was still considerable at

size 15 (Fig. 4). The “maximum” loss of accuracy of the putamen SBR z-score was less

than 5% when the normal database included at least 25 to 30 subjects (Fig. 5b). This

suggests that a normal database for SBR analysis in DAT SPECT in clinical routine

should include at least 25 to 30 subjects.

Reduction of mean and “maximum” loss of accuracy of the putamen SBR z-score by

further increasing the size of the normal database was very small beyond size 40 (Fig.

Fig. 2 Box-and-whisker-plot of putamen SBR in healthy control (HC) subjects versus patients with
Parkinson’s disease (PD) of the PPMI (a) and patients with non-neurodegenerative PS versus patients with
neurodegenerative PS of the clinical sample (b) for different ROI methods to estimate the putamen SBR
(conventional analysis with AAL ROI versus hottest voxels (HV) analysis). Different algorithms to reconstruct
the SPECT images (iterative ordered subsets expectation maximization (OSEM) reconstruction with
resolution recovery (RR) versus filtered backprojection (FBP)) were tested in the clinical sample only
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5). This suggests that a normal database including 40 subjects provides close-to-

optimal performance of putaminal SBR in DAT SPECT.

Sensitivity was lower than specificity in all settings (Fig. 4). This was due to the rather

conservative cutoff of −2.5 on the z-score for classification of FP-CIT SPECT images.

Sensitivity can be increased by using a less conservative cutoff which, however, will re-

sult in the reduction of specificity. In the absence of disease-modifying treatment for

neurodegenerative PS, the trade-off between sensitivity and specificity is usually bal-

anced in favor of high specificity in clinical routine. The use of a rather conservative

cutoff in this study is in line with this.

Fig. 3 Histogram of the putamen hottest voxels SBR before (left column) and after (right column) Ln-
transformation in the healthy controls of the PPMI sample with ordered subsets expectation maximization
(OSEM) reconstruction (top row) and in the patients with non-neurodegenerative PS of the clinical sample with
OSEM reconstruction and resolution recovery (RR, middle row) or with filtered backprojection (bottom row)
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Fig. 4 (See legend on next page.)
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Lower overall accuracy of the putamen SBR in the clinical sample relative to the

PPMI sample was mainly driven by reduced sensitivity in the clinical sample (Fig. 4).

Visual inspection of the false-negative clinical SPECT images confirmed the SBR-

based classification in most cases. Thus, most of the false-negative cases in the clin-

ical sample were subjects without evidence of dopaminergic deficit (SWEDD). Several

studies suggest that the majority of SWEDD patients do not have a neurodegenera-

tive PS [32, 33]. Reduced sensitivity of the putamen SBR in the clinical sample there-

fore most likely was due to clinical overdiagnosis of neurodegenerative PS at clinical

follow-up used as standard of truth in this study [34]. The PPMI sample did not in-

clude SWEDD subjects, as the PPMI handles SWEDD as a separate category, differ-

ent from healthy controls and PD patients (s. PPMI study protocol at http://www.

ppmi-info.org/wp-content/uploads/2018/02/PPMI-AM-13-Protocol.pdf). The lack of

SWEDD patients in the PPMI sample explains the lower sensitivity of the putamen

SBR z-score in the clinical sample at least to some extent. Thus, the findings in the

(See figure on previous page.)
Fig. 4 Mean accuracy (left column), sensitivity (middle column), and specificity (right column) of the
putamen SBR z-score for identification of PD patients or patients with neurodegenerative PS as a function
of the size of the normal database used to estimate mean and standard deviation of normal putamen SBR
for transforming SBR values into z-scores (a PPMI sample, OSEM, AAL-SBR; b PPMI sample, OSEM, HV-SBR; c
clinical sample, OSEM with resolution recovery, AAL-SBR; d clinical sample, OSEM with resolution recovery,
HV-SBR; e clinical sample, filtered backprojection, AAL-SBR; f clinical sample, filtered backprojection, HV-SBR).
SBR values were Ln-transformed prior to transforming them into z-scores in all settings. The error bars
indicate the difference between mean accuracy, sensitivity, or specificity and the 5th percentile over the
10,000 randomly sampled normal databases. The dashed line represents the performance of the z-score of
the putamen SBR when all HC subjects (n = 207) or all patients with non-neurodegenerative PS (n = 186)
were used to estimate mean and standard deviation of normal putamen SBR for transforming SBR values
into z-scores as benchmark

Fig. 5 Mean relative loss of accuracy (a) and “maximum” relative loss of accuracy (b) of the putamen SBR z-
score for differentiation between PD patients and HC subjects of the PPMI or between patients with
neurodegenerative PS and patients with non-neurodegenerative PS of the clinical sample as a function of
size of the normal database (DB) used to estimate mean and standard deviation of normal putamen SBR for
transforming SBR values into z-scores. SBR values were Ln-transformed prior to transforming them into z-
scores in all settings. The relative loss of accuracy was computed with respect to the benchmark accuracy
(normal database comprising all HC subjects or all patients with non-neurodegenerative PS), that is, relative
accuracy loss (%) = 100 * (benchmark accuracy − accuracy) / benchmark accuracy. The maximum accuracy
loss corresponds to the 5th percentile of the accuracy estimates over the 10,000 random samples to
generate the normal database.
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clinical sample support the use of a normal database comprised of patients with a

non-neurodegenerative parkinsonian syndrome. This is practically relevant because

prospective scanning of healthy subjects constitutes a major obstacle at many sites,

particularly in smaller hospitals and private practices.

The findings with respect to the impact of the size of the normal database on classifi-

cation performance were rather independent of the setting, that is, the findings were

very similar for both subject samples (PPMI, clinical), all reconstruction algorithms

(OSEM with and without resolution recovery, filtered backprojection), and both ROI

methods to estimate the SBR (conventional ROI analysis, hottest voxels analysis). Given

that the settings considered here are quite different (Figs. 1, 2, 3), the robustness of the

results with respect to the setting suggests that these findings hold more generally in

the spectrum of settings encountered in clinical routine.

A secondary finding of this study was the skewness of the distribution of the puta-

minal SBR in normal DAT SPECT scans that could be reduced by Ln-transformation

of the SBR values (Fig. 3). Ln-transformation prior to transformation to z-scores im-

proved the classification performance of the putamen SBR (Fig. 6). The improvement of

overall accuracy was mainly driven by improved sensitivity (Fig. 6), most likely due to

avoiding overestimation of the standard deviation of normal SBR from skewed distribu-

tions. The effect of the Ln-transformation was larger for the 5th percentile than for the

average performance over the 10,000 random realizations of the normal database, sug-

gesting that the main benefit from Ln-transformation was stabilization of classification

performance by reducing the impact of potential outliers in the normal database. In

line with this, the decline of the “maximum” performance loss with increasing size of

the normal database was faster with Ln-transformation than without. As a conse-

quence, without Ln-transformation, a larger normal database might be required to reli-

ably achieve the same level of performance of the putamen SBR z-score than with Ln-

transformation. In general, estimates of mean and standard deviation of normal puta-

men SBR derived from the normal database are the more sensitive to outliers the

smaller the database. Thus, careful control of the DAT SPECT images to be included

in the normal database is particularly important in case of a small database.

This study focused on DAT SPECT with FP-CIT. In order to discuss potential

generalizability of the findings, one might hypothesize that univariable binary classifica-

tion of FP-CIT SPECT, that is, differentiation between neurodegenerative and non-

neurodegenerative PS using the putaminal SBR, can be considered a two-sample t-test

with the single subject to be classified comprising one group and the normal database

comprising the other group. Furthermore, the statistical power of testing a given fea-

ture for a mean difference between two groups of different size (n1, n2) is approxi-

mately equal to the power of comparing it between two groups of equal size neff with

neff = 2 * n1 * n2 / (n1 + n2) [35]. Assuming this equation to be approximately valid also

for the extreme case of single subject comparison against a normal database [36], that

is, n1 = 1 and n2 = n = size of the normal database, it is neff = 2 * n / (n + 1). The plot of

this relation (Fig. 7) shows that neff effectively starts to reach its plateau at about n = 10

to n = 15. We hypothesize, therefore, that adequate mean accuracy of univariable binary

classification in general requires a normal database of at least 10 to 15 subjects. The

present finding of less than 1% mean loss of accuracy of the putamen SBR z-score

when the normal database included at least 15 subjects is in line with this. Yet, the
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Fig. 6 Mean accuracy (left column), sensitivity (middle column), and specificity (right column) of the hottest
voxels putamen SBR for identification of the patients with neurodegenerative PS in the clinical sample with
iterative OSEM reconstruction and resolution recovery (= setting with largest skewness of the SBR
distribution). The top row shows the performance with Ln-transformation, the bottom row without Ln-
transformation. The error bars indicate the difference between mean accuracy, sensitivity, or specificity and
the 5th percentile over the 10,000 randomly sampled normal databases. The dashed line represents the
performance of the z-score of the putamen SBR when all patients with non-neurodegenerative PS (n = 186)
were used to estimate mean and standard deviation of normal putamen SBR for transforming SBR values
into z-scores as benchmark

Fig. 7 Effective sample size neff versus size n of the normal database. The dashed line indicates the limit of
neff approached at very large n
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variability of the accuracy between different realizations of the normal database can still

vary considerably at this normal database size (comp. Fig. 5b). The number of additional

subjects in the normal database required to achieve adequate stability of the classification

performance between different realizations of the normal database depends on the

between-subjects variability of the feature used for classification as well as on the mean

difference of the feature between disease-positive patients and the normal database (effect

size). The number of additional normal subjects required to achieve stable performance

between different realizations of the normal database, therefore, is expected to depend on

the application. In case of putamen SBR-based classification of FP-CIT SPECT, the num-

ber of additional normal subjects required was 10 to 15 (resulting in a total of 25 to 30

subjects in the normal database).

The following limitations of this study should be noted. First, the comparison of fil-

tered backprojection versus iterative OSEM reconstruction was restricted to the clinical

sample. The PPMI provides only FP-CIT SPECT images reconstructed with OSEM for

download. Raw FP-CIT SPECT projection data for retrospective reconstruction to test

other reconstruction algorithms are not available. Furthermore, the OSEM parameters

differed between the PPMI sample and the clinical sample. In particular, OSEM recon-

struction was performed with resolution recovery in the clinical sample and without in

the PPMI sample. The rationale for this was to increase the heterogeneity among the

tested settings. Second, the whole sample was used as test set in all cases. The rationale

for this was to use the same test set for all sizes of the normal database in order to

avoid bias by varying sizes of the test set. As a consequence, the healthy controls (PPMI

sample) or the patients with non-neurodegenerative PS (clinical sample) randomly se-

lected for the normal database were also included in the test set. This might have re-

sulted in overly optimistic performance estimates. However, the effect is expected to be

small, because the subjects in the normal database represented only a small fraction (<

13.5%) of the test set in all cases. Third, the normal database of the clinical sample was

generated retrospectively from patients who had received FP-CIT SPECT for the etio-

logical diagnosis of a clinically uncertain PS in routine patient care. The clinical diagno-

sis of a non-neurodegenerative etiology (not associated with nigrostriatal degeneration)

as standard of truth was based on the written report of a movement disorder specialist

in the patient’s file after FP-CIT SPECT. The movement disorder specialist was not

blinded for the FP-CIT SPECT findings. This might have caused some bias in favor of

FP-CIT SPECT resulting in overly optimistic performance estimates of the putamen

SBR in the clinical sample. The potential bias is not expected to affect the evaluation of

the impact of the size of the normal database on the performance of the putamen SBR.

Fourth, this study used conversion to z-scores and a fixed, predefined cutoff on the z-

score for SBR-based classification of FP-CIT SPECT. Other methods to define a cutoff

such as receiver operating characteristic (ROC) analysis require a database of patients

with nigrostriatal degeneration in addition to a normal database. The impact of the

sizes of the two databases (without and with nigrostriatal degeneration) on SBR classifi-

cation performance using cutoffs derived from ROC analysis might be addressed in fu-

ture studies. Fifth, neither age nor gender were taken into account in this study,

although there is strong evidence for age related decline of striatal DAT availability

[37] and moderate evidence for higher striatal DAT availability in females compared to

males [38–40]. However, so far no studies have been published that clearly demonstrate
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that age- and/or gender-correction of the putaminal FP-CIT SBR improves its diagnos-

tic performance [41]. Finally, normal databases of FP-CIT SPECT from healthy control

subjects were used for the PPMI settings, whereas normal databases composed of visu-

ally normal FP-CIT SPECT from patients with non-neurodegenerative PS were used

for the clinical settings. Nevertheless, the present study did not allow testing the impact

of the type of the normal database (healthy control subjects versus patients with Par-

kinsonism but visually normal FP-CIT SPECT) on the performance of semi-

quantitative analysis in FP-CIT SPECT. This would require two normal databases for

the same setting, one comprised of healthy controls, the other comprised of patients

with non-neurodegenerative PS.

Conclusion
In conclusion, the results of this study suggest that 25 to 30 is the minimum size of the

normal database to reliably achieve good performance of semi-quantitative analysis in

DAT SPECT, independent of the algorithm used for image reconstruction and the ROI

method used to estimate the putaminal SBR. Increasing the size of the normal database

beyond 40 provides only very small further improvement.

Appendix: Other conventional semi-quantitative parameters did not provide
additional information beyond putaminal DAT availability
The following other conventional semi-quantitative parameters were tested for identifi-

cation of patients with neurodegenerative PS in the clinical sample (with filtered back-

projection) using receiver operating characteristic (ROC) analysis: minimum of left and

right caudate SBR, minimum of left and right putamen-to-caudate SBR ratio, left-right

asymmetry of putamen SBR (= 200 * abs (left − right) / (left + right)), and left-right

asymmetry of caudate SBR. The clinical sample was used for this purpose in order to

avoid the ceiling effect in the PPMI sample (due to very good performance of the puta-

minal SBR alone in the PPMI sample).

The area under the ROC curve was significantly smaller for each of the other conven-

tional semi-quantitative parameters than for the (minimum of left and right) putamen

SBR (0.953 ± 0.011): 0.932 ± 0.012 (DeLong p = 0.017), 0.886 ± 0.018 (p < 0.001), 0.824 ±

0.023 (p < 0.001), and 0.730 ± 0.027 (p < 0.001) for caudate SBR, putamen-to-caudate

SBR ratio, left-right asymmetry of putamen SBR, and left-right asymmetry of caudate

SBR, respectively.

Discriminant analysis was performed in order to test whether one or more of the other

parameters might provide additional diagnostic information beyond the putamen SBR.

Stepwise discriminant analysis (Wilks’ method, entry p = 0.05, removal p = 0.10) did

not include any of the other parameters (p = 0.699, 0.596, 0.226, and 0.341 for caudate

SBR, putamen-to-caudate SBR ratio, left-right asymmetry of putamen SBR, and left-

right asymmetry of caudate SBR, respectively). When the analysis was forced to include

all other parameters, the resulting discriminant function was as follows:

Discriminant function =− 3.741 + 3.200 * putamen SBR+ 0.105 * caudate SBR+ 0.622 * pu-

tamen-to-caudate ratio − 0.590 * putamen asymmetry / 100− 0.309 * caudate asymmetry / 100

ROC analysis of the discriminant function revealed exactly the same area under the

ROC curve as for the putamen SBR alone. Thus, there was no evidence that the other

conventional semi-quantitative parameters provide additional information beyond the
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putaminal SBR that might improve the performance of semi-quantitative analysis of

FP-CIT SPECT in the clinical sample.

This does not rule out that the other conventional semi-quantitative parameters

might provide additional information beyond the putaminal SBR in other patient sam-

ples, for example, in samples with more borderline cases or a larger fraction of atypical

neurodegenerative PS (multiple system atrophy, progressive supranuclear palsy, cortico-

basal degeneration), or in the differentiation between dementia with Lewy bodies and

Alzheimer’s disease [42].
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