

MEETING ABSTRACT

Open Access

Towards authentically labelled bi-modal PET (SPECT)/MR-probes

Heinrich H Coenen^{1*}, Martin Buchholz¹, Ingo Spahn¹, Christian Vanasschen¹, Johannes Ermert¹, Bernd Neumaier²

From PSMR14: 3rd Conference in PET/MR and SPECT/MR Kos Island, Greece. 19-21 May 2014

¹Institute of Neuroscience and Medicine, INM-5: Nuclear Chemistry, Research Centre Jülich, Germany Application of radiolabelled, existing MRI probes using a suitable reporter group for multimodal PET(SPECT)/MRI imaging is limited due to the required alteration of the molecular structure and thus changing their *in vivo* properties. Radiolabelling of existing MRI contrast agents with PET(SPECT) isotopes of paramagnetic elements offers a simple way to address this issue. Therefore, new routes to the production of SPECT/PET-radionuclides ^{147,149}Gd and ^{52g}Mn were examined which can be applied for n.c.a. labelling of Gd(III) and Mn(II) MRI contrast agents. Additionally, Mn(II)-based complexes stable for *in vivo* application are to be synthesized.

Reaction cross sections and experimental thick target yields were measured by irradiation of $^{\rm nat}$ Cr or Eu₂O₃. Integral yields were calculated from measured excitation functions. A radiochemical separation of Mn from Cr was developed based on cation-exchange chromatography [1].

Cross section data of the ^{nat}Eu(d,x) and ^{nat}Eu(p,x) reactions were measured up to 70.9 MeV and 44.8 MeV, respectively. Integral yields of up to 177.3 MBq/ μ Ah and 81.6 MBq/ μ Ah for ^{nat}Eu(d,x)^{147,149}Gd reactions and up to 43.3 MBq/ μ Ah and 61.8 MBq/ μ Ah for ^{nat}Eu(p,x)^{147,149}Gd reactions, respectively, were calculated. Those were several times higher than for α - or ³He induced reactions on highly enriched ¹⁴⁴Sm [2,3].

With n.c.a. 52 Mn, also cross sections of co-produced 48 V, 48,49,51 Cr, 52g Mn were determined in the energy range of 7.6 to 45 MeV. The production rates of 52g,m Mn were measured from 8.2 to 16.9 MeV with up to 13.1 MBq/ μ Ah which was separated from nat Cr by column chromatography.

Production data of the SPECT nuclides ^{147,149}Gd and the PET nuclide ^{52g}Mn were established. Different to Mn a practical isolation procedure for Gd is still required. Current work focuses on the radiolabelling of stable complexes of manganese (II) with the goal to develop PET/MRI tracers addressing molecular targets.

Authors' details

¹Institute of Neuroscience and Medicine, INM-5: Nuclear Chemistry, Research Centre Jülich, Germany. ²Institute for Radiochemistry and Experimental Molecular Imaging, Medical Clinics, University of Cologne, Germany.

Published: 29 July 2014

References

- 1. Buchholz M, Spahn I, Scholten B, Coenen HH: Cross-section measurements for the formation of manganese-52 and its isolation with a non-hazardous eluent. *Radiochimica Acta* 2013, **101**:491-9.
- Denzler F-O, Rösch F, Qaim SM: Excitation functions of a- and ³He-particle induced nuclear reactions on highly enriched ¹⁴⁷Sm and ¹⁴⁴Sm: Comparative evaluation of production routes for ¹⁴⁷Gd. Radiochimica Acta 1995, 69:209-213.
- Denzler F-O, Lebedev NA, Novgorodov AF, Rösch F, Qaim SM: Production and radiochemical separation of ¹⁴⁷Gd. Appl. Radiat. Isot. 1997, 48:319-26.

doi:10.1186/2197-7364-1-S1-A79

Cite this article as: Coenen et al.: Towards authentically labelled bi-modal PET(SPECT)/MR-probes. EJNMMI Physics 2014 1(Suppl 1):A79.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ▶ Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com