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Abstract

Background: In integrated PET/MR hybrid imaging the evaluation of PET
performance characteristics according to the NEMA standard NU 2–2007 is
challenging because of incomplete MR-based attenuation correction (AC) for
phantom imaging. In this study, a strategy for CT-based AC of the NEMA image
quality (IQ) phantom is assessed. The method is systematically evaluated in NEMA IQ
phantom measurements on an integrated PET/MR system.

Methods: NEMA IQ measurements were performed on the integrated 3.0 Tesla PET/
MR hybrid system (Biograph mMR, Siemens Healthcare). AC of the NEMA IQ phantom
was realized by an MR-based and by a CT-based method. The suggested CT-based AC
uses a template μ-map of the NEMA IQ phantom and a phantom holder for exact
repositioning of the phantom on the systems patient table. The PET image quality
parameters contrast recovery, background variability, and signal-to-noise ratio (SNR)
were determined and compared for both phantom AC methods. Reconstruction
parameters of an iterative 3D OP-OSEM reconstruction were optimized for highest
lesion SNR in NEMA IQ phantom imaging.

Results: Using a CT-based NEMA IQ phantom μ-map on the PET/MR system is
straightforward and allowed performing accurate NEMA IQ measurements on the
hybrid system. MR-based AC was determined to be insufficient for PET quantification in
the tested NEMA IQ phantom because only photon attenuation caused by the
MR-visible phantom filling but not the phantom housing is considered. Using the
suggested CT-based AC, the highest SNR in this phantom experiment for small lesions
(<= 13 mm) was obtained with 3 iterations, 21 subsets and 4 mm Gaussian filtering.

Conclusion: This study suggests CT-based AC for the NEMA IQ phantom when
performing PET NEMA IQ measurements on an integrated PET/MR hybrid system. The
superiority of CT-based AC for this phantom is demonstrated by comparison to
measurements using MR-based AC. Furthermore, optimized PET image reconstruction
parameters are provided for the highest lesion SNR in NEMA IQ phantom
measurements.
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Background
In diagnostic medical imaging the performance of imaging modalities needs to be

tested and evaluated on a regular basis in order to ensure correct functionality and

optimal image quality. Systems are analyzed by a variety of methods [1, 2]. For PET

scanners in particular, the National Electrical Manufacturers Association (NEMA) has

defined a standard to assess the performance of the tomographic system [3]. Such

image quality control measurements also need to be conducted in PET/MR hybrid im-

aging for PET performance measurements when introducing a new system [1, 2] or, on

a regular basis, when monitoring quality of a specific PET system over time. Compar-

ability in clinical studies evaluating PET/CT and PET/MR imaging performance in

patient studies also relies on NEMA IQ phantom measurements [4, 5]. Furthermore,

accurate NEMA IQ phantom measurements are a precondition for studies investigating

the attenuating influence of new hardware components such as radiofrequency (RF)

coils [6, 7] and radio therapy planning equipment [8] that are designed for use in PET/

MR systems. Dose optimization studies that have been reported for PET/MR hybrid

imaging also rely on NEMA IQ phantom measurements [9]. All these studies have in

common that they build on accurate methods for attenuation correction (AC) of the

phantoms involved.

To obtain quantitative PET images that can be used to determine the scanner per-

formance parameters, the acquired PET data need to be corrected for attenuation of

the photons caused by the scanned object as well as by the attenuating hardware

components of the system [10]. In PET/CT imaging, information about the attenuat-

ing characteristics of the scanned object is derived from the CT scan itself. In PET/

MR patient imaging, MR-based attenuation correction (AC) methods are applied to

correct for attenuation caused by human tissue [11], however, the applicability in

phantom imaging has not yet been quantified. Current MR-based AC only considers

the fluid phantom filling as it provides sufficient MR signal, but it does not correct

for plastic or glass materials commonly used in PET phantom housings, as these can-

not be reliably detected in standard MR imaging (Fig. 1).

In this study, therefore, an alternative strategy for performing NEMA IQ phantom

measurements is evaluated. The use of CT-based AC maps and templates for attenu-

ation correction of hardware components such as the PET/MR system patient table

and various stationary and mechanically rigid radiofrequency (RF) coils can be consid-

ered as the current standard approach for hardware component AC in combined PET/
Fig. 1 a The NEMA IQ phantom. b MR imaging (in-phase image) of the NEMA IQ phantom using the MR
AC Dixon VIBE sequence showing only fluid phantom filling (water). The phantom housing (Plexiglas) is
not visible in MR imaging and thus, also not considered in the MR-based μ-map of the phantom (c). Note
that the glass spheres are displayed as signal voids (dark rims in b) that are segmented as water in the
MR-based μ-map (c)
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MR systems across all vendors. Consequently, this study proposes to use a pre-

acquired CT-based template μ-map of the filled NEMA IQ phantom in conjunction

with a phantom holder and to install this template μ-map on the PET/MR system to be

used for AC whenever NEMA IQ phantom experiments are performed.

This study investigates the standard NEMA IQ test utilizing CT-based AC for the

Biograph mMR PET/MR hybrid system (Siemens Healthcare, Erlangen, Germany).

Contrast recovery, background variability and signal-to-noise ratio are determined as a

function of different reconstruction parameters. In comparison, the effect of MR-based

AC is evaluated and the impact on the image quality parameters assessed.
Methods
PET/MR hybrid scanner

All phantom experiments were performed on an integrated PET/MR whole-body

hybrid system (Biograph mMR, Siemens AG) [2].

The MR component of the hybrid system consists of a 3.0 Tesla static magnetic field,

a radiofrequency (RF) transmit body coil and a gradient coil system which provides a

maximum amplitude of 45 mT/m and a maximum slew rate of 200 T/m/s.

The PET component is comprised of 8 detector rings, each consisting of 56 detector

blocks. One detector block consists of 8x8 lutetium oxyorthosilicate (LSO) scintillator

crystal elements connected to 3 x 3 avalanche photodiodes (APDs) [12].
NEMA image quality phantom

According to the NEMA NU 2–2007 standard [3], image quality parameters of PET

scanners are obtained by measuring a specific International Electrotechnical Commis-

sion (IEC) 61675–1 emission phantom [13] (NEMA image quality phantom) (Fig. 1a,

PTW, Freiburg, Germany). This image quality phantom mimics the shape of an upper

human body and is built of acrylic glass material. It comprises 6 hollow glass spheres

(inner diameters 37, 28, 22, 17, 13, and 10 mm) which can be inserted into the large

phantom compartment. Additionally a cylindrical insert containing styrofoam with an

average density of 0.3 ± 0.1 g ml−1 (simulates patient lung tissue [3] (μlung-insert ~

0.026 cm−1) and is positioned in the center of the phantom. The inner volume may vary

between NEMA IQ phantoms. The volume of the tested phantom (PTW, Freiburg,

Germany, Fig. 1a) was measured to be 9.5 L ± 1 % when the spheres and lung cylinder are

inserted. The phantom housing has a thickness of approximately 3 mm along the phan-

tom body, and 10 mm (in few parts 20 mm) at the lids at both ends of the phantom. The

glass material (μ ~ 0.118 cm−1) of the spheres has a thickness of around 1 mm.
Phantom measurement setup

When NEMA IQ measurements with a CT-based phantom template μ-map are per-

formed, the phantom needs to be placed at a pre-defined position in the PET field of

view (FOV) with a known reference to the patient table, to ensure alignment between

the μ-map and the position of the phantom.

To guarantee a reproducible phantom placement, a defined set of phantom holders

were used (Fig. 2). A spacer is positioned adjacent to the RF head coil connection port

on the patient table in order to create a defined and reproducible distance of the



Fig. 2 The NEMA IQ phantom imaging setup as performed in this study. The schematic drawing in (a) and
the image in (b) show the spacer (1), the NEMA IQ phantom (2), and the scatter phantom (3) arranged on
top of the PET/MR system patient table. The spacer (1) ensures a predefined and reproducible position of
the phantom (2) on the patient table
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NEMA IQ phantom to the stronger photon-attenuating RF coil port. The NEMA IQ

phantom is placed next to the spacer on a foam block, which was designed in order to

align the phantom at a pre-defined patient table position. As required by the NEMA

standard, a scatter phantom (a 70 cm long plastic cylinder with an activated line

source) is positioned contiguously to the NEMA IQ phantom to generate scattered and

random coincidences from outside the FOV, such as in a patient examination (Fig. 2).
PET phantom preparation and data acquisition

The background volume of the NEMA IQ phantom and the four smallest spheres

were filled with 18 F-FDG mixed with pure water using a 4:1 sphere-to-background

activity concentration ratio, as specified by NEMA [3]. The initial tracer activity con-

centration was specifically calibrated to the start of the measurement: 5.3 kBq/ml ±

1 % in the phantom background and 21.2 kBq/ml ± 5 % in the four smallest spheres.

The two largest spheres were filled with water only. The non-radioactive cylindrical

insert simulating lung tissue was placed in the center of the phantom. The line source

contained in the large scatter phantom was injected with 110 MBq of 18 F-FDG [3].

The defined measurement time by the NEMA NU 2–2007 standard is dependent on

the axial imaging distance of the PET system and amounted to 12 min in one bed pos-

ition for the Biograph mMR. This imaging time resulted from the specification of

NEMA NU 2–2007 that 100 cm of axial imaging distance shall be covered in 60 min.

This time was adapted in the NEMA 2012 standard to 30 min.

The PET images were reconstructed using the 3D ordinary Poisson ordered-subset-

expectation-maximization (OP-OSEM) reconstruction algorithm [14] as implemented

in the system.
NEMA image quality parameters

According to the NEMA NU 2–2007 protocol, PET image quality is analyzed by means

of two parameters: contrast recovery and background variability [3, 15]. These parame-

ters are calculated by evaluation of various regions of interest (ROIs) in the transverse

image slice that contains the centers of the spheres, as well as in adjacent slices (Fig. 3),

as defined by the NEMA standard. The ROIs are defined on the attenuation corrected

PET image and are drawn over the spheres as well as in the background region as is



Fig. 3 Position of the regions of interest (ROIs) placed over the active spheres (red), nonradioactive spheres
(blue) and the phantom background (green) of the reconstructed PET images, which are used for analysis
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illustrated in Fig. 3. In this study the evaluation of the ROIs was performed with the

open-source image analysis tool ImageJ (Fiji).

The percentage contrast recovery (in an ideal case = 100 %) is determined for each

hot sphere j by:

QH; j ¼
CH ; j

�
CB; j

− 1
aH=aB− 1

� 100 %½ �

CH,j = average counts in the ROI for sphere j

CB,j = average counts in the background ROI for sphere j

aH = activity concentration in the hot spheres

aB = activity concentration in the background

For each nonradioactive sphere j the percentage contrast recovery QC,j is given by:

QC;j ¼ 1−
CC;j

CB;j

� �
� 100 %½ �

CC,j = average counts in the ROI for sphere j

CB,j = average of all background ROI counts for sphere j

In order to determine the percentage background variability Nj as a measure for the

image noise for sphere j (in an ideal case = 0 %), the following equation is used:

Nj ¼ SDj

CB;j
� 100 %½ �

SDj = standard deviation of the background ROI counts for sphere j
CB,j = average of all background ROI counts for sphere j

NEMA IQ measurement with MR-based AC

To evaluate the effect of neglecting acrylic glass and glass material in the attenuation

correction of the NEMA IQ phantom emission data, reconstructions with an MR-

based μ-map containing only the fluid phantom filling were performed and NEMA
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IQ parameters were calculated. Linear attenuation coefficients of water were assigned

to the whole phantom content including phantom liquid and glass inserts, despite of

higher attenuation of the glass material of the spheres. For reconstruction, the above-

mentioned OP-OSEM algorithm was used with 3 iterations, 21 subsets, 172 matrix

size, and 4 mm Gaussian post-smoothing filter. MR-based AC was performed by a 3D

Dixon VIBE-based approach [11] with the following imaging sequence parameters:

TR: 4.07 ms, TE in-phase: 2.46 ms, TE opposed-phase: 1.23 ms, flip angle: 10°, slice

thickness: 3.12 mm, field of view: 500 mm x 328 mm and matrix size: 128 x 84. The

system’s built-in RF transmit body coil was used for RF transmission and signal recep-

tion. All other RF coils were removed from the patient table to avoid additional PET

photon attenuation [16].

The assigned μ-values were restricted to two μ-values for water and air for the

performed phantom measurements. Attenuation caused by the styrofoam material in the

lung insert was not accounted for. In general, imaging the NEMA IQ phantom filled with

pure water on a 3.0 Tesla MR system leads to artifacts and signal inhomogeneities due to

standing-RF-wave phenomena and T1 effects, thus affecting MR-based AC of the NEMA

phantom in PET/MR hybrid imaging (as shown in [17]). Manually reducing the initial

voltage of the RF transmitter adjustment algorithm led to a lower adjusted transmitter

voltage of 92.7 Volts, instead of the default value for patient imaging (~300 V), and re-

sulted in fairly homogeneous μ-maps of the NEMA IQ phantom filling (Fig. 1c, Fig. 4a)

[17]. Alternatively the addition of substances (e.g. NiSO4) could be considered that

decrease the T1 relaxation time of water and as a consequence decrease the mentioned

image artefacts, as discussed in [17]. However, this was not further evaluated in the

present study.
NEMA IQ measurement with CT-based AC

The CT image of the phantom, which was used to generate the CT-based template

μ-map (Fig. 4b and c), was acquired on a 128-slice PET/CT system (Biograph 128,

Siemens AG) with the following parameters: 500 effective mAs and 140 kVp. Images

were reconstructed with 0.6 mm slice thickness, 512 x 512 image matrix size and a

B30f convolution kernel. Following a 2 mm Gaussian filtering and bilinear scaling of

the CT Hounsfield units to linear attenuation coefficients at the PET energy level of

511 keV [18], the CT-based μ-map was installed on the PET/MR system in order to

be used for AC whenever NEMA IQ measurements are performed.

The phantom holder minimizes misalignment between the actual phantom position

and the CT-based template AC map of the phantom as much as possible. In case of

remaining slight misplacement between CT-based phantom template and actual phan-

tom position, an image-based registration can be performed. A practical use of a CT-

AC method as proposed in this study by potential future PET/MR users will require

the registration to be performed based solely on the images available. Thus the registra-

tion in this study was also performed by means of the available information from the

PET and CT images in order to simulate a realistic case. This was performed by using

the inherent landmarks of the phantom such as the glass spheres, the lung insert and

the phantom outer boundary that function as orientation when performing manual

image registration.



Fig. 4 a MR-based μ-map in transversal and coronal orientation only contains discrete attenuation values
for water and air, and therefore only corrects for photon attenuation caused by the water content of the
phantom and not by the phantom housing materials, as these materials cannot be detected with standard
MR imaging. b, c CT-based μ-map contains continuous attenuation values including μ-values for the
phantom housing, glass spheres, and styrofoam block used as phantom holder (displayed in c). b and c
visualize the same content, however windowing properties were adjusted individually in order to visualize
either the phantom content (b) or the styrofoam holder, on which the phantom is placed (c)
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For the PET measurements utilizing CT-based AC, reconstruction parameters were

set to 3D OP-OSEM with 3 iterations, 21 subsets, 172 matrix size and 4 mm Gaussian

filtering, as also used with MR-based AC.
Optimization of PET reconstruction parameters in phantom images

PET performance parameters, as well as the visibility of lesions in phantom and patient

images, in general strongly depend on the applied reconstruction algorithm parameters.

To investigate this effect in the specific context of NEMA IQ phantom imaging par-

ticularly for the Biograph mMR system and its PET detector geometry and reconstruc-

tion algorithm, different reconstructions of the same PET phantom data acquisition

using CT-based attenuation correction were evaluated. Hereby the number of iterations

(1–5 iterations), the image matrix size (172 x 172, 344 x 344 matrix) and the Gaussian

filter (2 mm, 4 mm) were varied and the resulting impact on the image quality was

investigated, as has been discussed often in the literature and is described e.g. in [19].

The number of subsets was kept constant at 21 as this is the default setting on the

scanner console. To determine the optimal reconstruction parameters for best NEMA

IQ phantom image quality with high lesion contrast and low background noise, the

signal-to-noise ratio (SNR) was selected as a representative image quality measure
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and was calculated for each active sphere and for all listed reconstruction parameter

combinations. The SNR for sphere j was determined, as described in the literature

when performing similar evaluations for PET/CT imaging [20, 21], according to the

following equation:

SNRj ¼ Signalj−Background
σB

Signalj = average counts in the ROI for sphere j
Background = average counts in a ROI placed in a uniform area outside the

spheres

σB = standard deviation of the background ROI counts, corresponding to noise in the

image

Results
NEMA IQ measurement with MR-based AC

The resulting NEMA IQ parameters utilizing MR-based AC are listed in Table 1. Re-

garding the four smallest spheres filled with tracer activity (“radioactive spheres”) the

performance values using MR-based AC are lower than the expected values for the

underlying PET component when comparing as a general orientation to results

reported in the literature for the Biograph mMR system [2]. The contrast recovery

values for the two largest spheres filled with non-radioactive water only (“non-radio-

active spheres”) (Table 1) show higher values when compared to the results reported

in the literature for the Biograph mMR system [2].

NEMA IQ measurement with CT-based AC

Table 2 presents the resulting NEMA IQ parameters when applying CT-based AC of

four independent measurements with separate fillings on four different days. In com-

parison to values obtained when applying MR-based AC (Table 1), contrast recovery

was, for instance for the smallest sphere, almost approximately twice as high when

using CT-based AC. The larger the size of the spheres, the smaller the deviation in

contrast recovery to MR-based AC becomes. The results using CT-based AC are in the

same range as results obtained in the literature [2].

Optimization of PET reconstruction parameters of 3D OP-OSEM

The influence of varying reconstruction parameters is demonstrated for the four

smallest spheres in Table 3 and plotted in Fig. 5. It can be determined that contrast
Table 1 Contrast recovery and background variability parameters when applying MR-based AC

Sphere size [mm] Radioactive / Non-radioactive aContrast recovery [%] aBackground variability [%]

10 Radioactive 16.8 ± 1.9 4.8 ± 0.8

13 Radioactive 31.7 ± 2.9 4.0 ± 0.4

17 Radioactive 52.7 ± 3.0 3.6 ± 0.3

22 Radioactive 64.8 ± 4.1 3.4 ± 0.4

28 Non-radioactive 68.9 ± 1.5 3.2 ± 0.4

37 Non-radioactive 76.1 ± 0.6 3.1 ± 0.3
a The values represent the mean values and standard deviation of four independent measurements for the
reconstruction: 3 iterations, 21 subsets, 172 matrix and 4 mm Gaussian filtering



Table 2 Contrast recovery and background variability parameters when applying CT-based AC

Sphere size [mm] Radioactive / Non-radioactive aContrast recovery [%] aBackground variability [%]

10 Radioactive 30.5 ± 1.3 3.8 ± 0.8

13 Radioactive 50.5 ± 2.4 3.0 ± 0.5

17 Radioactive 72.9 ± 1.9 2.5 ± 0.2

22 Radioactive 74.5 ± 3.3 2.3 ± 0.2

28 Non-radioactive 56.6 ± 2.3 2.0 ± 0.2

37 Non-radioactive 64.8 ± 0.9 1.8 ± 0.1
a The values represent the mean values and standard deviation of four independent measurements for the
reconstruction: 3 iterations, 21 subsets, 172 matrix and 4 mm Gaussian filtering
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recovery increases with an increasing number of iterations at the cost of higher back-

ground variability, which is essentially noise.

When comparing two different matrix sizes (344 x 344 and 172 x 172), it can be

observed that with higher image matrix the contrast increases but at the same time it

causes an increase in noise. These effects can also be perceived in the phantom images

in Fig. 6.

The mean SNR of four independent measurements as a function of iterations for all

investigated reconstruction parameter combinations is plotted for each of the four

smallest spheres in Fig. 7. The best choice of matrix size, Gaussian filter size and num-

ber of iterations can be determined from the peak SNR value for each sphere in the

graphs. As can be seen, highest SNR is achieved for all spheres using a 4 mm Gaussian

filter. For the two larger spheres (17 and 22 mm) 2 iterations led to highest SNR,

whereas for the two smallest spheres (10 and 13 mm) the peak SNR was achieved at 3

iterations. No significant difference in resulting SNR values can be observed when com-

paring 344 x 344 to 172 x 172 matrix size. Therefore the matrix should be selected with

respect to the individual application.

Discussion
In this study, a strategy for using CT-based phantom attenuation correction in the

context of NEMA IQ measurements in PET/MR hybrid imaging has been evaluated.

The proposed strategy features a pre-acquired CT-based 3D attenuation template of

the NEMA IQ phantom in conjunction with a phantom holder providing exact and

reproducible repositioning of the phantom on the systems patient table. This strategy
Table 3 Contrast recovery and background variability values in % for each active sphere for
different reconstruction parameters of the 3D OP-OSEM reconstruction algorithm when using
CT-based AC

aContrast recovery [%] │ aBackground variability [%]

Sphere 10 mm Sphere 13 mm Sphere 17 mm Sphere 22 mm

Iteration 172 x 172 344 x 344 172 x 172 344 x 344 172 x 172 344 x 344 172 x 172 344 x 344

1 13.8 │ 2.5 15.8 │ 2.8 28.1 │ 2.3 29.6 │ 2.5 48.5 │ 2.1 51.3 │ 2.3 53.7 │ 2.1 56.0 │ 2.2

2 24.3 │ 3.2 28.1 │ 3.5 43.8 │ 2.6 45.3 │ 2.8 66.8 │ 2.3 69.7 │ 2.3 70.0 │ 1.9 72.0 │ 2.2

3 30.5 │ 3.8 35.0 │ 4.3 50.5 │ 3.0 51.1 │ 3.2 72.9 │ 2.5 75.2 │ 2.6 74.5 │ 2.3 76.3 │ 2.4

4 34.3 │ 4.4 38.7 │ 4.9 53.4 │ 3.3 53.3 │ 3.5 75.4 │ 2.7 77.5 │ 2.8 76.5 │ 2.5 78.2 │ 2.6

5 36.8 │ 4.8 40.8 │ 5.3 54.8 │ 3.5 54.3 │ 3.8 76.9 │ 2.9 78.7 │ 3.0 77.6 │ 2.6 79.2 │ 2.7
a4 mm Gaussian filtering and 21 subsets were kept constant for all reconstructions. The values represent the mean of
four independent measurements



Fig. 5 Contrast recovery vs. background variability using CT-based AC shown for the four smallest spheres
with 172x172 matrix size (hollow symbols) and 344x344 matrix size (solid symbols) and 4 mm Gaussian filter.
The values from left to right represent the results for an increasing number of iterations (1–5) of the
reconstruction algorithm
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for phantom AC is straightforward and in line with currently implemented AC

methods for hardware component AC such as RF coils on the available sequential

and integrated PET/MR systems. Respective image quality and activity quantification

parameters were systematically investigated using MR-based and CT-based AC of the

NEMA IQ phantom. Furthermore, reconstruction parameters for NEMA IQ phantom
Fig. 6 Images of the first five iterations reconstructed with 3D OP-OSEM for different matrix and Gaussian
filter sizes and using CT-based AC. Note: increasing the number of iterations is associated with increasing
lesion sharpness while also increasing background noise. This also applies when increasing the image matrix
size from 172 x 172 to 344 x 344



Fig. 7 The signal-to-noise ratio (SNR) calculated for different reconstruction parameter combinations for the
four active spheres: 10 mm (a), 13 mm (b), 17 mm (c) and 22 mm (d). The values represent the mean of
four independent NEMA IQ measurements using CT-based AC
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measurements were optimized for the Biograph mMR system by evaluating image

quality parameters using the CT-based approach.

It was demonstrated that the tested MR-based AC leads to insufficient quantifica-

tion results and to degraded image quality as compared to CT-based AC for the eval-

uated NEMA IQ phantom. Specifically, the activity quantification values for the four

“radioactive spheres” were lower than activity values reported in the literature for

NEMA IQ measurements on the Biograph mMR system [2]. The low values indicate

insufficient AC of the phantom, which is associated with the fact that MR-based AC

only considers the fluid phantom filling but neglects the attenuating phantom hous-

ing made from acrylic glass and glass components. On the other hand, the contrast

recovery values for the two “non-radioactive spheres” show higher values when com-

pared to the values reported in the literature [2]. Because these spheres are filled with

non-radioactive water only, the corresponding contrast recovery values are highest

when no counts are detected from inside these spheres. Applying an insufficient at-

tenuation correction, such as the MR-based AC, leads to less counts being detected

from inside the non-radioactive spheres resulting in a higher contrast recovery value

than when using CT-based AC. Based on the resulting contrast recovery parameters

for radioactive and non-radioactive spheres it can be concluded that MR-based at-

tenuation correction performed with the current AC sequence is inadequate to deter-

mine representative PET image quality parameters in the tested NEMA IQ phantom.

The proposed method, using pre-acquired CT-based NEMA IQ phantom attenu-

ation templates instead of MR-based AC, takes the complete phantom into account,
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including the fluid filling, phantom housing, lung insert and foam phantom holder.

Using this approach leads to NEMA PET image quality parameters similar to values

reported in the literature [2]. The CT-based approach can thus be considered

adequate for representing the performance characteristics of the Biograph mMR PET

component.

The suggested CT-based AC requires the NEMA IQ phantom to be located at a

known position on the patient table during the measurements. This was achieved by a

foam block that carries the NEMA IQ phantom and fits the shape of the systems pa-

tient table. To allow for exact and reproducible positioning of the foam block in z-

direction on the patient table, a spacer was used, which is already part of the system.

The proposed approach can theoretically be implemented on any current PET/MR sys-

tem (tri-modality, sequential or integrated) as a practical method to perform PET

NEMA image quality measurements.

In theory, other methods are conceivable to obtain improved MR-based AC of the

NEMA IQ phantom. In principle this requires that the phantom fluid is displayed in

homogeneous manner across the entire phantom [17]. Another precondition is that the

phantom housing made e.g. of Plexiglas is also considered in MR-based AC. This may

be achieved by using MR imaging sequences capable of displaying structures made of

plastic, e.g. ultrashort echo time (UTE) sequences. Alternatively, the virtual addition of

a defined rim of attenuating pixels to the outer borders of the phantom fluid visible in

MR imaging may provide a method for consideration of the phantom housing in MR-

based AC. Additionally, a 511 keV transmission scan of the phantom may also be a

possibility to generate a phantom AC map. However, a very long scan would be re-

quired in order to limit the noise properties, which are much higher in comparison to

CT, and achieve acceptable spatial resolution. In addition, since the advent of com-

bined PET/CT scanners access to PET only scanners with transmission sources is

very limited. In the present study we have focused on the CT-based AC strategy since

it is straightforward, accurate, and can be implemented on current PET/MR systems

in the same manner hardware component AC is performed for RF coils.

A goal of this study was to assess a solution to be able to perform NEMA PET image

quality evaluations on a PET/MR system as closely to the NEMA NU 2–2007 standard

as possible. NEMA NU 2–2007 specifies that the IQ phantom shall be positioned in

the isocenter of the PET FOV. Since the patient table does not accommodate this verti-

cal phantom position, a suggested phantom holder ensures the required positioning in

a reproducible manner. It reduces misplacement of the phantom in all three spatial di-

mensions as much as possible and consequently, the position of the phantom during a

NEMA measurement matches the position of the CT-based template AC map of the

phantom. In case of remaining slight misalignment, manual post-registration and

repeated reconstruction is possible. In this case the phantom μ-map was registered

manually to the non-attenuation corrected PET data. Possibly, manual or automatic

registration to MR data may be another alternative, however, due to suboptimal image

quality of the MR data acquired with the RF body coil, this was not performed for the

presented data.

For the 3D OP-OSEM reconstruction in this NEMA IQ phantom study, an optimized

lesion SNR was achieved by reconstructing with 3 iterations, 21 subsets and 4 mm

Gaussian filtering. The image matrix size should be selected according to the



Ziegler et al. EJNMMI Physics  (2015) 2:18 Page 13 of 14
application. In theory every lesion in patient data sets has a different optimal recon-

struction parameter setting to obtain the highest individual lesion SNR. Therefore, the

parameter optimization in this study can be considered only a general guideline when

performing PET patient measurements on the Biograph mMR hybrid system.

Conclusion
This study validates NEMA (NU 2–2007) PET image quality performance measure-

ments by applying CT-based attenuation correction for an integrated PET/MR hybrid

system. The necessity and superiority of CT-based NEMA IQ phantom AC is demon-

strated by a comparison to results using MR-based AC. Furthermore, optimized

image reconstruction parameters are provided for highest lesion SNR in the context

of NEMA IQ phantom measurements on the Biograph mMR system. The results of

this study can thus be seen as an important step towards standardization and image

quality control of PET measurements in the context of PET/MR hybrid imaging.
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