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Abstract 

Purpose:  The problem of image denoising in single-photon emission computed 
tomography (SPECT) myocardial perfusion imaging (MPI) is a fundamental challenge. 
Although various image processing techniques have been presented, they may 
degrade the contrast of denoised images. The proposed idea in this study is to use 
a deep neural network as the denoising procedure during the iterative reconstruc-
tion process rather than the post-reconstruction phase. This method could decrease 
the background coefficient of variation (COV_bkg) of the final reconstructed image, 
which represents the amount of random noise, while improving the contrast-to-noise 
ratio (CNR).

Methods:  In this study, a generative adversarial network is used, where its generator 
is trained by a two-phase approach. In the first phase, the network is trained by a con-
fined image region around the heart in transverse view. The second phase improves 
the network’s generalization by tuning the network weights with the full image size 
as the input. The network was trained and tested by a dataset of 247 patients who 
underwent two immediate serially high- and low-noise SPECT-MPI.

Results:  Quantitative results show that compared to post-reconstruction low pass 
filtering and post-reconstruction deep denoising methods, our proposed method can 
decline the COV_bkg of the images by up to 10.28% and 12.52% and enhance the CNR 
by up to 54.54% and 45.82%, respectively.

Conclusion:  The iterative deep denoising method outperforms 2D low-pass Gaussian 
filtering with an 8.4-mm FWHM and post-reconstruction deep denoising approaches.
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Introduction
Single-photon emission computed tomography (SPECT) myocardial perfusion imag-
ing (MPI) reveals information concerning the uptake of a radioactive compound within 
the heart in three dimensions. It is considered the most frequently performed procedure 
in nuclear cardiology [1]. While the American society of nuclear cardiology (ASNC) 
pointed out that decreasing radiation exposure is essential [2], dose reduction degrades 
image quality due to the inherent noise of these images [3].

Reducing the dose of radiopharmaceuticals or shortening the acquisition time can 
increase the inherent noise. However, iterative image reconstruction methods, which are 
statistical approaches, can decrease the noise to some degree and preserve the accuracy 
of diagnoses. It has been shown that the injected dose or acquisition time of SPECT-MPI 
can be reduced by a factor of two or higher via advanced iterative image reconstruction 
algorithms [4–6]. To this end, Ramon et al. investigated the accuracy of perfusion-defect 
detection in three reconstruction strategies and showed that the administrated dose 
could be reduced without sacrificing diagnostic performance [4].

Conventional approaches use filters in the spatial or frequency domain to suppress the 
noise [7]. One example of these methods is non-local mean filtering which Arabi et al. 
presented in order to perform the denoising process [8]. Moreover, in another study, 
the authors proposed a new hybrid dual-domain filtering approach, combining domain 
and frequency filtering methods to improve signal-to-noise ratio (SNR) and quantitative 
accuracy [7].

In addition to the aforementioned methods, deep learning (DL) algorithms have 
shown promising results in decreasing noise [9]. Various types of neural networks have 
been used in different studies to suppress noise in SPECT. For instance, Ramon et  al. 
investigated two types of neural networks, i.e., convolutional neural network (CNN) and 
auto-encoder network (AE), to reduce the inherent noise of SPECT images and com-
pared the results. They showed that the DL approach could allow for further dose reduc-
tion compared to conventional methods, especially when skip connections are used [10]. 
In another study, Song et al. used a CNN. They showed that marked improvement can 
be obtained both in the noise level of the reconstructed myocardium and in the spatial 
resolution of the left ventricular (LV) wall [11]. Aghakhan Olia et al. used a generative 
adversarial network (GAN) based on the U-Net structure and demonstrated that it can 
effectively recover the underlying information in 1/2-dose and 1/4-dose SPECT images 
[12]. Hashimoto et al. discussed multiple studies demonstrating that some researchers 
attempt to use deep networks to directly reconstruct images from sinograms, aiming to 
produce quick and accurate results. However, this approach may generate artifacts or 
false structures in the reconstructed images [13]. Consequently, other researchers prefer 
to focus on noise reduction using traditional reconstruction methods such as OSEM, 
which is the focus of this study.

All the above mentioned denoising methods used filters and neural networks as post-pro-
cessing tools to suppress random noise in SPECT. However, Mustafovic et al. demonstrated 
that by using inter-iteration filtering, reconstructed images can achieve nearly object-inde-
pendent and uniform resolution [14], which formed the basis of our study. In this paper, we 
propose inter-iteration filtering that uses a GAN as the denoising network after each itera-
tion of the ordered subset expectation maximization (OSEM) algorithm, an iterative image 
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reconstruction process, to reduce the inherent random noise of SPECT images while keep-
ing their contrast. The GAN is trained using image pairs obtained from low-counts (input) 
and high-counts (label) acquisitions of the same patients. Instead of training the network 
in one phase by feeding the image pairs, we innovatively considered two training phases to 
enhance the efficiency of the network. The proposed method is evaluated using real data.

Methods and materials
Problem formulation

In SPECT reconstruction, the measured data in the jth projection element, pj , can be for-
mulated as below:

where qi is the intensity (or activity concentration) within the ith pixel in the image, and 
Mi,j is the probability that emitted photon from the ith pixel will be detected by the jth 
projection element. M is known as detection probability matrix or system matrix which 
is very large. M ∈ R

l×k where l equals the full set of pixel elements ( l = m× n | m, n are 
the image dimensions) and k equals all the projection elements ( k = d × α | d,α are the 
detector elements and projection angles respectively). The objective is to find the maxi-
mum likelihood estimation of the image Q̂ ∈ R

m×n , which can be written as:

where L represents likelihood estimation function, P ∈ R
d×θ is the projection count dis-

tribution that was measured from an estimated intensity distribution in the image space, 
labelled Q.

Assuming the measured data to be Poisson distributed, by using iterative reconstruction 
to find the maximum likelihood estimation problem, function (2) is rewritten as below [15]:

where, n is the iteration number, the ith pixel element of Q̂ image after n iterations, q̂ni  , 
is an estimation of qi , and t is the pixel index similar to i (since the denominator must be 
computed before the rest of formula, t is indexed instead of i to avoid confusion).

After n iterations, each estimated pixel value q̂ni  is related to the real pixel value qi , as 
follows:

where εi represents the error magnitude after n iterations, which is influenced by both 
deterministic and random noise. It is anticipated that in the absence of random noise, 
by accounting for all sources of deterministic noise and patient-induced attenuation and 
scattering in the system matrix M, εni  is significantly reduced as the number of iterations 
increases [16]. However, increasing the number of reconstruction iterations introduces 
higher frequency components into the reconstructed image [16]. In practical scenarios, 

(1)pj ≈
∑

i

Mi,jqi

(2)Q̂ = argmax
Q≥0

L(P|Q)

(3)q̂n+1
i =

q̂ni∑
j Mi,j

×
∑

j

Mi,j ×
pj(∑

t Mt,j × q̂nt
)

(4)q̂ni = qi + εni
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random noise contains high-frequency components. Consequently, increasing the num-
ber of iterations results in higher noise levels in the reconstructed image [16]. One of 
the simplest strategies to suppress both deterministic and random noise is to increase 
the number of iterations while applying a random noise-controlling filter, such as a low-
pass filter, after the reconstruction [16]. The corresponding equation can be expressed as 
follows:

where f : Rn×m → R
n×m ( n×m representing the image dimension) is a filtering func-

tion to regulate the noise in the estimated image Q̂ . � ∈ R
m×n is a noise-suppressed esti-

mation of the real image. Conventionally, f  is modeled by a low-pass filter to reduce 
noise. However, the primary drawback of using simple low-pass filters is that they blur 
the image, suppressing image edges and altering contrast values during filtering. Recent 
studies have demonstrated that deep neural networks provide superior noise filtering 
performance while retaining spatial resolution and quantitative accuracy compared to 
classical filtering methods [13].

If the f  function is used after completing the iterations [17], it is known as the post-
reconstruction filtering/denoising method. In our work, we propose to apply the f  func-
tion after each iteration. In this manner, the number of times when f  is applied equals 
(or less than) the number of iterations. This idea can be formulated as follows:

where,  θn is the ith pixel element of the �n and �n = f
(
Q̂n

)
.

Here, we have applied the proposed f  function two times lesser than the number of 
iterations. (f is not applied in the first two iterations). We have also explored the effects 
of using specific f  for each iteration. We have proposed a GAN to estimate the f  as a 
denoising function in this work. To do that, the GAN has been trained with a pair of 
high- and low-noise images in three training approaches. Moreover, to reduce the num-
ber of iterations, the OSEM [18] reconstruction method is used. In this way after per-
forming all of the sub-iterations and finishing an iteration, f  is applied.

Network architecture

Our implemented network, which we call a two-phase learned convolutional neural net-
work (TPL-CNN), is based on a GAN consisting of two parts; a generator and a discrim-
inator. After exploring various architectures, the CNN network model was proposed for 
both the generator and the discriminator, as shown in Fig. 1.

In the generator, two convolutional and two deconvolutional layers were used. Ten 
3 × 3 convolutional kernels with no padding and a stride of one were utilized through-
out all layers. Each convolutional layer was followed by a batch normalization layer (BN) 
and a leaky rectifier linear unit (ReLU) layer, with a slope of 0.3, as the activation func-
tion. Except for the last convolution layer, ReLU was used for the activation function. We 
also considered including skip connections, which directly concatenate the values from 
an input layer to the values at the output layer having the same dimension. These skip 

(5)� = f (Q̂)

(6)q̂n+1
i =

θni∑
j Mi,j

×
∑

j

Mi,j ×
pj(∑

t Mt,j × θnt
)
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connections were introduced to address the potential risk of sacrificing essential image 
details when increasing the number of encodings. They facilitate a parallel pathway for 
conveying image features from shallower encoding layers to deeper decoding layers, 
effectively resolving this concern [19].

The discriminator comprised two convolutional layers with ten kernel sizes of 3 × 3. 
Each convolution layer was connected to a BN, and a leaky ReLU with a slope of 0.3 was 
used as the activation function. A flatten layer was used to convert the spatial dimen-
sions of the previous layers into a single one-dimensional vector that can be used as 
input for the last layer, which is a dense layer.

The information about the architecture of the applied network has been represented in 
appendix with the caption of “TPL-CNN Characteristics.”

Network implementation

In SPECT-MPI, the myocardium is of interest, which is much smaller than the entire 
reconstructed image, and the vast majority of the image pixels correspond to back-
ground regions (or other organs) outside the heart volume, which reduces the accuracy 
of a network. Hence, the network can be trained only with this ROI to improve its accu-
racy [10, 12]. On the other hand, the network must see the entire reconstructed images 
to improve its generalization. Therefore, the network is trained by a two-phase algorithm 
presented at the SNMMI 2022 conference [20].

Fig. 1  Architecture of the generator and discriminator networks in the GAN model of the TPL-CNN
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In the first phase of this algorithm, the aforementioned network is trained with 
reconstructed images from high-noise and low-noise data that contain only the car-
diac region as the input and output of the network. These smaller image pairs, each 
of size  32× 24 pixels, are automatically prepared using QCard-NM package as pro-
posed in [21, 22]. This package identifies a fixed-size rectangle encompassing the 
cardiac region. The ROI is then presented to the user. If the ROI does not properly 
surround the left ventricle, the user has the option to manually adjust its position.

Subsequently, the cropped images are rotated with angles of + 20° and − 20° and 
translated along the x and y axes in both positive and negative directions using Python 
libraries. This expands the image set to seven times its original amount. The image 
order is then randomly shuffled before being fed as input to the neural network.

When the random initial weights of the first network are updated, they serve as the 
initial weights of the second network in a process called transfer learning. The second 
network has the same architecture as the first network, except for the input and out-
put layer sizes, which remain the same as the original reconstructed image sizes, i.e., 
64 × 64 pixels. In transfer learning, the size of the filters (kernels) and weights within 
the convolutional layers generally do not need to be altered if the input size changes. 
This process is illustrated in Fig. 2.

In our implementation, we first applied one iteration of OSEM with four sub-itera-
tions and used it as the input for the iterative denoising process. The iterative denois-
ing process tries to reduce the noise of the input image in four iterations. Hereby, 
the input data is denoised in each iteration of the iterative denoising process by the 
TPL-CNN before being reconstructed for one more iteration with OSEM. The overall 
algorithm flowchart is presented in Fig. 3.

Fig. 2  Flowchart of the two-phase learning process of the TPL-CNN training



Page 7 of 22Yousefzadeh et al. EJNMMI Physics           (2024) 11:82 	

All image reconstruction methods in our work were done in fully two-dimensional 
mode. The neural network was implemented using the Keras deep learning framework 
2.8.0 based on the TensorFlow libraries 2.8.2 in Python 3.9. All the experiments were 
conducted on NVIDIA GeForce GTX 1050 with a 4GB memory graphical processing 
unit. During training, the generator is updated via a weighted sum of both adversarial 
and L2-norm loss. The trainable parameters were updated to minimize the L2-norm 
loss calculated between the predicted images and the reference input images. The binary 
cross entropy loss function was used to train the discriminator model. Adaptive moment 
estimation (Adam) optimizer with a learning rate of 1× e−4 was used to minimize the 
loss functions.

Dataset

In total, 247 patients were referred for MPI, and two immediate serially high and low-
noise SPECT data were acquired as the input and ground truth images. For each scan, 32 
projections with matrix size of 64 × 64 were acquired and the data is reconstructed using 
OSEM algorithm for five iterations with four sub-iterations. The data were divided into 
three subsets: 1) one with 149 patients used for training, 2) one with 49 patients used 
as the validation set, and 3) the other 49 patients were used for performance evaluation 
(denoted as the test set). Patients were unmoved between acquisitions. Cases were ran-
domly divided into training, validation, and evaluation sets. Acquired high and ground 
truth low-noise image-pairs were obtained from 10- and 30-s acquisition time per pro-
jection, respectively.

Experimental setup

Due to the device’s inability to capture the list mode, we were compelled to conduct the 
high-noise scan in a serial manner. The experimental setup was meticulously designed, 
involving the standard scan (low-noise), which took 10 min, followed by the fast scan 
(high-noise), which took 3 min. Patients remained unmoved on the bed for 13 min after 
an hour of injection, during which the changes in activity distribution and decay were 

Fig. 3  Flowchart of the iterative denoising algorithm. OSEM is used as the reconstruction tool. Each iteration 
of the OSEM reconstruction method consists of four sub-iterations
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deemed insignificant based on the assumptions of the myocardial scan. Tc-99 m sesta-
mibi 2-days protocol was used to perform the rest/stress scan. The used dataset contains 
both the rest and stress phases. The administered doses were based on the weight of the 
patients (8 MBq/kg) [22]. Rest acquisition started 60 min after the tracer was injected. 
Pharmacological stress was induced by an infusion of dipyridamole, and 3  min after 
the dipyridamole slow infusion, the radiotracer was injected. Stress acquisition started 
45–90 min after the injection.

The SPECT studies were acquired with a dual-head detector camera, with low-energy, 
high-resolution collimators, a 20% symmetrical window at 140 keV, and a 64 × 64 matrix 
size. For each scan, 32 projections with 10- and 30-s per projection were acquired.

CorCam Gamma Camera System (DDD-Diagnostic, Denmark) was used to acquire 
the images. No attenuation, scatter, and detector response corrections were applied to 
maintain the generality of the proposed approach.

Parameter selection

Parameter selection in neural networks involves determining various parameters to 
achieve optimal denoising effects. The learning rate is considered the most important 
hyperparameter in training neural networks that network converges and has been set to 
0.001 in our experiments. We used Adam, an adaptive gradient descent optimizer, which 
generally works well with a fixed learning rate. Moreover, we used normalization, allow-
ing good results even with exotic learning rates. Therefore, we set the batch size to 32 to 
prevent occupying a large amount of memory, which can slow down the training pro-
cess. As the number of layers or filters increased, the computation time also increased, 
but with a slight improvement in the output. Therefore, setting fewer layers and filters 
was reasonable for finding the optimal balance between computational performance 
and cost, which was four and 32 for layers and filters, respectively. To select the epoch 
number, we used a validation set given to the network after each epoch, and the PSNR, 
RMSE, and SSIM metrics values were measured in each epoch. An acceptable epoch 
was selected when there was no significant improvement in the value of the mentioned 
metrics, and they were oscillating between the same values. The results are presented in 
Table S-1 in the Supplementary Information section.

TPL‑CNN training approaches

We considered three different approaches to train the TPL-CNN. The neural network’s 
architecture in all approaches is the same, though the input fed to the neural network to 
be trained is different.

Solo training

This method trains the TPL-CNN using reconstructed data images that have undergone 
two iterations of the OSEM, including both input and ground truth counterparts. The 
same neural network is used throughout the denoising process, as the algorithm calls it. 
This means that the function f in Eq. (5) remains constant throughout the whole process.
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Mélange training

This method uses reconstructed image pairs acquired from different stages of the 
OSEM algorithm to train the TPL-CNN. The training data for this network is a mix-
ture of image pairs acquired from two, three, four, and five iterations of the OSEM. 
However, throughout the entire process of denoising, this trained TPL_CNN network 
is consistently utilized, as stated by the algorithm. In a manner similar to the solo 
training approach, the function f in Eq.  (5) remains constant throughout the entire 
procedure.

Distinctive training

This method employs several neural networks with identical architectures but distinct 
training data. Depending on the stage of the OSEM reconstruction, a neural network 
is explicitly trained. For instance, the neural network inputs consist of image pairs 
reconstructed using two iterations of OSEM for the second iteration of OSEM recon-
struction, and a new network is trained using image pairs reconstructed using three 
iterations of OSEM for the third iteration of OSEM reconstruction. The remaining 
OSEM iteration stages also follow this same pattern. Accordingly, in contrast to two 
previous approaches, the function f in Eq. (5) is changed after each OSEM iteration.

Evaluation

We compared the proposed method with the conventional reconstruction method 
(OSEM), Gaussian post filtering method, iterative Gaussian filtering method, and 
CNN denoising method. All of the Gaussian filters used in this study are in two 
dimensions and were created using the MATLAB library named “imgaussfilt,” which 
is mainly defined for two-dimensional objects like images.

Conventional reconstruction method

This method is the conventional application of reconstruction done with the OSEM 
algorithm on our acquired high- and low-noise data without any filtration.

Gaussian post filtering

This method uses a Gaussian filter directly to the reconstructed images. After images 
are completely reconstructed using OSEM, a Gaussian filter with Full width at half 
maximum (FWHM) of 8.4 mm, according to the device manufacturer’s suggestion, is 
applied as the post-reconstruction filter to reduce their noise level.

Iterative gaussian filtering

In this method, a Gaussian filter is used as the smoothing filter though it is not used 
as the post-processing filter. This method is made up of repetitive application of 
reconstructing and filtering. In this way, after each step of the OSEM reconstruction 
algorithm, a Gaussian filter with FWHM of 8.4 mm is used to smooth the noise of 
the reconstructed image, and then the next step of OSEM is applied to this smoothed 
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image. This means that, like our proposed method, we use Eq. (5) to reconstruct the 
image. However, in this case, the function f is a Gaussian filter instead of TPL_CNN.

CNN denoising

This method uses a GAN with a similar architecture as the TPL-CNN as a post-processing 
noise reduction tool instead of conventional filters. To do this, first, a GAN is needed to be 
trained in a way to learn to reduce the noise level of the given images. Then, this trained 
GAN denoising filter is used after the OSEM reconstruction algorithm as the post filter, 
and the output images of the OSEM algorithm, which is completely done for five iterations, 
are fed to it to be filtered. High- and low-noise image pairs reconstructed with five itera-
tions and four sub-iterations of the OSEM are fed as the input to train this denoising net-
work. This network is also trained in two phases. First, images with the size of 32× 24 that 
only contain cardiac regions are used to train the first network, and then its trained weights 
are used as the initial weights of the second network, which architecture is the same as the 
first one except for the input layer size that receives 64 × 64 image size. This network is the 
same as the network used in the Distinctive Training method for image pairs with five itera-
tions of the OSEM. Therefore, the trainable parameters are updated using the exact loss 
function and optimizer with the same learning rate. Hence, the learned parameters are in 
their optimal values.

Qualitative and quantitative evaluations

Qualitative and quantitative evaluations of the proposed framework were performed 
on 49 subjects, referred to as the test dataset. Three SPECT images (acquired from solo, 
mélange, and distinctive training of the TPL-CNN) were compared to reconstructed ref-
erence images with the OSEM algorithm (five iterations with four sub-iterations) derived 
from high-noise projections. The performance of the TPL-CNN was evaluated through 
five metrics including root mean squared error (RMSE), the coefficient of variation in the 
background (COV_bkg), structural similarity index metrics (SSIM), contrast-to-noise ratio 
(CNR) and edge preservation index (EPI) all presented in Eqs. (7)–(11) respectively. Moreo-
ver, these metrics were also calculated for the high noise images to provide a baseline for 
the performance assessment of methods. After selecting the appropriate training method 
for TPL-CNN, its SNR, and contrast were assessed and compared with those of the other 
methods.

RMSE

RMSE measures the differences between the predicted and the observed values using 
Eq. (7).

where Iv is the observed low-noise reconstructed image, Iu is the predicted image, w is 
the total number of pixels and g is the intended pixel.

(7)RMSE =

√√√√ 1

w

w∑

g=1

(
Iu(g)− Iv(g)

)2
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Cov_bkg

Coefficient of variation (COV) measures the relative variability or dispersion of data 
around the mean in a sample or population. When computed over a uniform region 
of interest (ROI), it represents the amount of random noise. Therefore, the COV of 
the same ROIs (lung region) in the background of the estimated outputs and their 
low-noise counterparts was considered and calculated using Eq. (8):

where  S and σ represent the mean and standard deviation for ROI, respectively.

CNR

CNR is also used to assess image quality. However, CNR can consider a significant 
bias in the image by subtracting one term before calculating the ratio. As a result, an 
image may have a high SNR but a low CNR [23]. In this order, in one of the slices, the 
location of the left ventricle and its hole (cavity) are once selected manually and saved 
as the ROI and the background region, respectively. The slice number for each patient 
is also saved. Then, these saved locations of the specific slices are used to calculate 
CNR using Eq. (9), [23].

where S and σ represent the mean and standard deviation for ROI, respectively.

SSIM

SSIM is a model that considers image degradation as perceived change in structural 
information, while also incorporating important perceptual phenomena, including 
both luminance masking and contrast masking terms. It is used to measure the simi-
larity between two images and is defined as in Eq. (10).

where µIu is mean of the predicted image, µIv is mean of the low-noise image, δ2Iu is vari-
ance of the predicted image,  δ2Iv is variance of the low-noise image, and δIuIv is covariance 
between the predicted and the low-noise images. c1 and c2 are regularization constants 
dependent on the image’s luminance dynamic range, which depends on the data type of 
the input image and are equal to 0.01× luminance dynamic range and 0.03× luminance 
dynamic range, respectively. As in our implementation, this range equals [0, 1], c1 and c2 
are equal to 0.01 and 0.03.

(8)COV _bkg =
σbackground(ROI)

Sbackground(ROI)

(9)CNR =

∣∣Smyocardium (ROI) − Scavity
∣∣

√
σmyocardium (ROI) + σcavity

(10)SSIM(Iu, Iv) =

(
2µIuµIv + c1

)(
2δIuIv + c2

)
(
µ2
Iu
+ µ2

Iv
+ c1

)(
δ2Iu + δ2Iv + c2

)
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EPI

EPI can effectively evaluate the degree of edge preservation of denoised images. As 
our denoised estimations of the different methods are slice-based, which are two-
dimensional images, this index has been measured in all two-dimensional slices of the 
test set that can be calculated using Eq. (11) [24].

where �Iu and �In represent the high pass filtered versions of the denoised and noisy 
images, obtained with a 3× 3 pixel standard approximation of the Laplacian operator, 
respectively. �Iu and �In are the �Iu and �In mean values, respectively. The larger EPI 
value indicates a greater ability to preserve edges.

Statistical analysis

The mean and standard deviation of the above metrics were calculated and reported 
in the results. Additionally, the One-Way ANOVA test, a statistical method that com-
pares the mean values of samples, was conducted for statistical analysis to compare 
the image-derived metrics using IBM SPSS Statistics software Version 26. The p val-
ues obtained from the statistical test were also presented in the results. A p value less 
than 0.05 was considered significant. Additionally, the post hoc Tukey’s Honest Sig-
nificant Difference (HSD) test was also used to assess the significance of differences 
between pairs of group means.

Results
Qualitative assessment

Figure 4 illustrates the estimated outputs of different approaches compared to their 
low- and high-noise counterparts. The visual inspection revealed that the TPL-
CNN method could generally predict images with lower noise and higher resolu-
tion. Among the different training approaches of the TPL-CNN, it is observed that 
solo and distinctive training of the network can improve image quality better than 
the mélange training. However, TPL-CNN with solo training makes the ventricle wall 
thicker than the distinctive training of the TPL-CNN.

The conventional horizontal and vertical long-axis and short-axis sections of the 
myocardium for each training method have also been presented in the Fig. 1 of the 
Supplementary Information section.

Figure 5 illustrates a comparison between the chosen proposed method (TPL-CNN 
with distinct training) and other techniques, including conventional reconstruction 
method, Gaussian post filtering, iterative Gaussian filtering, and CNN denoising. The 
results show that iterative Gaussian filtering can decrease the noise level the most, 
while the contrast seems to be reduced. On the other hand, TPL-CNN (distinct train-
ing) significantly decreased the noise level, while causing the least amount of contrast 
degradation compared to the other method.

(11)EPI =

∑(
�Iu −�Iu

)(
�In −�In

)
√∑(

�Iu −�Iu
)2∑(

�In −�In
)2
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Fig. 4  Predicted outputs for a randomly selected patient from the test dataset acquired from solo, mélange, 
distinctive training of the TPL-CNN compared to the reference low-noise and high-noise images. All images 
are normalized to one and shown on the right side of each image
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The conventional horizontal and vertical long-axis and short-axis sections of the 
myocardium for each method have also been presented in the Fig. 2 of the Supple-
mentary Information section.

Fig. 5  Predicted outputs for a randomly selected patient from the test dataset acquired from Gaussian post 
filtering, iterative Gaussian filtering, CNN denoising, and distinctive training of the TPL-CNN compared to the 
reference low-noise and high-noise images. All images are normalized to one and shown on the right side of 
each image
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Quantitative analysis

Table 1 shows that the predicted images obtained from the TPL-CNN with the dis-
tinctive training approach exhibit the highest improvement in CNR (30.48 ± 8.34), 
SSIM (0.57 ± 0.08), and EPI (0.46 ± 0.13), while reaching the lowest COV_bkg 
(0.43 ± 0.04). Conversely, the TPL-CNN with the mélange training approach resulted 
in the lowest increase in CNR (20.84 ± 6.84), SSIM (0.53 ± 0.07), and EPI (0.37 ± 0.12) 
metrics, while reaching the highest COV_bkg (0.48 ± 0.033). The results exhibit that 
the TPL-CNN can decrease RMSE up to (0.06 ± 0.01), almost the same for all training 
approaches. In calculating SSIM, EPI, and RMSE, the ground truth was the low-noise 
data. Therefore, these three metrics show the best results in low-noise data since they 
compare the ground truth with itself.

The results of the ANOVA test show that there are statistically significant differ-
ences in the evaluation metrics across different approaches. The post hoc analysis 
conducted with the Tukey test suggests a significant difference between the TPL-CNN 

Table 1  The results of the evaluation metrics of the predicted test images in different training 
methods of the TPL-CNN; evaluation metrics are presented in mean ± std. (post-hoc test p-value)

COV_bkg coefficient of variation in the background, CNR contrast-to-noise ratio, RMSE root mean squared error, SSIM 
structural similarity index metrics, EPI edge preservation index, p-value: the significance of the mean difference between 
each method and the OSEM reconstruction of the low-noise data is calculated by the post-hoc test at the 0.05 level. The 
bolded values indicate the best performance achieved

Evaluation metrics COV_bkg CNR SSIM EPI RMSE

High noise image 0.64 ± 0.03
(0.000)*

2.92 ± 2.16
(0.000)*

0.19 ± 0.04
(0.000)*

0.001 ± 0.08
(0.000)*

0.11 ± 0.01
(0.000)*

Solo training 0.45 ± 0.04
(0.001)*

23.10 ± 7.95 (0.435) 0.56 ± 0.07
(0.000)*

0.43 ± 0.13
(0.000)*

0.06 ± 0.01
(0.000)*

Mélange training 0.48 ± 0.03
(0.998)

20.84 ± 6.84
(1.000)

0.53 ± 0.07
(0.000)*

0.37 ± 0.12
(0.000)*

0.06 ± 0.01
(0.000)*

Distinctive training 0.43 ± 0.04
(0.000)*

30.48 ± 8.34
(0.000)*

0.57 ± 0.08
(0.000)*

0.46 ± 0.13 (0.000)* 0.06 ± 0.01
(0.000)*

Low noise image 0.48 ± 0.04 20.619 ± 8.715 1 ± 0 1 ± 0 0 ± 0

Table 2  The results of the evaluation metrics of the estimated test images in different comparison 
methods

COV_bkg coefficient of variation in the background, CNR contrast-to-noise ratio, p-value: the significance of the mean 
difference between each method and the OSEM reconstruction of the low-noise data is calculated by the post-hoc test at 
the 0.05 level. The bolded values indicate the best performance achieved

Method COV_bkg 
Mean ± std
(p-value)

CNR 
Mean ± std
(p-value)

OSEM reconstruction
(High-noise)

0.639 ± 0.032
(0.000)*

2.922 ± 2.157
(0.000)*

Gaussian post filtering 0.480 ± 0.036
(1.000)

13.854 ± 7.111
(0.000)*

Iterative Gaussian filtering 0.391 ± 0.041
(0.000)*

12.140 ± 6.086
(0.000)*

Neural network post filtering 0.493 ± 0.033
(0.424)

16.514 ± 9.042
(0.063)

Distinctive training 0.431 ± 0.038
(0.000)*

30.478 ± 8.339
(0.000)*

OSEM reconstruction
(Low-noise)

0.477 ± 0.040 20.619 ± 8.715
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with the distinctive and low-noise data in COV_bkg and CNR. When comparing 
TPL-CNN with distinctive and the other two training approaches, the results demon-
strate a significant difference in CNR values. Therefore, TPL-CNN, with the distinc-
tive training approach, is our chosen network for the rest of the study. The remaining 
metrics are detailed in the Table S-2 of the Supplementary Information section.

Table  2 summarizes the results of the statistical analysis of image quality metrics 
(mean ± SD), including COV_bkg, and CNR between the different SPECT images 
acquired from different comparison methods, and TPL-CNN with distinctive training 
approach. The proposed method shows the highest CNR value (30.48 ± 8.34) with a 
low COV_bkg (0.43 ± 0.04) compared to the other methods. Since the main purpose of 
this study is to reduce the noise while maintaining the contrast, these two metrics were 
solely discussed here. The remaining metrics are detailed in the Table S-3 of the Supple-
mentary Information section.

The results of the ANOVA test show that there are statistically significant differences 
in the evaluation metrics among all six evaluated denoising approaches. According to the 
Tukey post-hoc test, although the iterative Gaussian filtering has the lowest COV_bkg, it 
has the worst CNR value. Conversely, while the COV_bkg of the proposed method with 
the chosen network (TPL-CNN with the distinctive training) was only slightly higher 
than that of iterative Gaussian filtering, making it the second most effective denoising 
method, it outperformed the others in terms of CNR values.

Discussion
This study aimed to reduce the amount of inherent noise of SPECT-MPI that was a result 
of low counting of gamma ray during data collection process of these images. Although 
several spatial filtering methods were applied in this order, it has been showed that neu-
ral networks could result in better denoised outputs. The crucial aspect of this study is 
that we proposed a method in which filtering is performed during the reconstruction 
process, while previous studies were mostly focusing on denoising before or after recon-
structing the image. To this end, GAN networks were trained and used in each step of 
reconstruction process.

While conventional deep denoising methods are typically applied post-reconstruction, 
pre-reconstruction deep denoising has also been explored. Studies have shown that 
GAN networks can outperform other deep denoising models when applied pre-recon-
struction [25]. However, pre-reconstruction denoising can alter the Poisson-nature of 
the acquisition data, potentially affecting the performance of maximum likelihood type 
reconstruction commonly used in SPECT [26]. Additionally, iterative deep denoising 
during reconstruction has been reported in positron emission tomography (PET) scans. 
One approach is to use a pre-trained network as a prior for maximum a posteriori type 
reconstruction [27]. Another method is to incorporate the network as an additional 
argument in the maximum likelihood maximization step of iterative reconstruction [28]. 
To the best of our knowledge, this is the first study to apply an iterative deep denoising 
network in SPECT and use it as an analytical filter within iterations.

Our findings indicate that the source of the training dataset significantly impacts the 
evaluation metrics. The results suggest that using a distinct denoising network for each 
iteration can be more effective than a single “one-size-fits-all” network. Results also show 
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that when considering TPL-CNN with solo training, the left ventricle wall of predicted 
images is estimated to be thicker than the low-noise images of their counterparts. How-
ever, this issue is addressed in TPL-CNN with distinctive training. Moreover, results 
show that when considering TPL-CNN with mélange, although the amount of noise has 
decreased, the shape of the predicted left ventricle has changed. This can be interpreted 
as the mélange network, which encompasses large differences in signal and noise levels, 
fails to adapt its filtering to the noise level in the input images. Similarly, since the solo 
network has only been trained on blurred low-noise images originating from the second 
OSEM iteration, it produces blurred low-noise images as output.

Previously reported deep learning denoising methods often suffer from a resolution-
noise trade-off, which manifests as blurring of the image [26, 29]. However, it has been 
shown that by extracting the myocardium centered in the image dataset and training a 
network with this patch, the blurring effect can be reduced [10, 30]. Meanwhile man-
ual extraction of the myocardium is time-consuming and limited when denoising of the 
entire image is needed. We have used two strategies to compensate for these limitations. 
First, we used an in-center developed automatic three-dimensional cardiac segmenta-
tion package to patch the myocardium (QCard-NM) [21, 22]. Second, we used a two-
step training strategy to overcome the second limitation by transferring the learning of 
the network trained with the myocardium patch to another network that must denoise 
the full-size image. This improved the performance of the overall system and resulted in 
less blurring artifact [20].

In our research, we acquired high-noise images using a separate fast SPECT acqui-
sition. This fast scan, which took approximately one-third of the standard acquisition 
time, followed immediately after the standard SPECT scan. However, other papers have 
reported various methods for generating high-noise images in the context of denoising 
SPECT data. Compared to one common method, bootstrapped sampling from recorded 
events during the standard SPECT acquisition, our proposed method exposes potential 
changes in radiotracer kinetics, particularly in extracardiac regions. Additionally, patient 
motion between adjacent scans, which is not a concern in bootstrapped sampling, may 
impact our approach. Another alternative involves manually adding Poisson noise to the 
standard scan. However, this method introduces unrealistic noise patterns that are easily 
discernible by artificial intelligence algorithms, making them straightforward to remove 
from the high-noise image. In contrast, our proposed method offers a more realistic 
noise profile, enhancing the fidelity of high-noise image acquisition. Hence, the denois-
ing strategy based on our approach may prove more effective in real-world scenarios. 
Another approach for obtaining high-noise images involves low-dose injected activity 
imaging. This approach is applicable in preclinical laboratories (such as animal studies) 
and can be simulated using computer tools. As injected activity increases, recorded scat-
ter counts rise, leading to higher noise levels during fast acquisitions compared to low-
dose imaging. As a result, our accelerated scan may exhibit greater noise propagation, 
including additive noise from patient motion, when compared to an equivalent real or 
simulated high-noise scan [31].

It has been found that among different deep network architectures (CNN, residual 
neural network (ResNet), UNet, GAN), GAN outperformed the others in SPECT or PET 
denoising tasks [12, 26]. However, contradictory findings have also been presented in 
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PET studies [32, 33]. Despite this, we chose to use GAN networks in this study because 
the high-noise image was acquired from a separate scan instead of bootstrap sampling of 
the standard scan. Since in our study there may be some deformation of signal content 
in the high-noise image compared to the low-noise image, the GAN network would out-
perform in this study. In a GAN network, the discriminator evaluates the content of the 
generated image by comparing it to a real low-noise image. In contrast, other convolu-
tional networks typically evaluate paired images on a pixel-by-pixel basis.

Using skip connections in the generators of GAN networks makes deep denoising net-
works less sensitive to the number of layers and filters. This issue is associated with the 
concept of overfitting in the presence of shallow layers [10]. Our optimization analysis 
found that a network with a higher number of layers and filters leads to less accurate 
results, which has also been reported in previous studies [10]. Compared to other imag-
ing modalities such as computerized tomography (CT) or Magnetic resonance imaging 
(MRI), SPECT-MPI images have lower image resolution and reduced anatomical detail, 
resulting in necessity of less complex deep denoising networks.

Limitations and further studies
In the TPL-CNN method proposed in this study, the architecture of the neural network 
remained constant from the lower to the last iterations of OSEM. However, since the 
reconstructed signal and noise vary among different iterations, it may improve overall 
system performance if the complexity of the network changes in accordance with the 
number of iterations passed. The effect of using deeper networks in higher iterations of 
OSEM could be investigated in future studies.

It should be noted that our results are based on a dual-head DDD dedicated cardiac-
SPECT (CorCam). While we acknowledge the existence of other hardware methods for 
achieving low noise images with low-dose (or fast) scanning (such as high-sensitivity 
systems, cardio-centering converging collimation, CZT-based detectors, and full cover-
age detector rings [34]), we believe that the denoising approaches described in this paper 
could also be applied to these systems. This would likely result in even further reduc-
tions in dose without compromising diagnostic accuracy.

We reconstructed the images using our in-house simple two-dimensional OSEM 
code,1 with respect to [18], without any specific correction methods, rather than apply-
ing commercially available reconstruction software. Despite this, our simple code 
shares a common theoretical foundation with the algorithms employed by vendors. 
The inclusion of attenuation, scatter, and resolution correction for OSEM has been 
shown to improve image quality and detection performance [4]. While this combina-
tion of corrections was not developed by us to maintain the generality, it may enhance 
the effectiveness of denoising methods. Moreover, since the effective number of itera-
tions (iterations*subsets) can affect the convergence of image signal as well as the noise 
properties of the image, it appears optimal to adjust the reconstruction parameters for 
low-dose (or fast) scanning to achieve an perfect balance between noise level and sig-
nal convergence when using different denoising strategies [8]. Nevertheless, the ultimate 

1  https://​github.​com/​FYous​efzad​eh/​in-​house-​simple-​OSEM2D-​code.​git.

https://github.com/FYousefzadeh/in-house-simple-OSEM2D-code.git
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conclusion of the proposed idea and the qualitative ranking of different denoising strate-
gies evaluated in this study is independent of the specific details of the reconstruction 
implementation and correction techniques.

The total time taken for the reconstruction process using the simple two-dimensional 
OSEM code written in MATLAB with the computer’s GPU (introduced in the Network 
Implementation section) is approximately about 2.488 s for an image with dimensions 
of 64 × 64 pixels. When the TPL_CNN is added as a filter in the middle of the recon-
struction process, this time increases to about 4.441 s. However, this increase can be 
considered negligible due to the improved results achieved. It is worth noting that these 
estimated times can be reduced by using a more powerful GPU.

Currently only non-gated serial mode data sets were employed in this study. Moreover, 
the dataset is not variant due to different clinical defects. Although three-dimensional 
image reconstruction yields better image characteristics, this study utilizes the two-
dimensional reconstruction mode to maintain generalization since the device’s system 
matrix was unavailable. Further evaluations regarding gated data sets, listed mode ones, 
diverse datasets of all types of defects, as well as other reconstruction frameworks such 
as three-dimensional image reconstruction and PET are our future work. Additionally, 
the two-dimensional Gaussian filters used in comparison methods were not optimized 
in this study. Exploring this aspect has been left to the future work.

Conclusion
In this work, an iterative noise reduction algorithm that uses a CNN form, which was 
trained via GAN (TPL-CNN), during the reconstruction process was proposed to 
improve the resolution of non-gated SPECT-MPI images. In previous studies, the effi-
ciency of a two-phase learned approach was demonstrated. In this study, we have shown 
that for the SPECT-MPI denoising approach, applying the CNNs iteratively during the 
reconstruction process is more beneficial than applying it post-reconstruction. Quan-
tification results show that the proposed method performs better than post-processing 
methods, which use a spatial filter like a Gaussian filter or a neural network as a filter to 
decrease the noise of reconstructed images. Furthermore, we found that using a distinc-
tive network (same architecture but different training dataset) after each reconstruction 
iteration is more effective than using a single ‘one-size-fits-all’ network (same architec-
ture and training dataset) for the SPECT-MPI denoising approach. In order to enhance 
the results, other neural network structures and ways to optimize the training param-
eters using other types of data sets can be studied in the future.

Appendix
See Table 3.
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Abbreviations
Adam	� Adaptive moment
AE	� Auto-encoder network
ASNC	� American society of nuclear cardiology
BN	� Batch normalization
CNN	� Convolutional neural network
CNR	� Contrast-to-noise ratio
COV	� Coefficient of variation
COV_bkg	� Coefficient of variation in the background
CT	� Computerized tomography
DL	� Deep learning
EPI	� Edge preservation index
GAN	� Generative adversarial network
HSD	� Honest significant difference
LV	� Left ventricular
MPI	� Myocardial perfusion imaging

Table 3  TPL-CNN Characteristics

Block no. Layer no. Layer name Layer characteristics

Generator layers arrange and their specifications

1 Input Phase1: 32× 24 images
Phase2: 64× 64 images

1 2 Convolution 10 3× 3 convolutions with stride 1 and padding ‘valid’

3 Batch normalization momentum = 0.9

4 Leaky ReLU alpha = 0.3

2 5 Convolution 10 3× 3 convolutions with stride 1 and padding ‘valid’

6 Batch normalization momentum = 0.9

7 Leaky ReLU alpha = 0.3

3 8 Deconvolution 10 3× 3 convolutions with stride 1 and padding ‘valid’

9 Skip connection Concatenate output of the 4th layer with output of the 
8th 00layer

10 Batch normalization momentum = 0.9

11 Leaky ReLU alpha = 0.3

4 12 Deconvolution 10 3× 3 deconvolutions with stride 1 and padding ‘valid’

13 Skip connection Concatenate the input layer with output of the 12th layer

14 Batch normalization momentum = 0.9

15 ReLU ReLU

Discriminator layers arrange and their specifications

1 Input Phase1:  32× 24 images
Phase2: 64× 64 images

1 2 Convolution 10 3× 3 convolutions with stride 1 and padding ‘valid’

3 Batch normalization momentum = 0.9

4 Leaky ReLU alpha = 0.3

2 5 Convolution 10 3× 3 convolutions with stride 1 and padding ‘valid’

6 Batch normalization momentum = 0.9

7 Leaky ReLU alpha = 0.3

8 Flatten Phase1: 1 × 5600 array
Phase2: 1 × 36,000 array

9 Dense 1 neuron

Training option

Max epochs 80

Solver for generator network Adam optimizer

Learning rate 0.0001

Loss function Binary cross entropy
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MRI	� Magnetic resonance imaging
OSEM	� Ordered subset expectation maximization
PET	� Positron emission tomography
QPS	� Quantitative perfusion SPECT
ReLU	� Rectifier linear unit
ResNet	� Residual neural network
RMSE	� Root mean squared error
ROI	� Regions of interest
SNR	� Signal-to-noise ratio
SPECT	� Single-photon emission computed tomography
SSIM	� Structural similarity index metrics
TPL-CNN	� Two-phase learned convolutional neural network
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