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Abstract

Background: F18-fluorodeoxyglucose positron-emission tomography (FDG-PET)
reconstruction algorithms can have substantial influence on quantitative image data
used, e.g., for therapy planning or monitoring in oncology. We analyzed radial activity
concentration profiles of differently reconstructed FDG-PET images to determine
the influence of varying signal-to-background ratios (SBRs) on the respective
spatial resolution, activity concentration distribution, and quantification (standardized
uptake value [SUV], metabolic tumor volume [MTV]).

Methods: Measurements were performed on a Siemens Biograph mCT 64 using a
cylindrical phantom containing four spheres (diameter, 30 to 70 mm) filled with F18-FDG
applying three SBRs (SBR1, 16:1; SBR2, 6:1; SBR3, 2:1). Images were reconstructed
employing six algorithms (filtered backprojection [FBP], FBP + time-of-flight analysis
[FBP + TOF], 3D-ordered subset expectation maximization [3D-OSEM], 3D-OSEM + TOF,
point spread function [PSF], PSF + TOF). Spatial resolution was determined by fitting the
convolution of the object geometry with a Gaussian point spread function to radial
activity concentration profiles. MTV delineation was performed using fixed thresholds
and semiautomatic background-adapted thresholding (ROVER, ABX, Radeberg, Germany).

Results: The pairwise Wilcoxon test revealed significantly higher spatial resolutions for
PSF + TOF (up to 4.0 mm) compared to PSF, FBP, FBP + TOF, 3D-OSEM, and 3D-OSEM+
TOF at all SBRs (each P < 0.05) with the highest differences for SBR1 decreasing to
the lowest for SBR3. Edge elevations in radial activity profiles (Gibbs artifacts) were
highest for PSF and PSF + TOF declining with decreasing SBR (PSF + TOF largest sphere;
SBR1, 6.3%; SBR3, 2.7%). These artifacts induce substantial SUVmax overestimation
compared to the reference SUV for PSF algorithms at SBR1 and SBR2 leading to
substantial MTV underestimation in threshold-based segmentation. In contrast,
both PSF algorithms provided the lowest deviation of SUVmean from reference
SUV at SBR1 and SBR2.
(Continued on next page)
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Conclusions: At high contrast, the PSF algorithms provided the highest spatial
resolution and lowest SUVmean deviation from the reference SUV. In contrast, both
algorithms showed the highest deviations in SUVmax and threshold-based MTV
definition. At low contrast, all investigated reconstruction algorithms performed
approximately equally. The use of PSF algorithms for quantitative PET data, e.g., for
target volume definition or in serial PET studies, should be performed with caution -
especially if comparing SUV of lesions with high and low contrasts.

Keywords: FDG-PET/CT reconstruction; PSF; TOF; Spatial resolution; Metabolic tumor
volume delineation; Signal-to-background ratio; Radial activity concentration profile;
Gibbs artifact; Ringing artifact; Gibbs phenomenon
Background
Combined positron-emission tomography/computed tomography (PET/CT) - primarily

using F18-fluorodeoxyglucose (FDG) to visualize focal glucose hypermetabolism as an

indicator of neoplastic tissue - has proven its significant impact on the therapeutic

management in several tumor entities, e.g., non-small cell lung cancer, colorectal cancer,

or breast cancer, when compared to conventional imaging methods [1–3].

Furthermore, quantitative analyses of FDG-PET findings, mainly expressed as standard-

ized uptake values (SUVs), metabolic tumor volume (MTV), or total lesion glycolysis

(TLG), can be helpful for outcome prediction or therapy response assessment [4,5].

Additionally, with regard to planning procedures for radiotherapy, the use of FDG-PET

for target volume definition may enable dose escalation, a lower exposure of organs at

risk, as well as reduced interobserver variability [6,7].

The reconstruction algorithm used for image generation can have substantial influence

on quantitative data [8,9]. Recent reconstruction algorithms commercially available

for clinical purposes encompass iterative calculations, time-of-flight (TOF) analysis

(to approximate the real location of the positron-electron annihilation), and the

point spread functions (PSF) of the PET scanner to account for its specific detection

properties. Recent studies revealed systematically higher SUV and smaller MTV when

applying such algorithms compared to ordered subset expectation maximization (OSEM)

algorithms [10-13]. In contrast, enhanced spatial resolution as well as higher signal-to-

noise ratios (SNR) can lead to improved image quality and lesion detection [14–16].

The aim of the present study was to investigate the effects of PSF and TOF integration

at different SBRs as they typically occur in clinical FDG-PET measurements.

Methods
Phantom

A cylindrical phantom (diameter, 20 cm; volume, 6,595 ml) containing four spheres

was used. All spheres (diameter 1, 29.9 mm; diameter 2, 39.8 mm; diameter 3, 49.9 mm;

diameter 4, 69.7 mm) were initially (measurement 1) filled with a solution of F18-FDG

with an activity concentration of 36.8 kBq/ml. The background volume featured an initial

activity concentration of 2.3 kBq/ml resulting in a signal-to-background ratio (SBR) of

16.2:1 (SBR1). To examine the influence of different SBRs, further F18 activity was subse-

quently added to the background before the scanning process was repeated twice (SBR2,

6.0:1; SBR3, 2.3:1). Please see Table 1 for details.
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Table 1 Activity concentrations present at each measurement

Measurement Administered
activity in MBq

Activity concentration
(spheres) in kBq/ml

Activity concentration
(background) in kBq/ml

SBR

1 34.2 36.8 2.3 16.2

2 53.6 28.9 4.8 6.0

3 124.8 20.9 9.0 2.3

Decay-corrected administered activities (spheres + background), activity concentrations within the spheres and the
surrounding background, as well as the respective SBR displayed for each measurement.
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FDG-PET/CT scanning

FDG-PET/CT imaging was performed using a dedicated PET/CT device with an en-

hanced axial bed coverage of 216 mm (TrueV®) and a 64-slice CT component (Biograph

mCT 64®, Siemens Healthcare, Erlangen, Germany). The phantom was positioned in

the center of the field of view and measured over two bed positions covering a distance

of 345 mm (overlap, 87 mm) with a scan time of 3 min/bed position. CT data were

acquired for attenuation correction (X-ray tube current, 50 mA; voltage, 120 kV;

0.5 s/rotation; pitch factor, 0.8).

Image reconstruction

FDG-PET raw data were reconstructed with six algorithms and respective presets pro-

vided by the manufacturer: filtered backprojection (FBP), FBP + time-of-flight analysis

(FBP + TOF), 3D-OSEM (iterations, 2; subsets, 24), 3D-OSEM +TOF (iterations, 2;

subsets, 21), iterative reconstruction with system-specific PSF modeling (TrueX®,

‘HD∙PET’; iterations, 2; subsets, 24), and PSF + TOF (‘ultraHD∙PET’; iterations, 2; sub-
sets, 21) [15]. The projection data were reconstructed into 200 × 200 × 70 matrices

(slice thickness, 5 mm) and into 200 × 200 × 116 matrices (slice thickness, 3 mm). In-

plane voxel size was always 4.1 × 4.1 mm. After reconstruction, a Gaussian filter (full

width at half maximum [FWHM], 2 mm) was applied. Attenuation correction CT raw

data were reconstructed with a slice thickness of 3 and 5 mm with a special filter for

low-dose CT (B19f Low Dose ECT).

Spatial resolution/Gibbs artifacts

The spatial resolution was assessed as the FWHM of the point spread function in the

reconstructed images which was modeled by a 3D Gaussian. FWHM was determined

by applying the method described in detail by Hofheinz et al. [17]. This method is

based on fitting the analytic solution for the radial activity profile of a homogeneous

sphere convolved with a 3D Gaussian to the reconstructed data. In this process, the full

3D vicinity of each sphere is evaluated by transforming the data to spherical coordi-

nates relative to the respective sphere's center. The analytic solution has five parame-

ters: signal (true activity within the sphere), background level, FWHM of the PSF, and

the radius as well as the (cold) wall thickness of the spherical inserts. The wall thick-

ness was fixed to its known value (1.2 mm). The remaining four parameters were deter-

mined by non-linear least squares fits. This method assumes that locally (over a

distance of approximately the diameter of the spheres) the PSF is homogeneous and

that there is no notable difference between axial and transaxial resolution. Since the

spheres were located close to the radial center of the field of view, this assumption is

justifiable (see discussion in [17]).

http://www.ejnmmiphys.com/content/1/1/12


Rogasch et al. EJNMMI Physics Page 4 of 162014, 1:12
http://www.ejnmmiphys.com/content/1/1/12
The same profiles were used to determine the magnitude of the Gibbs artifacts as de-

scribed in [18]. For this, a smoothing spline [19] was fitted to the data. The local mini-

mum and maximum (A− and A+, respectively) of the spline were determined. The

magnitude of the Gibbs artifacts GA is then given by

GA ¼ Aþ−A−

Aþ þ A− ð1Þ

The determination of GA is illustrated in Figure 1. Obviously, the computation of
GA requires a sphere diameter which is large enough that, in principle, a local mini-

mum inside the sphere can occur. Otherwise, the minimum on one side of the sphere

overlaps with the Gibbs artifacts of the opposite side, leading to an underestimated GA.

Therefore, GA was only determined for the two largest spheres (50 and 70 mm).

Reference SUV and reference volumes

The reference SUV within the spheres was calculated according to

SUV ¼ Activity concentration kBq=mlð Þ
Administered activity MBqð Þ=weight kgð Þ ð2Þ

Based on decay-corrected F18-FDG activities according to the phantom filling protocol,
the resulting reference SUVs were 7.1 (SBR1), 3.6 (SBR2), and 1.1 (SBR3). The reference

volume for each sphere corresponds to its known physical volume (volume 1, 13.6 ml;

volume 2, 33.3 ml; volume 3, 64.7 ml; volume 4, 176.8 ml).

Volume segmentation

Based on the reconstructed images, sphere volumes were delineated using dedicated

software (ROVER, version 2.1.4, ABX advanced biochemical compounds GmbH,

Radeberg, Germany). Segmentation was performed for each reconstruction algorithm

and the three SBRs, respectively, with the use of four segmentation methods (t40, t50,
Figure 1 Determination of Gibbs artifacts (GA). The black circles represent the radial profile and the
gray line depicts the smoothing spline. The black horizontal lines show A+ and A− determined from the
smoothing spline.
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t60, tBC). t40, t50, and t60 (fixed threshold) delineate all voxels with an activity concen-

tration of at least 40%, 50%, or 60% of the measured maximum activity concentration,

respectively. The automatic, background-corrected thresholding method (tBC) takes

as input a user-defined initial delineation. We used a fixed threshold of 50% of the

maximum for this purpose. Then the algorithm iteratively determines the local back-

ground of the target structure. After determination, the background is subtracted and

a threshold of 39% of the maximum is applied. The delineation is independent of the

initial delineation as long as the initial threshold is above the background level (see

[20] for details). For all delineations, absolute and relative deviations from the refer-

ence volume were calculated.

Statistical analysis

Data analyses were carried out using R 2.15.3 (Foundation for Statistical Computing,

Vienna, Austria, 2012, http://www.R-project.org). Descriptive values are given as mean

and range. Signed relative differences were used for comparison of measured quantita-

tive data and their respective reference values. Multivariate general linear models

(GLM) including reconstruction algorithms, sphere diameter, SBR, and slice thickness

of the reconstructed PET data were used to analyze the association between these fac-

tors. Differences of spatial resolution between reconstruction algorithms were investi-

gated using the Friedman test and Wilcoxon test for paired non-parametric data. The

one-sample t test was performed to detect deviations from reference values. A P value

of <0.05 was considered as statistically significant.

Results
Spatial resolution

The spatial resolution of iteratively reconstructed images declined with lower SBR while

FBP and FBP + TOF provided relatively constant values (Figure 2). The highest mean

resolution at SBR1 as well as SBR2 was provided by PSF + TOF, followed by PSF, 3D-

OSEM/3D-OSEM +TOF, and FBP/FBP + TOF. SBR3 showed the smallest differences

between mean spatial resolutions of all reconstruction algorithms. Please see Table 2

for details.

Joint analysis of resolution data derived from PET data with 3- and 5-mm slice thick-

ness showed significant differences between reconstruction methods (Friedman rank

sum test, P < 0.001). The pairwise Wilcoxon test revealed significantly higher mean
Figure 2 Spatial resolution displayed as a function of reconstruction algorithm, sphere diameter,
and SBR. (A) SBR1. (B) SBR2. (C) SBR3.
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Table 2 Spatial resolution and magnitude of Gibbs artifacts (GA)

Spatial resolution (mm) GA (%; diameter, 50/70 mm)

SBR1

FBP 6.8 (6.7 to 6.9) 0.0/0.4

FBP + TOF 6.8 (6.7 to 6.8) 0.0/0.1

3D-OSEM 5.0 (4.9 to 5.1) 0.7/0.5

3D-OSEM + TOF 5.5 (5.4 to 5.5) 0.7/0.7

PSF 4.1 (4.0 to 4.2) 7.3/6.3

PSF + TOF 4.0 (3.9 to 4.0) 7.4/6.3

SBR2

FBP 6.7 (6.7 to 6.8) 0.1/0.3

FBP + TOF 6.7 (6.7 to 6.8) 0.0/0.2

3D-OSEM 5.7 (5.6 to 5.9) 1.4/1.2

3D-OSEM + TOF 5.7 (5.6 to 5.8) 0.7/1.2

PSF 5.3 (5.2 to 5.5) 5.0/4.6

PSF + TOF 5.0 (5.0 to 5.1) 5.1/5.0

SBR3

FBP 7.0 (6.8 to 7.2) 0.1/0.2

FBP + TOF 7.1 (6.9 to 7.3) 0.0/0.0

3D-OSEM 6.7 (6.5 to 7.0) 0.2/1.2

3D-OSEM + TOF 6.7 (6.6 to 6.9) 0.5/1.2

PSF 6.9 (6.7 to 7.2) 1.6/2.6

PSF + TOF 6.4 (6.1 to 6.6) 2.6/2.7

Mean (range) spatial resolutions of all spheres and GA of the two largest spheres are displayed for each SBR and
reconstruction method based on 3-mm slice thickness.
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spatial resolutions for PSF + TOF compared to FBP, FBP + TOF, 3D-OSEM, and

3D-OSEM + TOF at all SBRs (each P < 0.05). Similarly, PSF provided significantly

higher mean values at SBR1 and SBR2 compared to FBP-based and 3D-OSEM-based

reconstructions (each P < 0.05) while providing a lower mean spatial resolution at

SBR3 compared to 3D-OSEM/3D-OSEM + TOF (each P < 0.05) but not compared to

FBP/FBP + TOF. PSF + TOF provided significantly higher mean spatial resolutions

compared to PSF for all SBRs (SBR1, 4.0 vs. 4.1 mm; SBR2, 5.0 vs. 5.3 mm; SBR3, 6.4

vs. 6.9 mm; each P < 0.05). Comparing 3- to 5-mm slice thickness, the spatial reso-

lution improved significantly (each P < 0.01) for all reconstruction methods with mean

relative changes ranging between 1.1% (PSF; range, 0.0 to 1.5%) and 7.0% (PSF + TOF;

range, 5.1 to 7.7%).

Gibbs artifacts

Figures 3 and 4 show the radial activity concentration profiles of the largest sphere

(70 mm) and smallest sphere (30 mm), respectively, depending on the reconstruction

algorithm (FBP + TOF vs. 3D-OSEM +TOF vs. PSF + TOF) and SBR. Each profile dis-

plays the activity concentration distribution from the center of the sphere to the sur-

rounding background. The gray line indicates the respective smoothing spline. Notable

Gibbs artifacts are visible only for PSF + TOF and PSF (not displayed) at contrasts

SBR1 and SBR2 independent of the spheres' diameter which is confirmed by quantifica-

tion (GA) for the spheres with a diameter of 70 and 50 mm (Table 2). At SBR3, the
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Figure 3 Radial activity profiles of the largest sphere (70 mm) depending on reconstruction
algorithm and SBR. Edge elevations (Gibbs artifacts) can be observed after reconstruction with PSF + TOF
and PSF (not displayed) at SBR1 (A, D, G) and SBR2 (B, E, H). SBR3 (C, F, I) shows no considerable artifacts.
The gray lines indicate the respective smoothing spline.
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Gibbs artifacts of both PSF algorithms are clearly reduced. FBP- and 3D-OSEM-based

reconstructions showed no notable artifacts at all contrasts and diameters.

SUVmax

Comparing the SUVmax with the reference SUV, the one-sample t test showed significant

differences for all reconstruction methods at all SBRs (Figure 5A,B,C; each P < 0.01). Both

PSF algorithms resulted in the highest mean relative deviations at SBR1 and SBR2 com-

pared to 3D-OSEM, 3D-OSEM+TOF, FBP, and FBP + TOF. At SBR3, all reconstruction

algorithms provided comparable values for SUVmax (see Table 3 for details).

The SUVmax was significantly associated with reconstruction algorithm (reference

method, 3D-OSEM; each P < 0.01), sphere diameter (P < 0.001), SBR (reference SBR, SBR1;

each P < 0.001), and slice thickness of the reconstructed PET data (P < 0.001) in GLM.

SUVmean

Compared to SUVmax, the measured SUVmean after semiautomatic segmentation

(tBC) showed a higher agreement with the reference SUV (Figure 5D,E,F). In contrast
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Figure 4 Radial activity profiles of the smallest sphere (30 mm) depending on reconstruction
algorithm and SBR. Edge elevations (Gibbs artifacts) can be observed after reconstruction with PSF + TOF
and PSF (not displayed) at SBR1 (A, D, G) and SBR2 (B, E, H). SBR3 (C, F, I) shows no considerable artifacts.
The gray lines indicate the respective smoothing spline.
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to the former, both PSF algorithms provided smaller mean relative deviations of the

SUVmean from the reference SUV at SBR1 as well as SBR2 compared to 3D-OSEM,

3D-OSEM+ TOF, FBP, and FBP + TOF. Again, smaller differences were observed at

SBR3 between all reconstruction algorithms investigated. Please see Table 3 for details.

The SUVmean resulting from segmentation with a fixed threshold (t50) is displayed in

Figure 5G,H,I for comparison.

In GLM, the SUVmean was significantly associated with reconstruction algorithm

(reference method, 3D-OSEM; FBP, P < 0.05; FBP + TOF, P < 0.05; 3D-OSEM + TOF,

P = 0.7; PSF, P < 0.001; PSF + TOF, P < 0.001), sphere diameter (P < 0.05), and SBR

(reference SBR, SBR1; each P < 0.001) but not with the slice thickness of the reconstructed

PET data (P = 0.17).

MTV deviation from reference volumes

Figure 6 displays the relative MTV deviations of background-adapted threshold- and

fixed threshold-based segmentation. Overall, the use of increasing relative thresholds

resulted in decreasing MTVs while higher MTV deviations were observed for smaller
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Figure 5 SUVmax/SUVmean displayed as a function of reconstruction algorithm, sphere diameter,
and SBR. SUVmean based on segmentation with tBC or with t50, respectively. (A, D, G) SBR1. (B, E, H)
SBR2. (C, F, I) SBR3.
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spheres. At SBR1 and SBR2, PSF as well as PSF + TOF led to substantial underestima-

tion by all segmentation methods compared to 3D-OSEM, 3D-OSEM +TOF, FBP, and

FBP + TOF with lowest mean MTV deviations for t40. At SBR3, only small inter-

method differences concerning reconstruction were observed. t40 was not applicable

whereas t50 provided the lowest mean MTV deviations for PSF and PSF + TOF. Please

see Table 4 for all results.

The GLM showed a significant association of the relative MTV deviation with recon-

struction algorithm (reference method, 3D-OSEM; FBP, P = 0.15; FBP + TOF, P < 0.05;

3D-OSEM+TOF, P = 0.08; PSF, P < 0.01; PSF +TOF, P < 0.05), sphere diameter (P < 0.001),

and SBR (reference SBR, SBR1; SBR2, P < 0.05; SBR3, P < 0.001) but not with the slice

thickness of the reconstructed PET data (P = 0.20).

Discussion
In the present study, phantom measurements were performed to examine the influence

of different reconstruction algorithms and SBRs on quantitative FDG-PET. We showed

that PSF + TOF provided a significantly improved spatial resolution compared to all

other investigated reconstruction algorithms but differences are dependent on the SBR

(Figure 2). Also, the investigated OSEM reconstructions showed a SBR-dependent

spatial resolution. The reason for this is most likely a contrast-dependent convergence
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Table 3 Deviations of SUVmax and SUVmean from reference SUV

ΔSUVmax (%) ΔSUVmean (%) [tBC] ΔSUVmean (%) [t50]

SBR1

FBP 17.0 (14.7 to 19.5)*** −11.0 (−15.4 to −7.3)** −8.2 (−12.7 to −5.0)*

FBP + TOF 15.1 (12.8 to 17.2)** −11.0 (−16.3 to −7.1)* −8.3 (−13.5 to −5.0)*

3D-OSEM 24.2 (21.1 to 27.2)*** −6.6 (−10.6 to −4.2)* −4.1 (−8.1 to −0.9)

3D-OSEM + TOF 20.2 (18.5 to 22.6)*** −6.6 (−9.7 to −4.5)* −4.3 (−7.2 to −2.3)*

PSF 31.9 (26.9 to 38.2)** −0.6 (−2.4 to 3.1) 2.3 (0.5 to 6.6)

PSF + TOF 32.9 (27.7 to 42.7)** 1.2 (−1.3 to 4.0) 3.9 (1.4 to 6.7)

SBR2

FBP 20.4 (17.6 to 24.5)** −7.6 (−11.7 to −4.4)* −6.9 (−11.4 to −3.9)*

FBP + TOF 18.5 (14.9 to 20.3)*** −8.0 (−12.8 to −4.8)* −7.5 (−12.7 to −4.2)*

3D-OSEM 28.5 (23.4 to 38.8)** −3.6 (−6.0 to −0.7) −2.5 (−4.7 to 1.0)

3D-OSEM + TOF 24.8 (21.4 to 30.7)** −4.1 (−6.6 to −2.0)* −3.3 (−5.9 to −0.6)

PSF 31.3 (24.9 to 42.3)** 0.5 (−2.2 to 4.0) 1.7 (−1.3 to 6.1)

PSF + TOF 32.3 (26.9 to 38.5)** 1.5 (−0.9 to 4.4) 2.6 (0.1 to 6.1)

SBR3

FBP 32.4 (27.1 to 39.6)** 1.4 (−1.1 to 3.5) −6.1 (−10.9 to −1.4)

FBP + TOF 26.9 (23.0 to 32.1)*** −0.1 (−2.3 to 2.3) −7.5 (−13.5 to −3.2)*

3D-OSEM 28.7 (22.9 to 31.8)*** 0.7 (−1.5 to 3.4) −5.8 (−9.3 to −3.2)*

3D-OSEM + TOF 26.1 (22.2 to 28.1)*** 0.8 (−0.9 to 2.9) −6.2 (−9.6 to −4.0)*

PSF 26.9 (24.8 to 29.6)*** 1.8 (0.6 to 4.4) −5.6 (−10.5 to −3.4)*

PSF + TOF 29.6 (26.2 to 33.2)*** 3.3 (1.5 to 4.8)* −3.2 (−5.3 to −2.3)*

Mean (range) relative deviations from reference SUV of all spheres are displayed for each SBR and reconstruction
method. t test: *P < 0.05; **P < 0.01; ***P < 0.001.
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of the iterative reconstructions. This of course suggests optimizing the reconstruction

parameters for each contrast, but this would not be possible for clinical data. There,

the target structures can feature a wide range of SBRs. An optimization of the parame-

ters for all SBRs at the same time is not possible and, therefore, was not performed for

the present phantom data either. Thus, we used the parameters recommended by the

manufacturer of the PET/CT scanner for each reconstruction.

In contrast to the present study, the National Electrical Manufacturers Association

(NEMA) recommends a standardized phantom architecture including six point sources

of less than 1-mm diameter surrounded by air to calculate the spatial resolution from

the FWHM of several one-dimensional activity profiles [21]. No scatter medium and

no background are present in such measurements. Our approach allows computing the

spatial resolution also with extended objects in a finite background, which is much

closer to the clinical situation than point sources in air.

The radial activity profiles of the PSF algorithms revealed signal elevation at the

boundaries of the spheres. These elevations are known as Gibbs artifacts and have been

shown to be intrinsic for PSF reconstruction algorithms [22]. Gibbs artifacts appear

near sharp transitions from high to low signal, and the absolute value depends on the

height of the signal's jump (SBR) [23] and the level of the resolution recovery. The rela-

tive magnitude of these artifacts, however, depends on the resolution recovery only

(artifacts get stronger with lower FWHM) - rendering them visible only at SBR1 and

SBR2 as can be seen in Figures 3 and 4. Also, the quantitative results for GA (Table 2)
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Figure 6 Relative MTV deviations displayed as a function of reconstruction algorithm, sphere
diameter, and SBR. (A, D, G, J) SBR1. (B, E, H, K) SBR2. (C, F, I, L) SBR3.
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directly depend on the contrast. At SBR1, GA for PSF + TOF of the largest sphere

(diameter, 70 mm) was 6.3%; at SBR2, GA was 5.0%; and at SBR3, GA was reduced to

2.7%. The results for the 50-mm sphere are similar. The diameter of the two smallest

spheres was too small for a detection of local minima (see above), and, therefore, a

quantification of the Gibbs artifacts was not possible. However, Figure 4G,H,I clearly

shows that Gibbs artifacts are present at high contrast also for these diameters and are

essentially absent at low contrast.

The edge elevations result in an artificially increased contrast of hot structures which

has been reported to yield improved visual lesion detectability, especially if combined

with TOF analysis [24,25]. However, the current results imply that at low SBR no con-

siderable advantages of PSF can be expected. Thus, the specific influence of different
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Table 4 MTV deviations from reference volume

ΔMTV (%) [tBC] ΔMTV (%) [t40] ΔMTV (%) [t50] ΔMTV (%) [t60]

SBR1

FBP −0.5 (−5.7 to 3.3) 3.3 (2.3 to 5.5)* −8.0 (−13.4 to −5.7)* −20.0 (−29.5 to −13.3)*

FBP + TOF 0.1 (−3.9 to 2.4) 4.1 (3.2 to 5.1)** −7.1 (−11.6 to −4.4)* −18.4 (−25.8 to −11.7)**

3D-OSEM −4.2 (−8.3 to −2.7) −1.8 (−3.9 to −1.0) −10.4 (−14.5 to −7.5)** −20.3 (−28.0 to −13.7)**

3D-OSEM + TOF −2.6 (−5.4 to −1.3) 0.5 (−1.0 to 2.0) −8.1 (−11.6 to −5.7)** −17.6 (−24.4 to −11.8)**

PSF −9.4 (−15.2 to −5.5)* −8.1 (−14.1 to −4.0)* −15.8 (−22.5 to −9.7)* −24.6 (−35.7 to −14.9)*

PSF + TOF −9.2 (−16.7 to −4.9)* −7.3 (−14.1 to −3.7) −15.2 (−24.7 to −9.2)* −23.0 (−35.3 to −14.2)*

SBR2

FBP −3.2 (−5.7 to −2.2)* 9.7 (5.2 to 15.8)* −5.0 (−6.8 to −3.8)** −17.9 (−23.6 to −12.2)**

FBP + TOF −2.1 (−4.6 to −0.7) 10.6 (6.3 to 15.8)* −3.7 (−5.0 to −2.6)** −17.0 (−23.6 to −10.7)**

3D-OSEM −8.2 (−12.7 to −4.7)* 2.0 (−0.3 to 5.2) −11.3 (−16.0 to −6.4)* −21.7 (−28.0 to −13.9)**

3D-OSEM + TOF −5.9 (−10.9 to −3.3)* 4.9 (3.2 to 7.4)* −8.3 (−12.7 to −4.5)* −18.8 (−25.1 to −11.7)**

PSF −11.7 (−18.9 to −5.9)* −2.1 (−4.6 to 0.0) −14.5 (−21.1 to −7.4)* −24.0 (−33.5 to −14.1)*

PSF + TOF −10.5 (−18.9 to −5.3)* −1.4 (−4.3 to 0.6) −13.1 (−21.1 to −7.2)* −22.7 (−33.1 to −14.0)*

SBR3

FBP −17.5 (−26.2 to −13.2)** Segmentation not applicable 12.4 (−1.0 to 24.2) −15.4 (−21.5 to −11.2)**

FBP + TOF −14.5 (−22.5 to −11.5)* 14.8 (3.0 to 26.1) −11.2 (−16.3 to −8.3)**

3D-OSEM −17.2 (−28.0 to −12.7)* 6.3 (1.7 to 9.1)* −15.0 (−23.6 to −10.3)*

3D-OSEM + TOF −14.4 (−24.7 to −10.1)* 10.6 (4.0 to 14.7)* −11.6 (−20.7 to −7.5)*

PSF −16.3 (−23.6 to −11.2)** 9.6 (2.5 to 17.7) −13.1 (−17.4 to −9.4)**

PSF + TOF −16.3 (−26.2 to −11.3)* 5.3 (0.8 to 13.0) −14.3 (−24.4 to −7.5)*

Mean (range) relative deviations from the reference volume of all spheres are displayed for each segmentation method, SBR, and reconstruction method. t test: *P < 0.05; **P < 0.01; ***P < 0.001.
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SBRs on the abovementioned effects and, moreover, the role of Gibbs artifacts in clin-

ical practice requires further investigations.

As a direct consequence of these artifacts, both PSF algorithms resulted in a signifi-

cantly higher deviation of the SUVmax from the reference SUV at SBR1 and SBR2 (up

to about 40% for the smallest sphere) compared to 3D-OSEM- and FBP-based data.

These results are in agreement with phantom measurements performed by Prieto et al.

[10] also using a Siemens Biograph mCT 64 scanner and sphere diameters ranging

from 10.1 to 37.6 mm. As at present the SUVmax is the most common quantitative

parameter used for outcome prediction, therapy response assessment, and threshold-

based target volume definition in oncology [4,26,27], these findings are of substantial

clinical relevance. The presence of Gibbs artifacts dependent on the contrast can cause

additional problems. Consider, for example, the therapy response assessment of liver

metastases. The liver typically features an SUV of 2. A metastasis with an SUV of 12

would then correspond to SBR2, and the measured SUV would be overestimated due

to Gibbs artifacts. Assuming that during therapy the SUV drops to 4.6, it would then

correspond to SBR3. At this contrast, essentially, no Gibbs artifacts are present and,

therefore, there is also no overestimation of the measured SUV. In consequence, the re-

sponse assessment can be affected as the difference of these SUV values is larger than

the actual difference.

Compared to SUVmax, the SUVmean showed smaller deviations from the reference

SUV for all reconstruction algorithms (lowest for PSF and PSF + TOF). These observations

confirm results of recent studies [10,28]. In the study by Prieto et al. [10], the authors ana-

lyzed the influence of different reconstruction methods (FBP, OSEM, PSF, PSF + TOF) on

SUVmean within an isocontour of 50% of the SUVmax (SUV50). PSF + TOF provided the

lowest relative deviation from the true value (median, 0.3%; P = 0.34). The present study

revealed comparable results for t50 which showed the lowest deviation from the reference

SUV for PSF + TOF (mean, −2.6%; P = 0.14).

For volume delineation, we used an adaptive threshold method and three different

fixed thresholds for comparison. At high and medium contrasts, adaptive as well as

fixed thresholding of PSF- and PSF + TOF-reconstructed images resulted in signifi-

cantly higher MTV deviations from the reference volume compared to FBP-based or

3D-OSEM-reconstructed images. However, the deviations were rather small. Only for

the smallest sphere the deviation exceeded 18% (delineated with tBC) compared to 13%

with 3D-OSEM and 6% with FBP.

Knäusl et al. delineated distinctly smaller target volumes (0.3 to 11.5 ml) and reported

MTV underestimation up to 39% using PSF compared to OSEM [12]. For the smallest

sphere investigated in the present study (14 ml), t40 delineation resulted in a difference

between PSF and OSEM of only 9%. However, an extrapolation of the data in Figure 6

(t40, SBR1) to smaller volumes would result in a similar difference between PSF and

OSEM as reported in [12].

In a further study, Knäusl et al. observed lower relative thresholds delineating the

true sphere volume for PSF compared to OSEM which is in accordance with the ob-

served MTV underestimation in the present study. The authors reported further that

threshold differences between PSF and OSEM increased with increasing SBR [11] cor-

responding to larger differences in relative MTV deviations between PSF + TOF and

3D-OSEM at higher SBR. This is confirmed by the present study revealing that the
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optimal fixed threshold depends on both the reconstruction method as well as the SBR

(Figure 6). Knäusl et al. showed that MTV deviations caused by increased SUVmax in

PSF-reconstructed data can be minimized by calibrating the volume reproducing

threshold for these reconstruction algorithms separately [12]. However, this approach

was only applied to lung lesions (with typically high tumor-to-background ratios). As

the current results underline that the PSF-related MTV deviations must be assessed

considering the respective SBR, it remains questionable whether this approach could be

an adequate and feasible method under clinical conditions.

A limitation of the present study is that spherical inserts with cold walls were used.

The cold walls introduce a delineation error for threshold-based delineation methods

which depends on the size of the walls, the spatial resolution, and the contrast [17].

However, at high contrast, these delineation errors are very small. Therefore, the result

that both PSF reconstructions lead to an underestimated volume at high contrast, when

delineated with threshold-based methods, is not affected by the cold walls of the

spheres. The situation is different at low contrast (SBR3). First, there is no notable dif-

ference in tBC delineation between PSF algorithms and the other investigated recon-

struction algorithms, which is explained by the absence of Gibbs artifacts at this

contrast. Second, for all reconstruction algorithms, tBC delineation underestimated the

actual volumes of all investigated spheres. This is mainly caused by the effects of the

cold walls. At low contrast, the cold walls lead to an underestimated volume when a

threshold is used which was optimized for data without walls, e.g., clinical data. The

optimization of this algorithm for such spheres would require a calibration which takes

the cold walls into account. However, such a calibration would be only of limited use

since it is only valid for the type of spheres the calibration was performed with. An alter-

native would be the use of spheres without cold walls as performed by Bazañez-Borgert

et al. [29]. However, the main result at low contrast, namely that there is no difference in

tBC delineation between PSF-based and other reconstructions, could also be shown with

the presented measurements.

Another limitation in the same context is that only threshold-based delineation

methods were used. Other non-threshold-based methods (e.g., [30–35]) might perform

better with PSF-reconstructed data. Such methods are not available at our site and

could not be investigated. Therefore, the reported MTV deviations of PSF reconstruc-

tions are strictly speaking only valid for threshold-based delineation methods.
Conclusions
At high contrast, the PSF algorithms provided the highest spatial resolution and lowest

SUVmean deviation from the reference SUV. In contrast, both algorithms showed the

highest deviations in SUVmax and threshold-based MTV definition. At low contrast,

all investigated reconstruction algorithms performed approximately equally. The use of

PSF algorithms for quantitative PET data, e.g., for target volume definition or in serial

PET studies, should be performed with caution - especially if SUV of lesions with high

and low contrasts are compared.
Competing interests
Holger Amthauer received a research grant from Siemens Healthcare Diagnostics GmbH, Germany. All other authors declare
that they have no competing interests.

http://www.ejnmmiphys.com/content/1/1/12


Rogasch et al. EJNMMI Physics Page 15 of 162014, 1:12
http://www.ejnmmiphys.com/content/1/1/12
Authors’ contributions
JMMR, IGS, FH, and AL participated in the design of the study and in the analysis and interpretation of data and
drafted the manuscript. CF, JR, OSG, KM, PH, MW, and HA participated in the analysis and interpretation of data and
supervised the manuscript. All authors read and approved the final manuscript.

Acknowledgements
This study was partly financed by Siemens Healthcare Diagnostics GmbH, Germany.

Author details
1Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg A.ö.R., Otto-von-Guericke Universität
Magdeburg, Leipziger Straße 44, Magdeburg 39120, Germany. 2PET Center, Institute of Radiopharmaceutical
Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Landstraße 400, Dresden 01328, Germany. 3Klinik für
Nuklearmedizin, Universitätsklinikum Freiburg, Hugstetter Straße 55, Freiburg im Breisgau 79106, Germany.
4Klinik für Strahlentherapie, Universitätsklinikum Magdeburg A.ö.R., Otto-von-Guericke Universität Magdeburg,
Leipziger Straße 44, Magdeburg 39120, Germany.

Received: 26 May 2014 Accepted: 4 August 2014
Published:

References

19 Sep 2014
1. Gregory DL, Hicks RJ, Hogg A, Binns DS, Shum PL, Milner A, Link E, Ball DL, Mac Manus MP: Effect of PET/CT on
management of patients with non-small cell lung cancer: results of a prospective study with 5-year survival
data. J Nucl Med 2012, 53:1007–1015.

2. Llamas-Elvira JM, Rodríguez-Fernández A, Gutiérrez-Sáinz J, Gomez-Rio M, Bellon-Guardia M, Ramos-Font C,
Rebollo-Aguirre AC, Cabello-García D, Ferrón-Orihuela A: Flourine-18 fluorodeoxyglucose PET in the preoperative
staging of colorectal cancer. Eur J Nucl Med Mol Imaging 2007, 34:859–867.

3. Groheux D, Giacchetti S, Delord M, Hindié E, Vercellino L, Cuvier C, Toubert ME, Merlet P, Hennequin C, Espié M:
18F-FDG-PET/CT in staging patients with locally advanced or inflammatory breast cancer: comparison to
conventional staging. J Nucl Med 2013, 54:5–11.

4. Liao S, Penney BC, Wroblewski K, Zhang H, Simon CA, Kampalath R, Shih MC, Shimada N, Chen S, Salgia R,
Appelbaum DE, Suzuki K, Chen CT, Pu Y: Prognostic value of metabolic tumor burden on 18F-FDG PET in
nonsurgical patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging 2012, 39:27–38.

5. Hatt M, Groheux D, Martineau A, Espié M, Hindié E, Giacchetti S, De Roquancourt A, Visvikis D, Cheze-Le Rest C:
Comparison between 18F-FDG PET image-derived indices for early prediction of response to neoadjuvant
chemotherapy in breast cancer. J Nucl Med 2013, 54:341–349.

6. De Ruysscher D, Wanders S, Minken A, Lumens A, Schiffelers J, Stultiens C, Halders S, Boersma L, Van Baardwijk A,
Verschueren T, Hochstenbag M, Snoep G, Wouters B, Nijsten S, Bentzen SM, Van Kroonenburgh M, Öllers M,
Lambin P: Effects of radiotherapy planning with a dedicated combined PET-CT-simulator of patients with
non-small cell lung cancer on dose limiting normal tissues and radiation dose-escalation: a planning study.
Radiother Oncol 2005, 77:5–10.

7. Buijsen J, van den Bogaard J, van der Weide H, Engelsman S, Van Stiphout R, Janssen M, Beets G, Beets-Tan R,
Lambin P, Lammering G: FDG-PET-CT reduces the interobserver variability in rectal tumor delineation.
Radiother Oncol 2012, 102:371–376.

8. Ramos CD, Erdi YE, Gonen M, Riedel E, Yeung HW, Macapinlac HA, Chisin R, Larson SM: FDG-PET standardized
uptake values in normal anatomical structures using iterative reconstruction segmented attenuation
correction and filtered back-projection. Eur J Nucl Med 2001, 28:155–164.

9. Cheebsumon P, Yaqub M, Van Velden FH, Hoekstra OS, Lammertsma AA, Boellaard R: Impact of [18F]FDG PET
imaging parameters on automatic tumour delineation: need for improved tumour delineation methodology.
Eur J Nucl Med Mol Imaging 2011, 38:2136–2144.

10. Prieto E, Dóminguez-Prado I, García-Velloso MJ, Peñuelas I, Richter JA, Martí-Climent JM: Impact of time-of-flight
and point-spread-function in SUV quantification for oncological PET. Clin Nucl Med 2013, 38:103–109.

11. Knäusl B, Hirtl A, Dobrozemsky G, Bergmann H, Kletter K, Dudczak R, Georg D: PET based volume segmentation
with emphasis on the iterative TrueX algorithm. Z Med Phys 2012, 22:29–39.

12. Knäusl B, Rausch IF, Bergmann H, Dudczak R, Hirtl A, Georg D: Influence of PET reconstruction parameters on
the TrueX algorithm. A combined phantom and patient study. Nuklearmedizin 2013, 52:28–35.

13. Akamatsu G, Mitsumoto K, Taniguchi T, Tsutsui Y, Baba S, Sasaki M: Influences of point-spread function and
time-of-flight reconstructions on standardized uptake value of lymph node metastases in FDG-PET. Eur J
Radiol 2014, 83:226–230.

14. Martí-Climent JM, Prieto E, Domínguez-Prado I, García-Velloso MJ, Rodríguez-Fraile M, Arbizu J, Vigil C, Caicedo C,
Peñuelas I, Richter JA: Contribution of time of flight and point spread function modelling to the performance
characteristics of the PET/CT Biograph mCT scanner. Rev Esp Med Nucl Imagen Mol 2013, 32:13–21.

15. Panin VY, Kehren F, Michel C, Casey M: Fully 3-D PET reconstruction with system matrix derived from point
source measurements. IEEE Trans Med Imaging 2006, 25:907–921.

16. Akamatsu G, Ishikawa K, Mitsumoto K, Taniguchi T, Ohya N, Baba S, Abe K, Sasaki M: Improvement in PET/CT
image quality with a combination of point-spread functions and time-of-flight in relation to reconstruction
parameters. J Nucl Med 2012, 53:1716–1722.

17. Hofheinz F, Dittrich S, Pötzsch C, van den Hoff J: Effects of cold sphere walls in PET phantom measurements
on the volume reproducing threshold. Phys Med Biol 2010, 55:1099–1113.

18. Lougovski A, Hofheinz F, Maus J, Schramm G, Will E, van den Hoff J: A volume of intersection approach for on-the-fly
system matrix calculation in 3D PET image reconstruction. Phys Med Biol 2014, 59:561–577.

19. Hastie TJ, Tibshirani RJ: Generalized Additive Models. London: Chapman & Hall; 1990.

http://www.ejnmmiphys.com/content/1/1/12


Rogasch et al. EJNMMI Physics Page 16 of 162014, 1:12
http://www.ejnmmiphys.com/content/1/1/12
20. Hofheinz F, Pötzsch C, Oehme L, Beuthien-Baumann B, Steinbach J, Kotzerke J, van den Hoff J: Automatic volume
delineation in oncological PET. Evaluation of a dedicated software tool and comparison with manual delineation
in clinical data sets. Nuklearmedizin 2012, 51:9–16.

21. Association NEM: Performance measurements of positron emission tomographs (PETs). In NEMA Standards
Publication NU 2-2007. Rosslyn: NEMA; 2007:7–10.

22. Rapisarda E, Bettinardi V, Thielemans K, Gilardi MC: Image-based point spread function implementation in a
fully 3D OSEM reconstruction algorithm for PET. Phys Med Biol 2010, 55:4131–4151.

23. Hewitt E, Hewitt RE: The Gibbs-Wilbraham phenomenon: an episode in Fourier analysis. Arch Hist Exact Sci
1979, 21:129–160.

24. Kadrmas DJ, Casey ME, Conti M, Jakoby BW, Lois C, Townsend DW: Impact of time-of-flight on PET tumor detection.
J Nucl Med 2009, 50:1315–1323.

25. Schaefferkoetter J, Casey M, Townsend D, El Fakhri G: Clinical impact of time-of-flight and point response modeling
in PET reconstructions: a lesion detection study. Phys Med Biol 2013, 58:1465–1478.

26. Wang Y, Zhang C, Liu J, Huang G: Is 18F-FDG PET accurate to predict neoadjuvant therapy response in breast
cancer? A meta-analysis. Breast Cancer Res Treat 2012, 131:357–369.

27. Boellaard R, O'Doherty MJ, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG, Oyen WJG, Kotzerke J, Hoekstra
OS, Pruim J, Marsden PK, Tatsch K, Hoekstra CJ, Visser EP, Arends B, Verzijlbergen FJ, Zijlstra JM, Comans EFI,
Lammertsma AA, Paans AM, Willemsen AT, Beyer T, Bockisch A, Schaefer-Prokop C, Delbeke D, Baum RP, Chiti A,
Krause BJ: FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl
Med Mol Imaging 2010, 37:181–200.

28. Kupferschläger J, Pfannenberg C, Reimold M, Werner M, Bares R: Einfluss der Rekonstruktions- und Auswertemethodik
auf die SUV-Quantifizierung am PET/CT (SIEMENS mCT) [abstract]. Nuklearmedizin 2013, 52:A26.

29. Bazañez-Borgert M, Bundschuh RA, Herz M, Martínez MJ, Schwaiger M, Ziegler SI: Radioactive spheres without
inactive wall for lesion simulation in PET. Z Med Phys 2008, 18:37–42.

30. Ciernik IF, Huser M, Burger C, Davis JB, Szekely G: Automated functional image-guided radiation treatment planning
for rectal cancer. Int J Radiat Oncol Biol Phys 2005, 62:893–900.

31. Hatt M, Lamare F, Boussion N, Turzo A, Collet C, Salzenstein F, Roux C, Jarritt P, Carson K, Cheze-Le Rest C, Visvikis D:
Fuzzy hidden Markov chains segmentation for volume determination and quantitation in PET. Phys Med Biol 2007,
52:3467–3491.

32. Kim J, Cai W, Eberl S, Feng D: Real-time volume rendering visualization of dual-modality PET/CT interactive
fuzzy thresholding segmentation. IEEE Trans Inf Technol Biomed 2007, 11:161–169.

33. Geets X, Lee JA, Bol A, Lonneux M, Grégoire V: A gradient-based method for segmenting FDG-PET images:
methodology and validation. Eur J Nucl Med Mol Imaging 2007, 34:1427–1438.

34. Aristophanous M, Penney BC, Martel MK, Pelizzari CA: A Gaussian mixture model for definition of lung tumor
volumes in positron emission tomography. Med Phys 2007, 34:4223–4235.

35. Belhassen S, Zaidi H: A novel fuzzy C-means algorithm for unsupervised heterogeneous tumor quantification
in PET. Med Phys 2010, 37:1309–1324.
Cite this article as: Rogasch et al.: The influence of different signal-to-background ratios on spatial resolution and
F18-FDG-PET quantification using point spread function and time-of-flight reconstruction. EJNMMI Physics

10.1186/2197-7364-1-12

2014, 1:12
Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

http://www.ejnmmiphys.com/content/1/1/12

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Phantom
	FDG-PET/CT scanning
	Image reconstruction
	Spatial resolution/Gibbs artifacts
	Reference SUV and reference volumes
	Volume segmentation
	Statistical analysis

	Results
	Spatial resolution
	Gibbs artifacts
	SUVmax
	SUVmean
	MTV deviation from reference volumes

	Discussion
	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

