

MEETING ABSTRACT

Open Access

4-D PET joint image reconstruction/non-rigid motion estimation with limited MRI prior information

Alexandre Bousse^{1*}, Jieqing Jiao², Kjell Erlandsson¹, Luis Pizarro², Kris Thielemans¹, Dave Atkinson², Sébastien Ourselin², Simon Arridge², Brian Hutton^{1,3}

From PSMR14: 3rd Conference in PET/MR and SPECT/MR

Kos Island, Greece. 19-21 May 2014

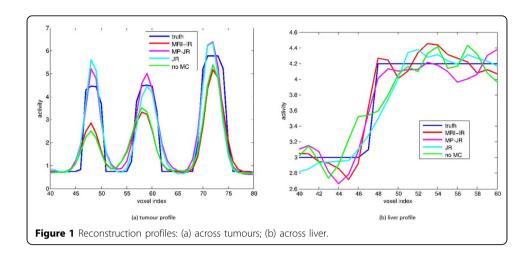
¹Institute of Nuclear Medicine–UCL, University College London, London NW1 2BU, UK Motion compensated gated PET image reconstruction methods include joint-reconstruction (JR) and indirect reconstruction (IR) with pre-estimated motion from MRI (MRI-IR). JR suffers from poor PET data quality whereas MRI-IR requires high-quality MRI volumes at each gate. We propose a penalised maximum-likelihood approach combining JR and MRI-IR. Our method is referred to as *minimal MRI prior* JR (MP-JR).

The M gates data are stored in $\mathbf{g} = [\mathbf{g}_1; ...; \mathbf{g}_M]$ where \mathbf{g}_m is the measurement vector at gate m. Each \mathbf{g}_m is a Poisson distributed vector of parameter $\overline{\mathbf{g}}(\mathbf{f},\alpha_m) = \mathrm{P}W(\alpha_m)\mathbf{f} + \mathbf{r}_m$ where \mathbf{P} is the projector, $W(\alpha_m)$ is the m-th motion of parameter α_m , \mathbf{r}_m is the m-th average random/scatter vector and \mathbf{f} is the activity at m = 1. JR is achieved with (1).

minimise
$$L(\mathbf{f}, \alpha) = -\sum_{m=1}^{M} \sum_{i=1}^{I} g_{i,m} \log \overline{g}_i(\mathbf{f}, \alpha_m) + \overline{g}_i(\mathbf{f}, \alpha_m)$$
 w.r.t. \mathbf{f}, α (1)

MRI-IR is achieved by solving (2)

minimise
$$L(f, \alpha^{mri})$$
 w.r.t. f (2)


MP-JR is achieved with (3).

minimise
$$L(\mathbf{f}, \alpha) + \beta \sum_{\ell \in S} \|\alpha_{\ell} - \alpha_{\ell}^{mri}\|_{2}^{2} + \gamma \sum_{m=1}^{M-1} \|\alpha_{m+1} - \alpha_{m}\|_{2}^{2}$$
 (3)

The first term accounts for PET data, whereas the second term accounts for MRI motion information from subset *S*. The last term controls temporal smoothness.

We tested each method on 9 PET FDG volumes generated from a real dynamic MRI sequence. Tumours were added to the activity distribution (invisible in the MRI). The gates subset *S* for MP-JR contains the reference gate, end-inspiration and end-expiration. Reconstruction profiles 1 show that MRI-IR improves edges visible in the MRI but degrades the tumours. On the contrary, JR performs well on tumours, but the

edges are poorly reconstructed. MP-JR appears to perform well on both organ edges and tumours.

MP-JR seems to perform well where both JR and MRI-IR under-perform. This is due to the fact that MP-JR relies on both MRI and PET data. In addition, results tend to show that with temporal smoothing on B-spline parameters, a subset of MRI volumes provides sufficient information.

Acknowledgements

This work was supported by UK EPSRC (EP/K005278/1). UCL/UCLH research is supported by the NIHR BRCs funding scheme.

Authors' details

¹Institute of Nuclear Medicine–UCL, University College London, London NW1 2BU, UK. ²Centre for Medical Image Computing, University College London, London WC1E 6BT, UK. ³Centre for Medical Radiation Physics at the University of Wollongong, NSW, Australia.

Published: 29 July 2014

doi:10.1186/2197-7364-1-S1-A27

Cite this article as: Bousse *et al.*: 4-D PET joint image reconstruction/non-rigid motion estimation with limited MRI prior information. *EJNMMI Physics* 2014 1(Suppl 1):A27.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ▶ Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com