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Abstract

Background: CT-based attenuation correction (CT-AC) using contrast-enhancement
CT impacts 111In-SPECT image quality and quantification. In this study we assessed
and evaluated the effect.

Methods: A phantom (5.15 L) was filled with an aqueous solution of In-111. Three
SPECT/CT scans were performed: (A) no IV contrast, (B) with 100-mL IV contrast,
and (C) with 200-mL IV contrast added. Scan protocol included a localization CT, a
low-dose CT (LD), and a full-dose CT (FD). Phantom, LD and FD scan series were
performed at 90, 120, and 140 kVp. Phantom data were evaluated looking at mean
counts in a central volume.
Ten patients referred for 111In-octreotide scintigraphy were scanned according to
our clinical 111In-SPECT/CT protocol including a topogram, a LD (140 kVp), and a FD
(120 kVp). The FD/contrast-enhanced CT was acquired in both arterial (FDAP) and
venous phase (FDVP) following a mono-phasic IV injection of 125-mL Optiray
(4.5 mL/s). For patient data, we report image quality, Krenning scores, and mean/
max values for liver and tumor regions.

Results: Phantoms: in uncorrected emission data, mean counts (average ± SD)
decreased with increasing IV concentration: (A) 119 ± 9, (B) 113 ± 8, and (C) 110 ± 9.
For all attenuation correction (AC) scans, the mean values increased with increasing
iodine concentration.
Patients: there were no visible artifacts in single photon emission computed
tomography (SPECT) following CT-AC with contrast-enhanced CT. The average
score of image quality was 4.1 ± 0.3, 3.8 ± 0.4, and 4.2 ± 0.4 for LD, arterial phase,
and venous phase, respectively.
A total of 16 lesions were detected. The Krenning scores of 13/16 lesions were
identical across all scan series. The max pixel values for the 16 lesions showed
generally lower values for LD than for contrast-enhanced CT.

Conclusions: In 111In-SPECT/CT imaging of phantoms and patients, the use of IV
CT contrast did neither degrade the SPECT image quality nor affect the clinical
Krenning score. Reconstructed counts in healthy liver tissues were unaffected, and
there was a generally lower count value in lesions following CT-AC based on the
LD non-enhanced images. Overall, for clinical interpretation, no separate low-dose
CT is required for CT-AC in 111In-SPECT/CT.
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Background
Diagnostic imaging is essential in the workup of patients with a variety of diseases. Nu-

clear medicine imaging techniques, such as single photon emission computed tomog-

raphy (SPECT) and positron emission tomography (PET), have for decades made an

impact on the diagnostic pathways for a variety of indications in oncology, neurology,

and cardiology [1-6]. Compared to PET, SPECT has the advantage of using radioactive

labeled tracer molecules with relatively long physical half-lives that to a great extent are

similar to the biological processes under observation. In general, isotopes for SPECT

imaging are more easily attainable, and SPECT is generally more widely available than

PET. Furthermore, SPECT has the ability, based on photon energy information, to per-

form dual isotope scans in a simple way. With recent advances in calibration, data pro-

cessing, and, perhaps most importantly, the combination of SPECT and computed

tomography (CT), SPECT has now become a quantitative, nuclear medicine imaging

technique [7].

A major application of SPECT is in myocardial perfusion imaging [8,9]. This applica-

tion and the wish to expand on its use have led to the promotion of separate transmis-

sion imaging as a pre-requisite to derive SPECT attenuation correction factors [10].

The increased wish for fast, noise free, and clinically viable SPECT attenuation correc-

tion (AC) was a primary drive for the development of combined SPECT/CT technology

[11]. Therefore, the reasoning for the combination of SPECT and CT was distinctly dif-

ferent from that for the combination of PET and CT [12], which was developed to ad-

dress a clinical need of fusing PET and CT images routinely and allowing for extended

anatomical coverage adding only little additional scan time [13].

LaCroix and colleagues first presented concepts for CT-based attenuation correction

(CT-AC) of SPECT data [14] long before the first presentation of a clinical SPECT/CT

system [15]. Based on simulations with a mono-energetic X-ray beam, the authors

showed that SPECT quantification of the myocardium was accurate to within 9% of the

true activity concentration. Blankespoor and colleagues took on these studies and

adopted CT transmission imaging and CT-based corrections for attenuation and scatter

of SPECT in a prototype SPECT/CT system [16]. Further studies with their prototype

SPECT/CT system and subsequent assessments of SPECT quantification in the heart

and torso [17] have contributed to a great extent to the development of the first

SPECT/CT system presented by GE Healthcare in 2000 [18]. Today, four major com-

mercial vendors provide many different designs of SPECT/CT systems for clinical use,

all of which provide CT-AC image reconstruction routinely.

With the dissemination of SPECT/CT, the range of applications has expanded from

myocardial perfusion imaging to oncology indications, such as torso imaging in patients

with neuroendocrine tumors (NETs), differentiated thyroid carcinomas, lymphoma, and

sentinel node lymphoscintigraphy [2]. SPECT/CT imaging has also been shown to posi-

tively affect the localization of scintigraphic lesions, to aid in the differentiation of be-

nign and malignant sites, and to guide biopsies, to name a few applications [19,20].

Several of these indications require the administration of CT contrast agents for en-

hancement of the vascular system and better differentiation of parenchymal tissue up-

take. The use of CT contrast in combined imaging has been the subject of debate

among PET/CT users [21,22], the reason being that standard, segmentation, and bi-

linear scaling methods of CT-AC [23,24] fail to adequately scale contrast-enhanced
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tissues or filled organs, thus giving rise to artifacts and bias. However, most of these is-

sues can be addressed by using modified imaging protocols [25].

Nonetheless, similar concerns among SPECT/CT users have limited the wider adop-

tion of contrast-enhanced CT protocols as part of clinical SPECT/CT imaging. If CT

contrast is indicated and used then most SPECT/CT imaging protocols entail a non-

enhanced, low-dose CT for the purpose of attenuation correction and a contrast-

enhanced CT for the purpose of advanced image fusion. Prior studies on the effect of

CT contrast in SPECT/CT are sparse. Römer et al. reported [26] IV and positive oral

contrast to have only a minor influence on calculated attenuation coefficients. Another

study, using phantom data and IV contrast concentrations several times higher than

those observed in clinical practice, has demonstrated a 36% overestimation of the AC-

SPECT activity unit [27].

In this study, we assess the effect of IV contrast enhancement on 111In-SPECT image

quality and quantification following CT-based attenuation correction using phantoms

with clinically relevant iodine contrast concentration and in oncology patients.
Methods
Phantom study

A 20-cm cylinder phantom (5.15 L) was filled with water (Figure 1), and three separate

imaging conditions were prepared for using IV contrast (Optiray, 350 mg/mL iodine,

Mallinckrodt Pharmaceuticals, Hennef, Germany):

(PC0) No IV contrast added

(PC100) 100-mL IV contrast (equals 6.8 g iodine/L)

(PC200) 200-mL IV contrast (equals 13.6 g iodine/L)

For each of the three phantom conditions (PC0, PC100, PC200), 50 MBq In-111 was

added to the water solution in the cylinder (10 kBq/mL). Based on our clinical protocol,

50 MBq was chosen as a reasonable number with an injection of 200 MBq 48 h before

scan. The active phantom was centered in the field-of-view of a clinical SPECT/CT sys-

tem (Philips Precedence 16 slice CT, two-headed gamma camera, Philips Medical Sys-

tems, Eindhoven, the Netherlands) for imaging. For each of the phantom conditions,

the SPECT/CT protocol included a localization scan, spiral CT, and a single-bed

SPECT acquisition (128 projections, 20 s/position, matrix size 128 × 128, scan time

22 min) using two energy windows centered at 171 and 245 keV with a width of 20%

and a medium energy general purpose (MEGP) collimator. In each protocol, the spiral

CT was acquired as:

� a low-dose CT (LD): 38 mA, 5-mm slice thickness, pitch 0.94, rotation time 0.5 s

and

� a full-dose CT (FD): 469 mA, 2-mm slice thickness, pitch 0.94, rotation time 0.5 s

In both LD and FD scan series, the CT scans were performed at 90, 120, and 140

kVp yielding for each phantom preparation that were used a total of six different data-

sets as input to AC-SPECT image reconstruction. The μ-maps for AC were derived for



Figure 1 A 20-cm cylinder phantom (5.15 L).
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an energy corresponding to an (weighted) average of the two energy windows using

standard vendor software. In addition, the SPECT images of all three phantom condi-

tions were reconstructed without AC (noAC). In total, the three phantom sets each

comprise one noAC-SPECT and six AC-SPECT images. All SPECT data were recon-

structed iteratively using the Philips Astonish algorithm including the built-in scatter

correction but without additional filtering: 4 iter/16 sub, pixel size 4.66 mm ×

4.66 mm. Figure 2 summarizes the reconstruction pathways and reconstructed image

data.
Patient study

Ten patients (seven males, three females) referred for 111In-octreotide scintigraphy

were consecutively enrolled in the study (from August 2012). All patients had con-

firmed SPECT-positive lesions.

The mean age was 63.4 years (range 53 to 76 years) and the mean weight was 75 ±

19 kg with an average BMI of 23.7 ± 2.5. Patients were injected with 220 ± 16 MBq
111In-pentetreotide (Octreoscan™) from Mallinckrodt Pharmaceuticals, Hennef,

Germany, and scanned 48 h post-injection. All patients were positioned in the head-

first supine position with arms up. The relevant areas for the combined SPECT/CT

examination were defined based on a prior whole-body planar scintigraphy. The axial

field-of-view typically covered the abdomen or the thorax, depending on the findings

from the scintigraphy scan.



Phantom scan and reconstructions 
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Figure 2 Overview of scan flow and reconstructions. A total of seven SPECT data sets were reconstructed
for each scan series; one noAC and three AC based on LD with different kVp and three AC based on FD with
different kVp.
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All patients were scanned according to our clinical 111In-SPECT/CT protocol in-

cluding a topogram, a LD (140 kVp, 38 mA, 5-mm slice thickness, pitch 0.94, rotation

time 0.5 s), a FD (120 kVp, 469 mA, 2-mm slice thickness, pitch 0.94, rotation time

0.5 s), and a single-bed SPECT scan (using two energy windows centered at 171 and

245 keV with a width of 20% ,MEGP collimator, 128 projections, 20 s/position, matrix

size 128 × 128, scan time 22 min). The FD contrast-enhanced CT was acquired in

both the arterial and venous phase following a mono-phasic IV injection of 125 mL

Optiray (4.5 mL/s). The time delay between arterial phase and venous phase was 70 s.

CT images were reconstructed into 512 by 512 matrices.

SPECT images were reconstructed without (noAC) and with AC. Iterative SPECT

image reconstruction was performed using the implemented Astonish algorithm with

scatter correction and without additional filtering: 4 iter/16 sub, pixel size 4.66 mm ×

4.66 mm. AC-SPECT data were reconstructed with the three CT series: LD, FD in the

arterial phase (FDAP), and FD in the venous phase (FDVP).

During the initial reconstruction steps, an experienced nuclear medicine phys-

ician visually inspected the CT and noAC-SPECT images for misalignment. If a
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noticeable misalignment was detected, the CT image volume was realigned manu-

ally to match the noAC-SPECT and CT-AC was performed followed by image

recon (Table 1).
Data evaluation

Phantoms

For all scan series, we report the average volume of interest (VOI) value (reconstructed

counts) calculated from central circles with a radius of 5 cm placed on 11 central image

planes of the phantom.

Patients

An experienced nuclear medicine physician with over 10 years of clinical SPECT ex-

perience performed clinical evaluation of all AC-SPECT images. All reconstructions

were evaluated blinded and presented in random order. On this data the following were

performed:

� SPECT images were screened for image artifacts (yes/no) and assessed for overall

image quality using a scale of 5 (grade 1 = very poor, 2 = poor, 3 = acceptable,

4 = good, 5 = very good).

� SPECT-positive lesions were detected and values (reconstructed counts) for the

hottest lesion in each organ were reported.

� The lesions were scored visually using the 4-point Krenning score scale [28]; lower

than (grade 1), equal to (grade 2), or greater than (grade 3) normal liver tissue; or

higher than normal spleen or kidney uptake (grade 4).

Fourth, lesion max values were reported, and fifth, we report the average value of a

10-cm2 circular region of interest (ROI) placed on healthy liver tissue in a region with

no or little IV contrast uptake.
Table 1 Visually based misalignment (values in mm) between LD, FDAP, and FDVP and
their corresponding SPECT data

Patient # LD_MC FDAP_MC FDVP_MC

x y z Rotation x y z Rotation x y z Rotation

1 0 0 −10 0 0 0 −12 0 0 0 −28 0

2 0 0 0 0 0 0 0 0 0 0 −18 0

3 0 0 0 0 0 −15 −31 0 0 −10 −30 0

4 0 0 0 0 0 −5 −20 0 0 −5 −30 0

5 0 0 0 0 0 −10 −30 0 0 −10 −30 0

6 0 0 0 0 0 −10 −20 0 0 −10 −20 0

7 0 0 0 0 0 −10 −25 0 0 −10 −25 0

8 0 0 0 0 0 0 0 0 0 0 −15 0

9 0 0 0 0 0 −5 0 0 0 −5 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0
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Statistical analysis

A paired t-test (two-tailed) was used for comparison of reconstructed counts in the le-

sions and the liver between the LD, FDAP, and FDVP reconstructions. The significance

level was set to p < 0.05.
Results
Phantom studies

With uncorrected emission data (noAC), mean counts decreased with increasing iodine

concentration (Figure 3). For all AC scans, the mean reconstructed count value in-

creased as a function of increasing iodine concentration. The slope of this function de-

creased with increasing kVp, and the slope values were higher for LD than for FD

(Figure 4, Table 2). Furthermore, for all AC scans, the mean counts for LD were about

5% higher than for the corresponding FD.
Patient studies

There were no visible artifacts in the SPECT images following CT-AC with the LD,

FDAP, or the FDVP (Figure 5).

The average score of SPECT image quality was 4.1 ± 0.3, 3.8 ± 0.4, and 4.2 ± 0.4 for

LD, FDAP, and FDVP, respectively. The t-test showed a significant difference (p < 0.04)

between FDAP and FDVP only (Table 3). In total, 16 SPECT-positive lesions were eval-

uated with max pixel value of 293 ± 214, 312 ± 226, and 307 ± 218 for LD, FDAP, and

FDVP, respectively (Table 3).

For 13 out of 16 lesions, the Krenning score was identical in all the CT phases. In the

remaining three lesions, the Krenning score differed by no more than one (Table 3).
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Figure 3 noAC In-111 reconstructed counts for each of the three phantom conditions. noAC In-111
reconstructed counts for each of the three phantom conditions PC0, PC100, and PC200 corresponding to 0,
6.8, and 13.6 g/L iodine in phantom, respectively.
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Figure 4 SPECT mean reconstructed count value as a function of increasing iodine concentration.
All data are AC using LD at 90, 120, and 140 kVp or FD at 90, 120, and 140 kVp.
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Comparison of max pixel values for the 16 lesions showed significantly lower values

for LD than for FD; p < 0.003 and p < 0.05 for arterial and venous phase, respectively.

On average, LD values were 5.8% ± 7% and 6.1% ± 8% lower.

Across all 10 patients, there were no significant differences in the mean count value

for the liver ROI (Table 4). However, in individual patients, there were differences up to

around 8%. The highest difference between the three scans series was between the two

FD series with FDVP (venous phase) on average being 2.1% ± 3% higher than FDAP (ar-

terial phase).
Discussion
Our study demonstrates that a CT scan with an iodine-based IV contrast agent can be

used for CT-based attenuation correction of a 111In-SPECT scan in combined modality

with SPECT/CT scanning. No artifacts were seen in the SPECT images, and the clinical

interpretation using Krenning score did not change significantly. However, changes in

quantitative values in the range of 6% were observed. So for clinical interpretation with-

out high-quantitative accuracy, no separate low-dose CT is required for CT-AC in
111In-SPECT/CT.

Administration of iodine-based contrast increases the attenuation by increasing the

photoelectric absorption of photons in the energy interval of interest in CT and in

SPECT, and this effect is evident in the uncorrected SPECT data (Figure 3). However,

due to the low-mean energy of the Bremsstrahlung spectrum from the CT compared to

most radioisotopes used in SPECT, and the rapid decline of photoabsorption with en-

ergy, the attenuation enhancement is higher in the CT acquisition than in the SPECT

acquisition. When CT is used for attenuation correction, a conversion of Hounsfield

Unit (HU) into attenuation values at the proper SPECT energy is performed [14]. This

conversion assumes a certain tissue composition (dependent on the HU) and does not

account for the presence of iodine. The result will be an overestimation in the attenu-

ation values used for the correction of the emission data and, thus, results in a higher



Table 2 The slope of the mean values (reconstructed counts) as a function of increasing
iodine concentration

Tube voltage (kVp) Slope LD (mean counts (g/L) iodine) Slope FD (mean counts (g/L) iodine)

90 1.32 1.19

120 0.79 0.68

140 0.54 0.42

The slope decreased with increasing kVp, and the values were higher for LD than for FD.
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activity concentration in the reconstructed emission image. The dependency on CT en-

ergy, as seen by the decreasing slope with increasing CT energy (Table 2), is consistent

with this.

The shift in average attenuation values may propagate through CT-AC and cause

local artifacts that may be incorrectly interpreted in the clinical reading. This was dis-

cussed by Roemer et al. [26] when presenting findings where the presence of CT con-

trast had a clinically relevant effect on SPECT quantification.

Their findings are in line with this study that indicate generally lower count values

(6%) in 111In-SPECT-positive lesions following CT-AC using LD compared to contrast

enhanced CT (Table 3).

To obtain quantitative images in PET and SPECT, many corrections such as attenu-

ation, scatter, and partial volume correction need to be taken into account during

image reconstruction. The AC challenges for SPECT are larger by far compared to

PET, in essence, due to the fundamental physical differences in decay scheme for PET

and SPECT isotopes and the subsequent differences in scanner design [30]. However,

by applying attenuation, scatter, and partial volume correction, activity estimations can

be obtained with error levels of 3% to 5% for Tc-99m, In-111, I-123, and I-131, as

shown by Shcherbinin et al. [29] in phantom studies. In clinical settings, SPECT with

Tc-99m can be quantitative with errors less than 5% to 10% [30-32]. With errors on the

order of just 10%, quantitative SPECT can be promoted further in a clinical setting [7].

On the scanner side, vendors are also starting to move towards quantitative SPECT/CT

[33], but so far, only quantitative SPECT for Tc-99m has been implemented.
LD FDVPFDAP

CT

SPECT

noAC

Figure 5 CT images. Top row: CT images for LD, FDAP, and FDVP. Middle row: AC-SPECT images for LD,
FDAP, and FDVP. Lower row: first image noAC-SPECT images; second images percent difference between
LD- and FDAP-SPECT; third image percent difference between LD-FDVP-SPECT.



Table 3 Image score quality for the 10 patients showed significant difference (p < 0.04)
between FDAP and FDVP only

Patient # Image score Lesion value (max pixel) Krenning score Lesion location

LD FDAP FDVP LD FDAP FDVP LD, FDAP, FDVP

1 4 4 5 498 516 446 4, 4, 4 Liver

135 145 146 3, 3, 3 Lymph Node

2 4 3 4 678 671 661 4, 4, 4 Liver

3 4 3 4 49 46 55 3, 3, 3 Liver

158 171 174 3, 3, 3 Lymph Node

4 4 4 4 753 813 790 4, 4, 4 Lymph Node

5 4 4 4 270 320 309 3, 3, 3 Pancreas

6 5 4 4 142 162 168 3, 3, 3 Lymph Node

7 4 4 5 65 67 68 3, 3, 3 Liver

543 593 593 4, 4, 4 Lymph Node

8 4 4 4 249 295 290 3, 4, 4 Liver

186 186 192 3, 3, 4 Bone

9 4 4 4 131 133 130 3, 3, 3 Liver

358 385 385 3, 4, 4 Lymph Node

10 4 4 4 382 410 423 4, 4, 4 Liver

89 83 81 3, 3, 3 Lymph Node

Average 4.1 ± 0.3 3.8 ± 0.4 4.2 ± 0.4 293 ± 214 312 ± 226 307 ± 218 4.1, 3.8, 4.2 N/A

Max pixel values for the 16 lesions shows significantly lower values for LD than for FD; p < 0.003 and p < 0.05 for arterial
and venous phase, respectively. On the average, LD values are 6% ± 7% and 6% ± 8% lower. For 13 out of 16 lesions, the
Krenning score is identical in all the CT phases. In the remaining three lesions (highlighted), the Krenning score differed
by no more than one.
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As mentioned above, CT attenuation correction based on contrast-enhanced CT af-

fects the SPECT quantification; nevertheless, the effect is small and similar to the one

seen in PET. Therefore, it is likely that the continuing development/use of quantitative

SPECT in the clinic can include IV-contrast-enhanced CT and still maintain the overall

goal to provide reliable and accurate images.

This is relevant because, as shown by Wieder et al. [34], SPECT/CT is not used to its

full potential, mainly because SPECT/CT is operated in nuclear medicine departments

only, but also because contrast is rarely ever used; this study shows that the additional

LD can be spared and IV contrast can be used. This will help reduce patient exposure

and scan time, and using IV contrast in combined modality with SPECT/CT will be

more cost effective since the patient will be spared a standalone CT scan. Furthermore,

as it is the case for PET/CT, a SPECT/CT scan with a diagnostic quality CT including

IV (and oral) contrast agents is advantageous compared with a CT scan performed with

IV contrast on one occasion plus a SPECT/CT with LD for image fusion and attenu-

ation correction performed on another occasion. To our knowledge, the latest guide-

lines from the European Association of Nuclear Medicine (EANM) or the Society of

Nuclear Medicine and Molecular Imaging (SNMMI) dates back to 2006 [35] and

should be adhered to regarding the potential increasing use of CT in combination with

SPECT.

The number of patients included in this study was small, and the anatomical distribu-

tion of lesions shows little variation (14 out of 16 lesions were located in the liver or

lymph nodes, Table 3). A bias due to patient selection is a possibility, but there is no



Table 4 Reconstructed counts from liver ROI

Reconstructed counts from liver ROI

Patient # LD FDAP FDVP

1 78.4 80.3 80.3

2 84.2 84.7 90.2

3 22.4 21.0 22.6

4 56.1 54.0 54.9

5 49.3 48.8 49.8

6 45.5 44.2 44.8

7 26.3 25.1 25.3

8 22.7 22.3 22.9

9 44.6 47.2 47.1

10 33.6 33.0 32.3

t-test (p-values) 0.58 0.34 0.11

Mean reconstructed count values from a 10 cm2 ROI (circle) placed on healthy liver tissue in a region with little IV
contrast uptake.
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obvious reason to believe that a different lesion distribution should be more sensitive

to the presence of IV contrast. However, one could consider demonstrating the effect

of IV contrast in a larger patient group with a different pathology.

Differences in breathing status in a combined modality scanner are among the most

prominent problems for the use of CT data in attenuation correction. The misalign-

ment adds bias to SPECT images [36], and therefore, at clinical evaluation of

attenuation-corrected scans, special attention should be given to possible misalign-

ments between SPECT and CT. If there is a misalignment, ideally, a manual realign-

ment of CT and SPECT images should be performed followed by a new reconstruction.

In the present study, misalignments between SPECT and CT were seen in 9 out of 10

patients.
Conclusions
In 111In-SPECT/CT imaging of phantoms and patients, the use of IV CT contrast did

neither degrade the SPECT image quality nor affect the clinical Krenning score. Recon-

structed counts in healthy liver tissues were unaffected, and there was a generally lower

count value in lesions following CT-AC based on the LD non-enhanced images. Over-

all, for clinical interpretation, no separate low-dose CT is required for CT-AC in
111In-SPECT/CT.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed substantially in the design of the study and in the analysis and interpretation of data. TLK, TB,
LH and SH drafted, and revised the manuscript. RdN, FLA and TLK carried out phantom scans and did the image
analysis. JM performed the clinical reading of patient scan. All authors read and approved the final manuscript.

Author details
1Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet,
Blegdamsvej 9, DK-2100 Copenhagen, Denmark. 2Center for Medical Physics and Biomedical Engineering, General
Hospital Vienna, Medical University of Vienna, Waehringer Guertel 18-20/4L, 1090 Vienna, Austria.

Received: 21 October 2014 Accepted: 14 January 2015



Klausen et al. EJNMMI Physics  (2015) 2:3 Page 12 of 13
References

1. Bhargava P, He G, Samarghandi A, Delpassand ES. Pictorial review of SPECT/CT imaging applications in clinical

nuclear medicine. Am J Nucl Med Mol Imaging. 2012;2(2):221–31.
2. Chowdhury FU, Scarsbrook AF. The role of hybrid SPECT-CT in oncology: current and emerging clinical applications.

Clin Radiol. 2008;63(3):241–51.
3. Holman BL, Tumeh SS. Single-photon emission computed tomography (SPECT). Applications and potential. JAMA.

1990;263(4):561–4.
4. Masdeu JC, Arbizu J. Brain single photon emission computed tomography: technological aspects and clinical

applications. Semin Neurol. 2008;28(4):423–34.
5. Mittra E, Quon A. Positron emission tomography/computed tomography: the current technology and

applications. Radiol Clin North Am. 2009;47(1):147–60.
6. Small GR, Wells RG, Schindler T, Chow BJ, Ruddy TD. Advances in cardiac SPECT and PET imaging: overcoming the

challenges to reduce radiation exposure and improve accuracy. Can J Cardiol. 2013;29(3):275–84.
7. Bailey DL, Willowson KP. An evidence-based review of quantitative SPECT imaging and potential clinical applications.

J Nucl Med. 2013;54(1):83–9.
8. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K, et al. ESC guidelines for the diagnosis

and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute
and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart
Failure Association (HFA) of the ESC. Eur J Heart Fail. 2012;14(8):803–69.

9. Hendel RC, Berman DS, Di Carli MF, Heidenreich PA, Henkin RE, Pellikka PA, et al. ACCF/ASNC/ACR/AHA/ASE/
SCCT/SCMR/SNM 2009 Appropriate use criteria for cardiac radionuclide imaging: a Report of the American
College of Cardiology Foundation Appropriate Use Criteria Task Force, the American Society of Nuclear
Cardiology, the American College of Radiology, the American Heart Association, the American Society of
Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic
Resonance, and the Society of Nuclear Medicine. J Am Coll Cardiol. 2009;53(23):2201–29.

10. Bailey DL. Transmission scanning in emission tomography. Eur J Nucl Med. 1998;25(7):774–87.
11. Lang TF, Hasegawa BH, Liew SC, Brown JK, Blankespoor SC, Reilly SM, et al. Description of a prototype emission-

transmission computed tomography imaging system. J Nucl Med. 1992;33(10):1881–7.
12. Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, et al. A combined PET/CT scanner for clinical

oncology. J Nucl Med. 2000;41(8):1369–79.
13. Beyer T, Freudenberg LS, Townsend DW, Czernin J. The future of hybrid imaging-part 1: hybrid imaging technologies

and SPECT/CT. Insights Imaging. 2011;2(2):161–9.
14. LaCroix KJ, Tsui BMW, Hasegawa BH, Brown JK. Investigation of the use of X-ray CT images for attenuation

compensation in SPECT. IEEE Trans Nucl Sci. 1994;41:2793–9.
15. Patton JA, Delbeke D, Sandler MP. Image fusion using an integrated, dual-head coincidence camera with X-ray

tube-based attenuation maps. J Nucl Med. 2000;41(8):1364–8.
16. Blankespoor SC, Wu X, Kalki K, Brown JK, Tang HR, Cann CE, et al. Attenuation correction of SPECT using X-ray CT

on an emission-transmission CT system: myocardial perfusion assessment. Ieee Transactions on Nuclear Science.
1996;43(4):2263–74.

17. Kalki K, Blankespoor SC, Brown JK, Hasegawa BH, Dae MW, Chin M, et al. Myocardial perfusion imaging with a
combined x-ray CT and SPECT system. J Nucl Med. 1997;38(10):1535–40.

18. Bocher M, Balan A, Krausz Y, Shrem Y, Lonn A, Wilk M, et al. Gamma camera-mounted anatomical X-ray tomography:
technology, system characteristics and first images. Eur J Nucl Med. 2000;27(6):619–27.

19. Even-Sapir E, Keidar Z, Bar-Shalom R. Hybrid imaging (SPECT/CT and PET/CT)–improving the diagnostic accuracy
of functional/metabolic and anatomic imaging. Semin Nucl Med. 2009;39(4):264–75.

20. Abikhzer G, Keidar Z. SPECT/CT and tumour imaging. Eur J Nucl Med Mol Imaging. 2014;41 Suppl 1:S67–80.
21. Mawlawi O, Erasmus JJ, Munden RF, Pan T, Knight AE, Macapinlac HA, et al. Quantifying the effect of IV contrast

media on integrated PET/CT: clinical evaluation. AJR Am J Roentgenol. 2006;186(2):308–19.
22. Berthelsen AK, Holm S, Loft A, Klausen TL, Andersen F, Hojgaard L. PET/CT with intravenous contrast can be used

for PET attenuation correction in cancer patients. Eur J Nucl Med Mol Imaging. 2005;32(10):1167–75.
23. Kinahan PE, Townsend DW, Beyer T, Sashin D. Attenuation correction for a combined 3D PET/CT scanner. Med

Phys. 1998;25(10):2046–53.
24. Burger C, Goerres G, Schoenes S, Buck A, Lonn AH, Von Schulthess GK. PET attenuation coefficients from CT

images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Eur J Nucl
Med Mol Imaging. 2002;29(7):922–7.

25. Brechtel K, Klein M, Vogel M, Mueller M, Aschoff P, Beyer T, et al. Optimized contrast-enhanced CT protocols for
diagnostic whole-body 18 F-FDG PET/CT: technical aspects of single-phase versus multiphase CT imaging. J Nucl
Med. 2006;47(3):470–6.

26. Romer W, Fiedler E, Pavel M, Pfahlberg A, Hothorn T, Herzog H, et al. Attenuation correction of SPECT images based
on separately performed CT: effect on the measurement of regional uptake values. Nuklearmedizin. 2005;44(1):20–8.

27. Bonta DV, Wahl RL. Overcorrection of iodinated contrast attenuation in SPECT-CT: phantom studies. Med Phys.
2010;37(9):4897–901.

28. Kwekkeboom DJ, Teunissen JJ, Bakker WH, Kooij PP, de Herder WW, Feelders RA, et al. Radiolabeled somatostatin
analog [177Lu-DOTA0, Tyr3]octreotate in patients with endocrine gastroenteropancreatic tumors. J Clin Oncol.
2005;23(12):2754–62.

29. Shcherbinin S, Celler A, Belhocine T, Vanderwerf R, Driedger A. Accuracy of quantitative reconstructions in SPECT/
CT imaging. Phys Med Biol. 2008;53(17):4595–604.

30. Ritt P, Vija H, Hornegger J, Kuwert T. Absolute quantification in SPECT. Eur J Nucl Med Mol Imaging. 2011;38 Suppl
1:S69–77.

31. Bailey DL, Willowson KP. Quantitative SPECT/CT: SPECT joins PET as a quantitative imaging modality. Eur J Nucl
Med Mol Imaging. 2014;41 Suppl 1:S17–25.



Klausen et al. EJNMMI Physics  (2015) 2:3 Page 13 of 13
32. Willowson K, Bailey DL, Baldock C. Quantitative SPECT reconstruction using CT-derived corrections. Phys Med Biol.
2008;53(12):3099–112.

33. Hans Vija. White Paper Siemens: introduction to xSPECT* Technology: evolving multi-modal SPECT to become
context-based and quantitative. Siemens Medical Solutions USA, Inc; 2013 Aug 1.

34. Wieder H, Freudenberg LS, Czernin J, Navar BN, Israel O, Beyer T. Variations of clinical SPECT/CT operations: an
international survey. Nuklearmedizin. 2012;51(4):154–60.

35. Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA, et al. Procedure guideline for SPECT/CT
imaging 1.0. J Nucl Med. 2006;47(7):1227–34.

36. Schulz V, Nickel I, Nomayr A, Vija AH, Hocke C, Hornegger J, et al. Effect of CT-based attenuation correction on
uptake ratios in skeletal SPECT. Nuklearmedizin. 2007;46(1):36–42.
Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Phantom study
	Patient study
	Data evaluation
	Phantoms
	Patients

	Statistical analysis

	Results
	Phantom studies
	Patient studies

	Discussion
	Conclusions
	Competing interests
	Authors’ contributions
	Author details
	References

