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Abstract

Positron emission tomography (PET) is increasingly used for the detection,
characterization, and follow-up of tumors located in the thorax. However, patient
respiratory motion presents a unique limitation that hinders the application of
high-resolution PET technology for this type of imaging. Efforts to transcend this
limitation have been underway for more than a decade, yet PET remains for practical
considerations a modality vulnerable to motion-induced image degradation.
Respiratory motion control is not employed in routine clinical operations. In this
article, we take an opportunity to highlight some of the recent advancements in
data-driven motion control strategies and how they may form an underpinning for
what we are presenting as a fully automated data-driven motion control framework.
This framework represents an alternative direction for future endeavors in motion
control and can conceptually connect individual focused studies with a strategy for
addressing big picture challenges and goals.
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Background
Communication

The issue of patient respiratory motion in nuclear medicine imaging has been recog-

nized as a significant problem [1,2]. Most nuclear medicine imaging procedure acquisi-

tion times span over minutes. When imaging is acquired at regions near the thorax,

the images will likely suffer from respiratory motion artifacts, resulting in lower reso-

lution, detectability, and localization capacity, as well as potential attenuation correc-

tion artifacts [3-5]. Studies have shown that patients’ diaphragms can move as much as

1 to 6 cm during scan acquisition [6,7]. This issue has been acknowledged as a major

obstacle in the application and advancement of high-resolution imaging technology

and is the current resolution-limiting factor in nuclear medicine thorax imaging [8,9].

The issue of motion must be resolved to fully utilize presently available high-resolution

technologies as well as future innovations. Ideally, the solution should be simple to

apply and robust [2,8].
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Case presentation
Over the last decade, a large body of work has been created developing equipment and

strategies for respiratory motion control, primarily using gating [2,10-12] or breath-hold

approaches [13,14]. Integrated respiratory gating equipment and software are widely avail-

able today; research and clinical studies have shown the potential benefit of implementing

motion control strategies; yet, despite positive research results, respiratory motion control

is still rarely used in routine clinical imaging.

For the adoption and acceptance of motion control, strategies would, for practical

considerations, require a favorable cost-to-benefit ratio to be established. Unfortunately,

this goal is proving elusive. Respiratory motion control has, by nature, many case-

specific factors and uncertainties involved in the gating process as well as the proceed-

ing utilization of gated images, and this obfuscates efforts to characterize both the cost

and benefit sides of the cost-benefit ratio. At present, the field lacks a unified vision for

addressing this. It is with these considerations in mind that we present the idea that

data-driven motion control strategies may have the requisite qualities to surmount this

hurdle and drive this area of technology forward.

In the last decade, the main focus in this field has been set on establishing and utilizing

hardware-based gating strategies. However, in parallel, some less known data-based

methods have been developed and refined. These methods utilize untapped information

contained in raw acquisition data for image enhancement. Unlike hardware, they can be

run without any impact on image acquisition protocols. These strategies have evolved

enough with respect to speed and accuracy that data-driven gating appears to have the

capacity to perform comparably to hardware [15-18]. An example static positron emission

tomography (PET) scan retrospectively gated using data-driven gating methods is shown

in Figure 1, illustrating the qualitative and quantitative information this technology can

provide with respect to characterizing metabolically active lesions.

Beyond the ability to replace hardware, data-driven algorithms can provide a foundation

for an entirely new paradigm of motion control strategies, a paradigm in which we focus

on minimal impact and maximal benefit at both ends of the best case scenario (images

exhibit obvious benefit) and worst case scenario (effort provides no benefit) spectrum.

This is achieved through the integration of both data-driven information capture and

information utilization strategies into black box workflows. By expanding the application

of motion control beyond highly specific, and potentially self-selective, research cohorts
Figure 1 Example FDG PET images reconstructed without (left) and with (right) data-driven
respiratory gating. Top row images are reconstructed without attenuation correction (AC); bottom row
images were corrected for attenuation.
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to general, non-specific imaging populations, we could address and ease the concern of

whether gating will cause the potential degradation of images and subsequently patient

care. To put it simply, the choice of whether to employ motion control could be made

easy if the effort and risk of introducing it to clinical operations came close to nil and the

potential benefit realization guaranteed. Patients move with different sound ambitious, it

is a reasonable trajectory from the sub-field’s current published achievements.

The characterization of a patient’s breathing patterns is presently the only step in the

motion control workflow which requires interruption of the traditional clinical workflow,

when using vendor-supported hardware. Compared side by side, the implementation of

data- and hardware-driven gating has some notable differences; this is illustrated in

Table 1. A summary of listed data-driven gating achievements is shown in Table 2 and

provides a snapshot of the field’s establishment and progression towards greater speed,

accuracy, and practicality.

We can note that most data-driven gating research to date has focused on respiratory

and not on cardiac motion. One reason for this is that electrocardiography (ECG)

signals, used for gating, work well. ECG gating is an established technology, relatively

inexpensive, and reliable. Similar to respiratory motion correction, data driven cardiac

gating may offer practical advantages and may be further developed in the future.

Beyond gating, there persists the question on how best to utilize gated data. Respira-

tory gating provides an uncertain value, particularly in general, non-specific popula-

tions. When applying gating, there is a fundamental tradeoff between the potential

improved resolution and increased noise resulting from sub-sampled statistics, which

affects detectability and contrast-to-noise. It is very difficult to predict who benefits, in

what way, and who does not. Patients move in different patterns and to different

extents, and available count statistics vary from patient to patient and scanner to

scanner.
Table 1 Considerations for implementing different gating strategies

Hardware-driven
strategies

Data-driven
gating

Requires changes to clinical image acquisition procedures x

Requires additional hardware x

Requires additional software x x

Requires additional setup time x

Prone to setup error x

Information irrecoverable if acquisition error x

Decreases clinical throughput x

Requires additional training of technologists x

Increases radiation exposure to technologists x

May cause patient discomfort x

Require further establishment before routine clinical use x x

Reproducible ✓

Operator independent ✓

Can be acquired and reacquired from an existing data set (if needed) ✓

Non-specific to scan/machine/institution ✓

Driven with internal motion ✓
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Table 2 Summary of publications/accomplishments in fully automated-data driven gating

Year Author Journal/conference Title Summary Attenuation
correction

Computer
to hardware

Number of
patient scans

Studied
radiotracers

2001 Klein et al. [19] IEEE workshop Fine-scale motion detection using
intrinsic list mode PET information

Introduction of axial DD center-of-mass
strategy for respiratory motion
characterization in cardiac
imaging

Yes Yes 12 FDG

2003 Schleyer et. al. [20] US patent Data driven motion correction for
nuclear imaging

Introduction of DD masking strategy
for respiratory gating in NM imaging

No No - -

2007 Kesner et. al. [21] SNM annual
conference

Respiratory gated PET based on
time activity curve analysis

Introduction of DD sinogram voxel
fluctuation method

No No Sim FDG

2008 He et. al. [22] IEEE TNS A novel method for respiratory
motion gated with geometric
sensitivity of the scanner in
3D PET

Introduction of DD geometric
sensitivity method

Yes No 1 + sim FDG

2009 Schleyer et. al. [23] PMB Retrospective data-driven
respiratory gating for PET/CT

Introduction of “spectral analysis”
approach to optimal signal
acquisition

Yes Yes 4 FDG

2009 Kesner et. al. [24] IEEE TNS Respiratory gated PET derived
in a fully automated manner
from raw PET data

Introduction of “image voxel
fluctuation” approach to optimal
signal acquisition

No Yes 24 FDG

2009 Büther et al. [25] JNM List mode-driven cardiac
and respiratory gating in PET

Comparison of multiple methods
for hardware- and data-driven
gating, also cardiac gating

No Yes 29 FDG

2010 Büther et. al. [15] EJNMMI Detection of respiratory tumor
motion using intrinsic list
mode-driven gating in positron
emission tomography

Extended GSG method, compared
multiple methods for gating

Yes Yes 34 FDG

2010 Kesner et. al. [26] Medical Physics A new fast and fully automated
software based algorithm for
extracting respiratory signal
from raw PET data and its
comparison to other methods

Introduced ultra-fast processing,
compared multiple methods for
gating

No Yes 22 FDG
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Table 2 Summary of publications/accomplishments in fully automated-data driven gating (Continued)

2011 Schleyer et. al. [16] PMB Extension of a data-driven
gating technique to 3D,
whole body PET studies

Extended spectral analysis DD gating
method to 3D WB PET

Yes Yes 11 FDG

2011 Thielemans et. al. [27] IEEE NSS-MIC Device-less gating for PET/CT
using PCA

Use of PCA to extract respiratory
signal from raw PET and CT

No Yes 6 FDG, FLT

2013 Büther et. al. [28] EJNMMI External radioactive markers
for PET data-driven respiratory
gating in positron emission
tomography

Compared multiple methods and
reexamined data driven gating
utilizing external markers

Yes Yes 30 FDG

2013 Kesner et. al. [18] EJNMMI research Gating, enhanced gating, and
beyond: information utilization
strategies for motion management,
applied to preclinical PET

Extended fast DD motion control
methods to preclinical PET, multiple
radiotracers, large subject population

No Yes 84 (rats) FDG, DMDPA, NH3,
choline, NaF,
FEDPMA, ML10

2013 Schleyer et. al. [29] IEEE NSS-MIC 2013 Extracting a respiratory signal from
raw dynamic PET data that contain
tracer kinetics

Extended data-driven gating to
dynamic PET/tracer kinetics

No Yes 53 NH3

Table does not include contributions from semi-automated algorithm innovators. DD = data driven.
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Different strategies for signal optimization and utilization have been in development

in recent years, to limit image degradation caused by the gating processes. Automated

data-driven methods can be used to combine separated gates [30], reconstruct data in

four dimensions [31], with motion-driven super resolution techniques [9], or strategic-

ally filtered so as to only allow statistically supported frequencies to modify baseline

ungated images, e.g., automated, on the fly quality assurance [18].

Data-driven motion characterization (gating) and signal utilization strategies can readily

be combined into application workflows. The concept of building entire image processing

workflows with exclusively data-driven components can provide elegant and complimentary

solutions for the motion control process and is the basis for defining the data driven motion

control framework. This framework could support low-impact solutions for motion

control/additional information extraction and is exemplified in Figure 2. For example, the

combination of data-driven gating and data-driven quality assurance strategies provides an

approach to implement robust motion control through a process of extracting the motion

information from raw PET data and using it only if, when, and where it adds value. This

process has been shown to work smoothly, and fully automatically, in a population of trad-

itional (non-gated) small-animal PET scans [18]. Presented here are examples, in Figure 3

and Additional files 1 and 2, showing that these workflows could readily be extended to

thorax and whole body human imaging. Effectively, the scans or areas of scans that benefit

from gating are gated. The scans that do not benefit from gating, because they contain no
Figure 2 Flowchart elucidating principle of a fully automated data-driven motion control
framework. Extra information can be provided to the reading physician through additional ‘black box’
processing, integrated with image reconstruction.
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Figure 3 Example static FDG PET acquisitions processed with data driven gating and signal optimization.
(A)Whole body FDG PET scan. (B) FDG PET scan attenuation corrected with (PET-) driven gated CT. Top row:
vendor reconstruction of non-gated acquisition. Middle row: gated image derived from data-driven gating applied
to non-gated acquisition. Bottom row: optimized gated image created through signal optimization procedure
applied to the gated images derived from data-driven gating. See Additional files 1 and 2 for cine loop illustrating
the motion information captured in the gated and optimized gated images.
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motion, erratic motion, or low count statistics, can be processed and automatically reverted

back to their ungated (i.e., optimal) embodiment. Either way, enhanced images are created

with no extra effort put in by patients and technologists and are available for consideration

to the reading physicians for use at their discretion.

The future potential of data-driven motion control is promising; we have not seen

limits on the information that can be extracted from data nor in the potential innova-

tions that may be made within the automated software framework. We can envision

the development of advanced information capture techniques coupled with iterative

optimization procedures built to ensure maximum motion control benefit. Processing

strategies can be built to support optimal gating/image reconstruction parameter determi-

nations (for example number of gates), motion mapping, image morphing, computer-aided

diagnosis (CAD), and continuous-over-time voxel value estimations (Additional files 1 and

2 and [18]). In another exciting direction, gated PET can be used to map static CT scans to

PET gates, which in turn can be used to attenuation correct the gated PET, thereby facilitat-

ing gated PET and CT without deviating from standard PET-CT protocol (Additional file 2

and Figure 3B). These ideas can also be built to capitalize on the additional information

http://www.ejnmmiphys.com/content/1/1/8
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available with new technologies, including time-of-flight PET and PET/magnetic resonance

(MR). The resulting implications of ubiquitous data-driven motion control could be

improved SUV measurements, localization, lesion detection and delineation, CAD applica-

tions, motion characterization, among other uses, – all while imposing no changes to

routine imaging procedures.

This article is focused on the potential of combining data-driven technologies. However,

it is worth noting also that development within the framework of data-driven motion

control can readily extend and be integrated with hardware-based systems. For example,

motion mapping, signal optimization, or PET-driven 4D CT modules can be used with

hardware-gated scans as easily as they are used with data-driven scans. Furthermore, the

developed ability to extract information from raw data may provide hybrid strategies in

which data-driven and hardware-driven strategies support and/or back each other up.

The recent emergence of PET/MR technology is also relevant to the discussion of motion

control and its future. MR units are capable of providing many kinds of information. Their

integration with PET introduces new capacity for potentially robust motion correction.

Advancements in this area of technology are already taking place [32,33]. However, it

remains questionable how useful this technology will be for the majority of users in our

field, as there are significant costs associated with purchasing, maintaining, and researching

PET/MR. At the time of submission, vendor-supplied quotes indicated the price of a

PET/MR system to be three times the cost of a TOF PET/CT system.

Data-driven gating and motion control stands in stark contrast to PET/MR with respect

to its accessibility. In fact, this area uniquely presents an opportunity for advancing the

state-of-the-art technology while decreasing the equipment requirements (and presumably

monetary costs). In considering the cost of development, the fully automated data-driven

motion control framework is a technology that readily can be developed and implemented

within current infrastructures. Research data will come from existing scans and scanners.

The entire data-driven sub-field is founded on the fact that there is real information embed-

ded in PET data, information about motion, which is not currently being utilized. The

accomplishments in Table 2 attest to this verity.

A recent review article written by Dao well summarizes in its title an opinion that is

largely held in our field: ‘Respiratory motion handling is mandatory to accomplish the

high-resolution PET destiny’ [8]. Similar sentiments, speaking to the need for practical

motion control solutions, have been well articulated in a recent review article by our

colleagues in radiation oncology: ‘RG 4D-PET/CT seems to be a valuable tool in improv-

ing diagnostic performance of PET/CT and better defining the target volume for radiation

therapy. However, its real benefit in routine clinical setting and its possible impact on

patient management have not been established yet. In order to bring this technique into

the normal workflow of a diagnostic imaging department, simple procedures for scanner

setting, fast acquisition protocols and powerful reconstruction-processing algorithms are

needed’. [34]. These ideas are shared by others as well [35]. It is clear that there is a desire

to develop PET as a dependable 4D modality.
Conclusions
Respiratory motion has been acknowledged as a problem in nuclear medicine imaging, and

there have been calls for the development of effective robust solutions for handling motion

http://www.ejnmmiphys.com/content/1/1/8
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control. Data-driven motion control techniques are still only minimally developed, but may

offer fast, inexpensive, and potentially robust systems to heed this call. This area can be

developed with minimal resources, and one day may extend into the clinic with the

assurance of no risk or changes to clinical procedures. To provide structure to this sub-

field’s collective efforts and aspirations, we are presenting the concept of a fully automated

data-driven motion control framework. This framework can provide a conceptual vehicle in

which individual concentrated efforts in data-driven processing can readily be integrated

into useful, coherent workflows with support a big picture strategy. Furthermore, this

framework presents an alternative strategy for addressing the practical problems of

respiratory motion in PET, a strategy based on developing low-impact and robust applica-

tions and should be appreciable by all stake holders: clinicians, researchers, vendors, and

patients aline.
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