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Abstract

Background: For therapeutic applications of several isotopes (e.g., 131I, 153Sm, 177Lu)
in nuclear medicine, the high activities typically applied require accurate dead time
correction in early time point imaging. We present a novel, straightforward dead
time correction method using the Lambert W function, which is in principle exact for
the paralyzable detector model with a single parameter τ (i.e., dead time).

Results: As a proof of concept, the method is validated with a simple model: a
commonly used isotope, 99mTc, with a single photopeak. We measured count rates
of a gamma camera both intrinsically and extrinsically (i.e., with collimators) with
point sources in air and in a scatter phantom (extrinsic only). τ was estimated for
both open window (τOW) and a 99mTc photopeak window (τTc), using a “graphical”
method for fitting the count rate of decaying sources. These values for τ were
subsequently used for dead time correction.
τ varied significantly between the different geometries for both energy windows, but
τOW was more reproducible than τTc, particularly for the scatter phantom
measurements.
τOW measured from the phantom measurements was approximately 30% lower than
τOW from the intrinsic measurement but corresponded within 15% with the extrinsic
point source measurements. Accordingly, using the intrinsic τOW led to an
overcorrection of 8% at high count rates; τOW from the extrinsic point source
measurements corrected the phantom measurement to within 2%.
However, significant differences were observed between τTc values. All measured τTc
values underestimated dead time losses in a second independent phantom
measurement, with even τTc from the first phantom measurement underestimating
activity with 5–10% at the highest count rates. Based on measurements of the effect
of energy window settings and geometry, we tentatively attribute the added dead
time losses to pulse pile-up.

Conclusions: Analytic dead time correction based on the Lambert W function is
accurate for the range in which gamma detectors behave as paralyzable systems.
However, further investigation indicated measured τ values to be variable with
geometry as well as window fraction. We propose that dead time correction should
be based on the open window value, τOW, corrected for window fraction.

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

EJNMMI PhysicsHeemskerk and Defrise EJNMMI Physics            (2020) 7:27 
https://doi.org/10.1186/s40658-020-00296-w

http://crossmark.crossref.org/dialog/?doi=10.1186/s40658-020-00296-w&domain=pdf
mailto:j.w.t.heemskerk@gmail.com
mailto:j.w.t.heemskerk@gmail.com
http://creativecommons.org/licenses/by/4.0/


Background
Quantitative imaging

For quantification of nuclear medicine images, the number of detected counts within a

region of interest (ROI) or image is assumed to be proportional to the activity A within

the (imaged) region.

As stated in MIRD pamphlet 16 [1], the system calibration factor C (count rate per

unit activity) can be obtained by counting a known activity for a fixed period of time

within a standardized geometry in air relative to the scintillation camera using desig-

nated camera acquisition settings:

Rt;EW ¼ CEW ∙A= F ∙eμed
� �

; ð1Þ

with CEW the sensitivity and Rt,EW the count rate for a chosen energy window EW,

and A the activity within the imaged region of interest. The factor eμed is the correction

for absorption of radiation within the object, and F is a factor that corrects for back-

ground due to activity in overlying and underlying tissue.1 The subscript t in Rt,EW indi-

cates the true count rate here, as Eq. (1) neglects the effect of dead time.

For a point source in air, with negligible absorption and background, the denomin-

ator in Eq. (1) can be ignored, as it is unity. This results in the count rate Rt,EW being

proportional to activity A in the imaged region, with proportionality constant or linear

response coefficient [2], CEW ¼ Rt;EW
.
A
.

However, for high count rates Eq. (1) is no longer valid because of dead time losses:

the inability of a camera to detect a second scintillation event within a certain resolving

or dead time, τ, after a previous event.

With the possible exception of very specific procedures such as first pass cardiac im-

aging, count rates rarely suffer significant losses during diagnostic nuclear medicine im-

aging procedures. However, for several radioisotopes, count rates can increase

significantly (∼250 kcps in an open energy window), during imaging performed after in-

ternal radionuclide therapies. This can lead to substantial count rates losses [3], in a

context where quantification is arguably more important.

In order to accurately determine the activity from the counts in the image, therefore,

correction for dead time losses is an absolute necessity. In clinical radioimmunotherapy

trials with 131I-labeled hapten, a small molecule that stimulates the production of anti-

bodies, Ferrer et al. [4] have obtained correction factors of over 200% for activity in or-

gans with large uptake. Similarly, Uribe et al. [5] have obtained dead time correction

factors of up to 23% and 20%, resp., for the 113 keV and 208 keV photopeaks of 177Lu

in phantom experiments designed to emulate lutetium targeted radiotherapy (TRT).

A number of authors have developed theoretical descriptions of dead time [3, 6, 7],

have investigated dead time effects on image quality and quantification [4, 8], or have

presented different correction methods [5, 9–11]. However, even though very recently

an analogous method has been presented for dead time correction in pixel detectors

[12], previously, no closed form method for dead time correction in nuclear medicine

imaging has been presented.

1Eq. (1) is taken from [1], where background is expressed in a multiplicative i.o. an additive manner. In the
following, we correct measured count rates for background (which, for point sources, is not due to activity
elsewhere) by simple subtraction and set F = 1.
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The dead time effect of a paralyzable system

Modern gamma cameras have been demonstrated to behave as paralyzable systems,

see, e.g., Silosky et al. [3] and Guy et al. [9].

For such paralyzable detectors, an event will not be recorded when it is incident on

the detector within an interval smaller than the resolving time, τ, after a previous event.

Furthermore, if an event occurs within this interval, the dead time is extended by an-

other period τ. To simplify notations, the subscript EW indicating the dependence of

the count rate, the dead time parameter, and the sensitivity on the selected energy win-

dow will be omitted below. The impact of the energy window will be discussed in detail

below.

For a paralyzable detector, the relationship between actual and observed count rate is

described by the well-known equation [8]2:

R0 ¼ Rte
−Rt ∙τ; ð2Þ

where R′ is the observed count rate, Rt is the actual count rate in absence of dead

time losses, and τ is the dead or resolving time, all for a certain energy window. We as-

sume here that the dead time affects the detector as a whole and that therefore R′ and

Rt denote the total count rate on the detector.

As is well known, the detected count rate, R′, reaches a maximum R′max = (e ∙ τ)−1 for

a true count rate R�
t ¼ τ−1 . For Rt > τ−1, R′ decreases monotonically to 0. Therefore,

Eq. (2) has two solutions for each R′; we are only interested in the solution Rt < R�
t .

Lambert W function

To calculate Rt from R′, we use the Lambert (or log-product) function, W(z), which is

the inverse of the function f(z) = zez (see, e.g., [13, 14]). Filling in – Rt · τ for z, one can

derive an expression for Rt from R′, τ, and Eq. (2):

Rt ¼ −
W −R

0
∙τ

� �
τ

: ð3Þ

Because we are interested in the real (as opposed to imaginary) solution for Rt < R�
t ,

we only consider the principal branch, W0, of the Lambert function; its Taylor series

around 0 is [13]:

W 0 z0ð Þ ¼
X∞

n¼1

−nð Þn−1
n!

z0n ð4Þ

and converges for z′ < e−1, which is the relevant domain where R′ · τ < R′max · τ = e−1.

In practice, including post-therapy imaging, a gamma camera is usually operated well

below the maximum count rate. Consequently, it is safe to assume that R'τ (or z′) is

small for the relevant range of R′, and the corrected count rate can be accurately esti-

mated by limiting the Taylor series, Eq. (4), to N terms. We have used N = 10, which is

accurate to within 1% for up to 40% dead time loss. Given an accurate estimation of τ,

Eq. (3) allows a straightforward calculation of Rt from R′.

Combining Eqs. (1) and (4) allows us to estimate the activity, A, given measured

count rate, R′,

2The formula is originally from Evans RD: The atomic nucleus New York, McGraw-Hill, 1955, pp. 785–788.
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A ¼ 1
C∙τ

X∞

n¼1

nð Þn−1
n!

R
0
∙τ

� �n
: ð5Þ

Equation (5) requires an accurate determination of C and τ, but it allows a closed

form correction for dead time losses. In the present paper, the method is applied to

planar images; in principle, the method can be readily expanded to whole body or

tomographic imaging as well.

Effect of energy window settings on dead time

The effect of energy window settings on dead time is a further matter of discussion.

Several authors have found a large dependence of τ on energy window settings [3, 7,

15]. Cherry et al. [16] state that for counting systems, an approximate equation for ap-

parent dead time is τEW = τ/wf, where τEW is the apparent dead time for a certain en-

ergy window, τ is the actual dead time per detected event, and wf = R′EW/R′ is the

window fraction.

Similarly, in the case of a gamma camera, events on the detector can be included or

excluded from the image only after the deposited energy has been calculated [15]. This

implies that when measuring 99mTc photons, one has to consider at least some amount

of dead time caused by photons that are not recorded in the image, i.e., scatter or back-

ground events. Based on the results of Silosky et al. [3], for SPECT detectors, Uribe

et al. [5] generalize the above equation to

τTc ¼ τOW= wf
� �η

; ð6Þ

where η is a positive constant.

Furthermore, Uribe et al. [5] state that count losses due to electronics are (rather) en-

ergy independent. If, correspondingly, the photopeak fraction of a particular measure-

ment is count rate independent, then necessarily, the fraction of counts that is lost due

to dead time is independent of energy window and therefore e−R ∙ τ is independent of

the selected energy window.

From this, it follows that −RTc ∙ τTc = − ROW ∙ τOW, and therefore τTc = τOW/wf, (i.e., η

= 1), as above, indicating that dead time losses are determined by a single system dead

time parameter τ. However, this simplification does not consider the effects of pulse

pile-up, which can reduce the intensity of the photopeaks (i.e., wf) with increasing

count rate [17–19].

To investigate the relationship between energy window settings and measured dead

time and whether a single parameter τ can define the dead time behavior of a detector,

we measured dead time losses for several energy window settings.

Methods
Estimation of dead time τ

Two methods are generally used to determine dead or resolving time, τ: a decay rate

method and a dual source method (see, e.g., [3, 16, 20]).

The decay rate method uses a single source of activity and monitors the detected

count rate, R′, as a function of time as the source decays. Measuring over a large range

of count rates (approximately 7 half-lives, or over 40 h for 99mTc), the dead time par-

ameter is estimated by fitting the observed count rates with Eq. (1). Note that for this
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fit, several authors assume that at low enough count rates dead time has no effect, i.e.,

R′ = Rt [3, 20].

Two alternative methods were used in this paper: first, the dual source method (Hut-

tig [6] and Adams et al. [7]), and second, a variation of the graphical method discussed

in Knoll [20]. This method is an improvement of the decaying source method because

it fits all measured count rates vs. activity (or time) but makes no assumption on the

absence of dead time loss for low count rates.3

For the two methods described below, all count rates were corrected for background

by simple subtraction.

Dual source method

For the dual source method, two sources (of similar activity) are measured, first separ-

ately and then concurrently in front of the detectors. With R′1 and R′2 denoting the

observed count rates for sources 1 and 2 separately and R′12 for the concurrent meas-

urement, τ is estimated from

τ ¼ 2R
0
12

R
0
1 þ R

0
2

� �2 ln
R

0
1 þ R

0
2

R
0
12

� �
: ð7Þ

Neglecting errors due to Poisson counting statistics, this estimate is exactly provided

the two sources have equal activity. When Rt,1 ≠ Rt,2 the relative error is of order (Rt,1 −

Rt,2)
2/(4 (Rt,1 + Rt,2)

2) and remains small if the two sources have similar activity.

Silosky et al. [3] show that τ can be accurately estimated for R12 > 35% of max count

rate, but that above a certain count rate (approx. 95% of maximum count rate), the

paralyzable detector model (PDM) will no longer be applicable and the estimated τ will

be inaccurate as a result. Furthermore, they have verified that τ can be accurately esti-

mated to within 1% when the ratio of single source activity to total activity is between

44% and 55% (i.e., the sources are equal to within 20%).

Graphical count rate method

For an alternative determination of τ, the data that were measured for the dual source

method were additionally fitted for decay and dead time loss. The advantage of this

method to the dual source method is that all data points are considered simultaneously,

instead of in pairs of three. The implications of this will be further discussed below.

Unlike most other count rate methods, for a graphical fit of count rate vs. activity, no

assumption has to be made with regard to the magnitude of dead time loss at low

count rates. The method presented here is an adaptation of that illustrated in Knoll

[20].

Rewriting Eqs. (1) and (2), one obtains R
0.

A
¼ C∙e−C∙A∙τ , and thus

ln R0.
A

� �
¼ ln C∙e−C∙A∙τ

� � ¼ ln Cð Þ−C∙τ∙A: ð8Þ

3Silosky et al. [3] present another method for analyzing dead time that does not neglect dead time losses at
low count rate nor does it require background measurements. However, in part because of the complexity of
the model to be fitted, this counts method was not considered in the present paper.
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Therefore, if one plots lnðR0.
A
Þ vs. A, one gets a linear function with intercept

ln(C) and slope − Cτ. We estimate these parameters by an unweighted least squares lin-

ear fit.

The same data that were acquired for the dual source method were used for the

graphical calculation of τ (and C).

Experimental setup

For the evaluation of the Lambert dead time correction method, count rates were mea-

sured over a wide range of activities on a SPECT camera of a principal vendor: a Philips

BrightView SPECT camera, with detectors consisting of 59 PMTs reading out a 40.6 ×

54 cm2, 3/8″ (9.5 mm) thick NaI(Tl) scintillation crystal (approx. 90% detection effi-

ciency at 140 keV). The detectors can be read out with a pixel size down to 0.58 mm

(1024 × 1024 matrix). The manufacturer specifies a maximum count rate of 350 kcps,

with 20% loss of count rate at 300 kcps.

Data were acquired without (intrinsic) and with low-energy high-resolution (LEHR)

collimators (extrinsic).

For practical reasons, we implemented a slight modification of the dual source

method, which was replaced by a triple source method, as described below.

Intrinsic calibration

The intrinsic (i.e., without collimators) measurement was performed according to the

setup of the NEMA count rate test, with point sources placed at more than five times

the size of the Uniform Field of View (UFOV) from the surface of the detectors, with

six 1 mm copper plates shielding the sources, in order to suppress (back-)scattered

photons and to create a clean photopeak. The sources were placed at approximately

300 cm from the detectors.

The 99mTc sources used for these measurements had initial activities of 125MBq

(sources 1 and 2) and 250MBq (source 3). These sources were measured, through

decay, down to activities of approx. 4.6 and 9.2MBq, resp.

Before and after each series of measurements, background measurements were per-

formed of 300 s’ duration; measurements with sources were 60 s. Images were acquired

simultaneously for two energy window settings, open window (OW) from 0 to 1022

keV, and 99mTc from 126.5 to 154.6 keV. A series of measurements consisted of meas-

uring different combinations of activities, i.e., all sources individually, both low-activity

sources together, and all three sources together.

For both detectors, for both OW and 99mTc energy windows, 17 values of τ were cal-

culated using the dual source method, Eq. (7), from a total of 49 measurements. These

data were also used for the graphical method to calculate τ and C.

Extrinsic verification

The goal of the extrinsic measurements was to verify the accuracy of the proposed dead

time correction and the consistency between the dead time values measured with and

without collimator and with and without scattering medium. The entire extrinsic meas-

urement series (both with and without scattering medium) was performed twice, on

two separate days, to have a measure of reproducibility.
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The extrinsic measurements comprised a similar experiment as for the intrinsic ac-

quisitions, measuring count rates, R′, for varying activity, A, with the same energy win-

dow settings, but for point sources in air and for sources placed within a NEMA (PET)

scatter phantom, using the low-energy high-resolution (LEHR) collimators. Only two

sources were used for these measurements, corresponding to the cases 1,2, and 3 in

Table 1 (dual source dead time measurement.)

The sources that were used for the extrinsic verification measurements had activities

of approx. 1.4 GBq at the start of the measurements and 2.8 GBq combined. This com-

bined activity should result in count rates representative of those for patient acquisi-

tions at actual (therapeutic) activities.

Care was taken to place the sources within the NEMA phantom in as reproducible a

manner as possible, with both sources close to the center of the phantom. The detec-

tors and the patient bed were maintained at fixed positions, with the detectors 25 cm

above and below the center of the phantom.

The verification of the Lambert W (or log-product) correction method relies mainly

on an investigation of the linearity of the count rate vs. activity (i.e., the sensitivity

CEW), because the absolute value of CEW is also a function of collimator and the imaged

object (through attenuation and scatter).

Finally, for these extrinsic measurements, additional energy windows were measured

to investigate the relationship between dead time τ and energy window width. Simul-

taneous to the open window (0 to 1022 keV) and 20% 99mTc window (126.5 to 154.6

keV), four extra energy windows centered around 85%, 95%, 105%, and 115% of the
99mTc peak were measured, each 14 keV (10% of 99mTc γ energy) wide.

Results
Intrinsic measurements

Figure 1 shows the measured count rate (in kcps) against the total activity, for 49 mea-

surements with either one, two, or all three sources. Note that, in accordance with the re-

sults of Silosky et al. [3], the paralyzable detector model (PDM) is no longer applicable

above a certain count rate (around 200 kcps for the OW at an activity of ± 350MBq).

Dual source dead time calculation

From each series of measurements, 17 sets of individual and combined sources in total,

dead time has been calculated, for both OW and 99mTc energy windows, according to

Eq. (7). The results are plotted in Fig. 2.

Table 1 Overview of combinations of sources and resulting τ values
Measurement Source(s) Count rate

1 1 R′1

2 2 R′2

3 1 and 2 R′12 R′1

4 3 R′2

5 1, 2, and 3 R′12

Result τ at A1 + 2 τ at A1 + 2 + 3
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Figure 2 indicates that the calculated τ values for both the OW and 99mTc energy

windows are fairly constant for the range of 30–340MBq (of total activity). Note that

the horizontal axis is logarithmic to better visualize the variability at low count rates.

Table 2 lists the average dead time τ (μs) for the intrinsic measurements over the

range of 30–340MBq. For both detectors, both energy windows, τ is reasonably precise.

It must be noted, however, that there may be a slight decrease of the calculated τ with

activity over that range. This is not uncommon: Silosky et al. [3] show an increase of

measured τ with activity for a camera of another vendor, and Adams et al. [7] show τ

either increasing and decreasing with activity, depending on the manufacturer.

Fig. 1 The measured count rate (kcps) vs. activity (MBq) for the intrinsic measurement for both detectors,
both OW and 99mTc energy windows. Note the sharp, step-like, decrease in count rate (for both detectors
and both energy windows) above approx. 350 MBq

Fig. 2 Calculated dead time τ (s) vs. total activity (MBq) for the intrinsic measurement for both detectors for
the open window (OW 0–1022 keV, left) and 99mTc (126.5–154.6 keV, right) energy window acquisitions

Heemskerk and Defrise EJNMMI Physics            (2020) 7:27 Page 8 of 19



Graphical dead time calculation

The same data were used to calculate τ using the graphical method, according to Eq. (8).

From Fig. 3 and Eq. (8), we calculated COW and τOW to be 0.78 kcps/MBq and

1.30 μs, and CTc and τTc to be 0.48 kcps/MBq and 3.16 μs. Not correcting the back-

ground would result in COW = 0.98 kcps/MBq and τOW = 2.01 μs for the open window

acquisition. Calculated dead time values, τ, are listed in Table 2, and values for C in

Table 3 below.

Lambert dead time correction

Applying the calculated values for τ in the Lambert correction formula, Eq. (3), provides

corrected count rates, Rt. The results for the dual source values are shown in Fig. 4. The

accuracy of a linear fit of Rt vs. activity (R
2 > 0.999, when excluding the data points above

350MBq) demonstrates that the dead time correction accurately restores the linear be-

havior in Eq. (1), with slope equal to the sensitivity, CEW. Table 3 below lists the estimated

Table 2 Dead time values (μs) for the intrinsic point source measurements

Detector Energy
window

τ (μs)

From dual source method From graphical method

Det 1 OW 1.31 (0.06) 1.30 (0.04)
99mTc 3.19 (0.08) 3.16 (0.04)

Det 2 OW 1.23 (0.04) 1.25 (0.03)
99mTc 3.26 (0.04) 3.32 (0.05)

Dead time values (μs) from the dual source method and the graphical method for the intrinsic point source
measurements. Values between brackets are the standard deviation

Fig. 3 Graphical dead time calculation. Plot of ln(R′/A) vs. A (MBq) for the intrinsic measurement for
detector 1 for the OW (blue, green) and 99mTc (red) energy window acquisitions
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sensitivity and its standard deviation for both detectors and both energy windows, com-

paring it to C calculated from the graphical analysis. Figure 5 shows the difference be-

tween the C values from the graphical and dual source methods, expressed as a

percentage of the graphical value.

Figures 4 and 5 and Table 3 show that the Lambert dead time correction not only restores

the linear behavior of Eq. (1), but furthermore, that the sensitivity calculated from the dead

time corrected count rates is very close to that calculated from the graphical analysis.

Extrinsic measurements (LEHR collimators) with point sources

Figure 6 shows the measured count rates (R′) vs. activity for the extrinsic measure-

ments with point source placed in air between the detectors. The dead time values cal-

culated with the graphical method are listed in Table 4. These dead time values are

somewhat lower than those measured intrinsically (i.e., without collimators) for both

energy windows.

Table 3 Intrinsic sensitivity CEW from dead time corrected count rate measurements

Detector Energy
window

C (kcps/MBq)

From graphical analysis From corrected count rates

Det 1 OW 0.78 (0.003) 0.79 (0.037)
99mTc 0.48 (0.002) 0.48 (0.007)

Det 2 OW 0.82 (0.003) 0.82 (0.036)
99mTc 0.48 (0.001) 0.48 (0.008)

Intrinsic sensitivity, CEW, for both detectors (kcps/MBq) and standard deviation for both energy window settings, from the
graphical analysis and from the corrected count rate fit based on the dual source method (Fig. 4)

Fig. 4 Lambert dead time corrected count rates vs. activity. Measured and corrected count rates (kcps) vs. A
(MBq), based on Eq. (3), using τ values from Table 2, for the intrinsic measurement for detector 1 for both
energy windows: OW and 99mTc. The slope of the corrected curve equals sensitivity, C
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Fig. 5 Comparison of the dual source method and the graphical analysis. Difference between the
sensitivity, C (i.e., Rt/A), estimated from count rates corrected with the dual source method, and C from the
graphical analysis. The difference is plotted against activity, for the intrinsic measurements. Two low-activity
measurements with presumed background (12% and 25% overestimation of activity) and the two points
where PDM does not apply (both 49% underestimation) are outside the y-range of this plot.

Fig. 6 Extrinsic count rate measurement with point source. Measured count rates, R′ (kcps), vs. A (MBq) for
extrinsic (LEHR collimator) measurements of a point source. LEHR 1 refers to the first, LEHR 2 to the second
measurement, of detector 2 for both energy windows: OW (blue diamonds) and 99mTc (red squares)
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Extrinsic measurements (LEHR collimators) with NEMA scatter phantom

The data of the scatter phantom measurement were corrected using the Lambert W

function, Eq. (4), using the values of τ determined above (Table 4, point source col-

umn). The results of these corrections are plotted in Fig. 7 for the OW and in Fig. 8 for

the 99mTc window. For clarity, in Figs. 7 and 8, the count rate values (R′ or R) have

been divided by activity, A; an accurate correction should result in a proportionality

constant, C, being constant vs. A.

For both the open and 99mTc windows, we only plot the correction using τ values

from the first extrinsic point source measurements, because the τ values from the sec-

ond extrinsic point source measurements gave nearly identical results (< 0.4% differ-

ence for any corrected count rate).

Figure 7 demonstrates how the accuracy of the correction was dependent on the

value of τ that was used, with the extrinsic τOW values (measured with point sources,

without scatter phantom) improving over the intrinsically measured τOW. However, the

Table 4 Dead time values τEW (μs) determined using the graphical method

Detector Energy
window

Intrinsic τ
(μs)

Point source 1
τ (μs)

Point source 2
τ (μs)

Scatter phantom 1
τ (μs)

Scatter phantom 2
τ (μs)

Det 1 OW 1.30 1.05 1.07 0.92 0.94
99mTc 3.16 2.69 2.61 3.6 4.29

Det 2 OW 1.25 1.01 0.99 0.87 0.93
99mTc 3.32 2.33 2.57 3.58 4.44

Dead time values τEW (μs), as determined from the intrinsic and the extrinsic (LEHR, with NEMA scatter phantom)
measurements, using the graphical method

Fig. 7 Dead time corrections for the OW measurement of the phantom. Sensitivity (COW) in kcps/MBq vs. A
(MBq) for the second extrinsic phantom measurement, detector 1, open window, with values of τOW from
different measurements used for correction: blue diamonds, uncorrected; red squares, τOW from the intrinsic
point source measurements (from Table 2); green triangles, τOW from the first extrinsic point source
measurement (Table 4); and cyan circles, τ value of Silosky [3] (based on MCR).

Heemskerk and Defrise EJNMMI Physics            (2020) 7:27 Page 12 of 19



τOW value that best corrected the count rate loss was that determined for the same type

of scanner in Silosky et al. [3], with a value of 0.94 μs, based on the maximum count

rate (MCR), averaged over both detectors.

From these extrinsic scatter phantom measurements, values for an effective dead time τEW
were determined as well. These are also listed in the last two columns of Table 4, below.

The value of τOW, measured from the extrinsic scatter phantom measurement with

the open energy window, was for both detectors approximately 30% lower than that de-

termined from the intrinsic measurement, while it corresponded quite well with the ex-

trinsic point source measurement (< 15%). Similarly, the value that Silosky et al. [3]

have measured from the maximum count rate, 0.94 μs, corresponded very closely.

For a final verification of the dead time calculation and correction methods, we used the

τ value from the first scatter phantom measurement series to correct the second series.

For the open energy window measurements, corrections for detectors 1 and 2 were accur-

ate to 0.4% (within standard deviation) and 0.8%, resp., but both slightly underestimated.

As can be seen from Fig. 8, however, none of the measured τTc values sufficiently cor-

rected the second extrinsic NEMA phantom measurement.

Effect of energy window settings on dead time

For the intrinsic measurements, OW and 99mTc energy windows were measured simul-

taneously, and for the extrinsic measurements, 4 additional energy windows (14 keV

wide) were measured (also simultaneously) at 85%, 95%, 105%, and 115% of the 99mTc

Fig. 8 Dead time corrections for the 99mTc window measurement of the phantom. Sensitivity (CTc) in kcps/
MBq vs. A (MBq) for the second extrinsic phantom measurement, detector 1, 99mTc energy window. Dead
time values τTc (i.e., from photopeak windows) from different measurements were used for correction: blue
diamonds, uncorrected; red squares, τTc measured in the intrinsic point source measurements (from Table
2); green triangles, τTc from the first extrinsic point sources measurements (Table 4); and cyan circles, τTc
from the first scatter phantom measurement (also Table 4)
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photopeak. These last energy windows were summed to create a 40% wide (112.4–

168.6 keV) energy window as well.

Figure 9 shows the window fraction, i.e., 99mTc energy window counts/OW counts, for the

intrinsic measurement (20% 99mTc window only) and an extrinsic measurement (20% and

40% 99mTc energy windows) for the NEMA scatter phantom. Very similar curves were ac-

quired for the extrinsic point source measurement in air. Note that the two outlying points

for the intrinsic measurement (green) in Fig. 9 were measured at higher activity, where the

OW count rate experienced a degradation (see Fig. 1) both increasing the 99mTc window

fraction, as well as simultaneously shifting the data points to the left on the horizontal axis.

As can be seen from Fig. 9, the window fraction, both for the 20% and 40% windows,

decreased almost linearly with count rate. This was the case for all measurements;

Table 5 shows the percentage loss of window fraction for each of the measurements.

The loss is listed as a percentage decrease in window fraction per 100 kcps count rate,

calculated as the slope of a unweighted least squares linear fit of the window fraction,

over the entire open window count rate range, multiplied by 100.

Discussion
Accurate quantification of NM images in a therapeutic setting requires an accurate cor-

rection of dead time losses. In the present paper, we demonstrate both a revised

method to quantify the effect of dead time as well as a novel method to correct for it.

As can be seen from Figs. 1 and 4, and as has been noted by Silosky et al., the paral-

yzable detector model breaks down above a particular count rate. Above this count

rate, there is a sharp reduction in proportionality constant, whereas the photopeak

Fig. 9 Window fraction (i.e., 99mTc counts/OW counts) plotted vs. open window count rate for the intrinsic
measurement and the second extrinsic measurement with the NEMA scatter phantom for both 20% and
40% 99mTc energy window width. Green, intrinsic measurement 20% 99mTc energy window; blue, NEMA
phantom measurement 20% 99mTc energy window; red, LEHR NEMA phantom measurement 40% 99mTc
energy window. The 40% energy 99mTc window is not available for all measurements
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window fraction increases significantly (Figs. 1 and 9). Although the Lambert dead time

correction method is accurate for the paralyzable range, it could be important to dis-

cuss internal data processing with the manufacturers to better understand possible lim-

itations of the PDM and the Lambert correction method. Interestingly, Seret [21] has

observed a jump in the response of four gamma cameras of the same type as studied

here, and Gregory et al. [22] mention a “fast” mode for high count rates in SPECT cam-

eras from two other major vendors.

Graphical method for dead time calculation

As a first step, we have validated the revised graphical method in a comparison with

the dual source method, comparing both the dead time value, τ, itself, as well as the

sensitivity, C, for an open window as well as a 99mTc energy window. For the graphical

method, C can be determined from non-dead time corrected count rates; this was com-

pared to the value of C that follows from the corrected count rates from the dual

source method.

As can be seen from Tables 2 and 3, the estimates of τ and C were very reproducible;

however, we believe that the graphical method may have some advantages over the dual

source method. The most important advantage is that all data points are used simultan-

eously by the graphical method, leading to a single value of τ. Outlying data points, e.g.,

where the PDM is no longer applicable, or where background is not sufficiently cor-

rected, can be readily excluded from the fit. For the dual source method, a count rate

range was selected (in Fig. 2) for which τ was considered constant (following [3]), even

though a decrease of τ over that range might be discernable, as was found by other au-

thors [3, 7]. Therefore, in contrast to the graphical method, the dual source method

does not result in a unique value for τ. Even though in principle the dual source

method would allow a determination of τ through a small number (three) of measure-

ments, in practice, this could lead to significant errors. For instance, in Fig. 2, at low

count rates, large deviations were found. These are believed to be the result of varia-

tions in background between the different images of a single dual source measurement,

due to the clinical activities on other cameras in our department.

The reproducibility of the measured dead time values was examined by repeating

both extrinsic measurements on two different days. The values of τ estimated for the

open energy window and for the 99mTc energy window were reproducible for the point

sources placed in air. The reproducibility was poor however (differences exceeding 20%

for the 99mTc energy window) when the sources were placed in the scatter phantom

Table 5 Percentage loss of energy window fraction per 100kcps increase in count rate

Energy
window

Intrinsic
(%)

Point source 1
(%)

Point source 2
(%)

Scatter phantom
1(%)

Scatter phantom 2
(%)

Det
1

99mTc (20%) − 9.5 − 9.4 − 7.5 − 5.1 − 8.4
99mTc (40%) − 6.9 − 3.5 − 3.5 − 4.6

Det
2

99mTc (20%) − 7.7 − 8.9 − 9.7 − 5.7 − 9.5
99mTc (40%) − 6.6 − 7.1 − 3.9 − 4.5

Percentage loss of energy window fraction, for the 20% and 40% 99mTc energy windows, as determined from plots of
energy window fraction vs. open window count rate. The loss is expressed in a percentage per 100 kcps increase in
count rate
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(Table 4). This may be the result of inadvertent variations in the positioning of the

photopeak or in the placement of the sources (which could result in different scatter

counts), but this conjecture remains to be verified.

A possible explanation of the variability of τ between the intrinsic and the extrinsic

measurements for the open window measurements could be an internal lower thresh-

old for the detection of events in the detector, which nevertheless requires response

time. Removal of the collimators for the intrinsic measurement drastically increases

background, in particular, at the lower end of the energy spectrum. The lowest detected

photon energy in the spectrum was 20 keV, cutting off a part of the spectrum. Manu-

facturers’ input on the inner workings of detectors might be of valuable assistance to

determine the actual system value of τ.

Lambert W function for dead time correction

Figures 4, 5, and 7 show that the closed form Lambert dead time correction accurately

rectified the measured count rate, resulting in the linear relationship between activity

and count rate.

However, one must be aware that it is in principle impossible to estimate the activity

A from measurements above a true count rate τ−1, or measured count rate (eτ)−1, be-

cause Eq. (3) has two solutions for each R′. For the system that was investigated, the

maximum count rate is not limited by the theoretical value of (eτ)−1 but by some other

effect within the gamma detector. This can be seen from Figs. 1 and 4: for the open

window, the dead time of 1.3 μs corresponds to a theoretical maximum true count rate

of around 280 kcps, whereas the model (and subsequently the correction method)

breaks down at a much lower count rate.

When measuring a single value of R′, as is the case for patient imaging, it is impos-

sible to determine if one is above or below maximum count rate, R′max. This will affect

any dead time correction method except possibly one where a calibration source is sim-

ultaneously measured in the image (e.g., [11]). It is therefore important to determine

the count range for which PDM applies and to verify that clinical applications remain

well within that range.

Even though the Lambert dead time correction is in principle exact, the accuracy of

the correction is dependent on the value of τ that is used. An important issue is

whether dead time values estimated intrinsically or extrinsically with point sources in

air can be used to restore linearity with clinical data, within an appropriate activity

range. For the scatter phantom measurements, as shown by Fig. 7, good linearity was

obtained for the open window despite somewhat larger deviations when using the in-

trinsic value of τOW. The extrinsically measured τOW for point sources in air restored

linearity to within 5%. For the 99mTc energy window, however, it seems that the τTc
values determined with point sources in air, either intrinsically or extrinsically, were

not accurate enough for correction of the scatter phantom data.

Effect of energy window settings on dead time

The use of a dead time parameter, τ, based on 99mTc window data only, does not reflect

the fact that the dead time is caused not only by the photons in the acquired energy

window, but by all photons detected by the camera.
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However, even though Adams et al. [7] and Silosky et al. [3] show a close to inverse

relationship between τ and the photopeak fraction, Uribe et al. [5] report that Eq. (6)

did not correctly predict any of the dead time values they measured, using values of η

ranging from 1 to 1.4 (as reported in literature). Therefore, they do not support its use.

In the present paper, too, we found from Tables 2 and 3, e.g., for detector 1, that CTc

∙ τTc = 1.53 was much larger than COW ∙ τOW = 1.04. For the intrinsic measurements, Eq.

(6) would require a value for η of 1.83. The fact that τTc was larger than expected im-

plies more 99mTc photons were lost with increasing count rate.

This loss of 99mTc events is most probably the result of pulse pile-up, which causes a

broadening of the 99mTc photopeak, resulting in a decrease of photopeak fraction with

increasing count rate for the pre-defined energy window (140 keV ± 10%). This broad-

ening has been observed for example by Lewellen and Murano [17] and is also clearly

apparent from Fig. 9 and Table 5.4 The impossibility to define a reliable value of τ for a

fixed energy window is clearly demonstrated by the fact that, for instance, the 155–168

keV window in our experiments showed a negative value for τ, which is of course not

physical.

A second consequence of Eq. (6), regardless of the value of η, is that an accurate de-

termination of τ for the relevant energy window requires a window fraction wf for the

calibration setup close to that of a clinical scan. Because the window fraction largely de-

pends on the scatter properties of the imaged object, we observed differences larger

than 50% between the dead times estimated from the 99mTc data with point sources in

air and in the NEMA phantom. We believe that the application of a single (intrinsically

measured) τTc for extrinsic phantom or patient measurements is not advisable.

Suggested dead time correction method

An optimal quantification of the activity in nuclear imaging requires complex methods

relying on Monte Carlo simulations [23] to accurately model the object and the acquisi-

tion electronics. Nevertheless, the simple paralyzable model with the Lambert dead

time correction is practical and allows a significant and robust improvement of the lin-

earity, as shown for instance by Fig. 7.

We suggest to correct for dead time and pulse pile-up separately, using a detector

value of τ, τOW, in combination with a correction for the decrease of window fraction

with (open window) count rate. This could be implemented through the use of list

mode data, perhaps with quasi real-time information on dead time, or with energy win-

dow settings based on actual energy resolution, which is known to decrease with count

rate [17, 23]. In the most straightforward setting, window fraction could be determined

by measuring open window and photopeak window simultaneously (as has been sug-

gested in [19]).

In the experiments presented here, we have demonstrated the correction method in a

simple model: a commonly used (and readily available) isotope, 99mTc, with a single

photopeak. For future investigations, we want to evaluate other isotopes such as 131I

and 177Lu, firstly, because these isotopes are used at high activities and count rates in

therapeutic imaging, and secondly, to replicate our findings for gamma spectra com-

prising multiple photopeaks and increased scatter. With regard to dead time effects

4This effect is also discussed in the context of quantitative 177Lu SPECT in MIRD pamphlet 26 [19].
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within the 99mTc energy window, for instance, we have already found that correct peak-

ing of the signal is an absolute necessity for accurate measurements.

Additional investigations will also be needed to verify the validity of the proposed

dead time correction method in planar or SPECT imaging.

Because the proposed correction method is based on the open window, encompass-

ing the entire spectrum, we are confident that given an accurate value of the dead time

parameter τ, the method presented here can provide a straightforward and robust tool

for dead time correction for quantitative nuclear imaging, even in cases of multiple

photopeaks and increased scatter levels, such as for 131I and 177Lu.

Conclusion
In the present paper, we have demonstrated a straightforward analytic dead time correc-

tion based on the Lambert W function. The expression for correcting these dead time

losses is exact for the range of activities for which the paralyzable detector model applies.

However, its accuracy is dependent on the accuracy of the dead time parameter τ.

For the estimation of this single parameter τ, we have implemented a revised “graph-

ical” method for fitting the count rate of decaying sources. However, investigation of

the dependence of dead time losses on experimental setup and energy window settings

indicates that measured τ values are variable with geometry as well as window fraction.

The closed form expression for dead time correction based on the Lambert W func-

tion has to our knowledge not been used in nuclear medicine.
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