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Abstract 

Background:  Accurate attenuation correction (AC) is vital in nuclear medicine, par-
ticularly for quantitative single-photon emission computed tomography/computed 
tomography (SPECT/CT) imaging. This study aimed to establish a CT-free quantification 
technology in kidney SPECT imaging using deep learning to generate synthetic attenu-
ation maps (μ-maps) from SPECT data, thereby reducing radiation exposure and elimi-
nating the need for CT scans.

Results:  A dataset of 1000 Tc-99m DTPA SPECT/CT scans was analyzed for training (n 
= 800), validation (n = 100), and testing (n = 100) using a modified 3D U-Net for deep 
learning. The study investigated the use of primary emission and scattering SPECT 
data, normalization methods, loss function optimization, and up-sampling techniques 
for optimal μ-map generation. The problem of checkerboard artifacts, unique to μ-map 
generation from SPECT signals, and the effects of iodine contrast media were evalu-
ated. The addition of scattering SPECT to primary emission SPECT imaging, logarithmic 
maximum normalization, the combination of absolute difference loss (L1) and three 
times the absolute gradient difference loss (3 × LGDL), and the nearest-neighbor inter-
polation significantly enhanced AI performance in μ-map generation (p < 0.00001). 
Checkerboard artifacts were effectively eliminated using the nearest-neighbor inter-
polation technique. The developed AI algorithm produced μ-maps neutral to the pres-
ence of iodine contrast and showed negligible contrast effects on quantitative SPECT 
measurement, such as glomerular filtration rate (GFR). The potential reduction in radia-
tion exposure by transitioning to AI-based CT-free SPECT imaging ranges from 45.3 
to 78.8%.

Conclusion:  The study successfully developed and optimized a deep learning 
algorithm for generating synthetic μ-maps in kidney SPECT images, demonstrating 
the potential to transition from conventional SPECT/CT to CT-free SPECT imaging 
for GFR measurement. This advancement represents a significant step towards enhanc-
ing patient safety and efficiency in nuclear medicine.
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Background
Quantitative methods used in nuclear medicine rely heavily on accurate attenuation 
corrections (AC). The AC assesses the attenuation coefficients of the matter of interest. 
Initially, these coefficients were mathematically determined for homogeneous organs, 
such as the brain [1]. Later, transmission scans using external radionuclides generated 
attenuation maps (μ-maps) for non-homogeneous organs [2]. X-ray computed tomogra-
phy (CT) has become the preferred method for AC across organs because of its superior 
image quality, reduced imaging time, and precise tissue delineation compared to radio-
nuclide transmission scans [3].

Quantitative single-photon emission computed tomography/computed tomography 
(SPECT/CT) is an emerging modality in nuclear medicine, where CT plays a crucial role 
in AC [4]. The μ-map, based on CT Hounsfield units, integrates into the reconstruction 
of quantitative SPECT images. The results are clinically invaluable quantitative param-
eters, such as the percent injected dose (%ID) and standardized uptake value (SUV) of 
target organs [5–7].

Recent advancements in artificial intelligence (AI) have profoundly affected SPECT/
CT imaging. Networks like convolutional neural network (CNN) or generative adver-
sarial network (GAN) can create a synthetic μ-map without requiring a CT scan [8, 9]. 
These AI-driven innovations have been particularly effective in myocardial perfusion 
SPECT [10] and quantitative thyroid SPECT [11] imaging, leading to reduced radiation 
exposure in patients.

Technetium-99m diethylenetriaminepentaacetic acid (Tc-99m DTPA) renal scintigra-
phy is used to diagnose renal disorders because the renal uptake mechanism of Tc-99m 
DTPA is dependent on the glomerular filtration rate (GFR), a crucial biological meas-
ure of renal function [12]. A correlation between the GFR and %ID of Tc-99m DTPA 
has been established in multiple studies [13–15]. Although %ID measurement tradition-
ally relied on 2-dimensional planar scintigraphy, 3-dimensional quantitative SPECT/CT 
imaging offers greater accuracy and consistency for renal %ID measurements and thus 
for GFR assessment [16].

Since 2017, our institution has been using Tc-99m DTPA SPECT/CT for GFR assess-
ment [16]. We developed an automatic kidney segmentation technique using CNNs 
[17]. Our most recent development allows CNNs to generate a synthetic μ-map from 
SPECT data alone, eliminating the need for CT input, a method that has been success-
fully applied to CT-free thyroid SPECT imaging [11].

In this study, our primary objective was to establish a CT-free quantification method-
ology in kidney SPECT. By exclusively using SPECT data, we aimed to train the CNNs to 
create μ-maps. The ultimate goal was to transition from conventional glomerular filtra-
tion rate (GFR) SPECT/CT to CT-free GFR SPECT.

Methods
Dataset

Tc-99m DTPA SPECT/CT data from January 2022 to January 2023 were used in this 
study (Table 1), which retrospectively comprised 1000 SPECT/CT scans (male:female = 
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662:338, age 55.740 ± 12.967 years). Of these, 53.5% (535/1000) were performed imme-
diately after iodine contrast-enhanced CT in the Radiology Department. This was pri-
marily because the patients underwent oncologic evaluations with a primary focus on 
renal tumors. Consequently, varying amounts of iodine contrast remain in the urinary 
system during SPECT/CT imaging in the nuclear medicine department. These 1000 
SPECT/CT images were allocated in an 8:1:1 ratio for training, validation, and testing. 
The proportions of contrast-enhanced CT scans were 54.0% (432/800), 53.0% (53/100), 
and 50.0% (50/100) for training, validation, and testing, respectively (Table  1). Details 
of the acquisition and reconstruction parameters are provided in the Supplementary 
Material.

Pre‑processing for deep‑learning

The AI algorithm was trained using SPECT scans (both primary emission and scat-
tering) as inputs, with the CT-derived μ-map serving as the label. Here, the primary 
emission SPECT means the SPECT image reconstructed using primary photons at a 
140  keV energy peak (20% window: 126–154  keV), while the scattering SPECT refers 
to the SPECT image reconstructed using scattered photons at a 120  keV energy peak 
(10% window: 115–125 keV). The primary emission and scattering SPECT images were 
reconstructed from the respective sinograms using vendor-provided software (Q. Volu-
metrixMI, GE Healthcare, Chicago, IL, USA) with correction for the collimator-detector 
response (i.e., resolution recovery, RR), resulting in NCRR SPECT. Here, NC indicates 
neither attenuation correction (AC) nor scatter correction (SC). Details of pre-process-
ing are described in Supplemental Material.

Table 1  Characteristics of the datasets

* Body surface area by the Dubois formula: BSA (m2) = 0.007184 × (weight in kg)0.425 × (height in cm)0.725

Data are mean ± standard deviation

Training (n = 
800)

Validation (n = 
100)

Testing (n = 
100)

P value

Gender (male:female) 531:269 66:34 66:34 0.9950

Age (years) 56.29 ± 12.87 54.50 ± 13.23 53.35 ± 13.27 0.0565

Height (cm) 166.08 ± 8.93 167.38 ± 9.24 168.57 ± 8.73 0.0303

Weight (kg) 69.24 ± 12.88 70.66 ± 12.65 73.28 ± 13.85 0.0217

BSA* (m2) 1.77 ± 0.19 1.79 ± 0.19 1.83 ± 0.20 0.0138

Proportion of contrast-enhanced CT 54.0% ( = 
432/800)

53.0% ( = 53/100) 50.0% ( = 50/100) 0.7171

Reason for SPECT/CT Normal (kidney 
donor)

37 2 1 0.0239

Renal tumor 73 12 19

Urinary stone 126 20 9

Post partial 
nephrectomy

534 65 70

Post total 
nephrectomy

17 0 0

Hydronephrosis 8 0 0

Other 5 1 1
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Network architecture

A modified 3D U-net with 64 initial neurons and 4 skip connections was employed (Fig. 1) 
[11]. The modified architecture replaces batch normalization layer to instance normaliza-
tion, and transpose convolution layer to nearest-neighbor interpolation. Details of network 
architecture are demonstrated in Supplemental Materials.

We trained our networks using TensorFlow [18] and the Keras framework [19].

Loss function

The loss function for μ-map generator was defined as the combination of absolute differ-
ence loss (L1) and gradient difference loss (LGDL) with weighting factor ω.

where G(X) represents generated synthetic μ-map from SPECT input X, and Y indi-
cates ground truth of CT-derived μ-map. In this study, we did not consider the squared 
difference loss (that is, L2) because the superiority of L1 over L2 had been consistently 
reported in variable CT-related deep-learning studies such as those relating to the de-
noising of low dose CT [20], reconstruction of micro CT [21], and μ-map generation 
from either positron emission tomography (PET) [22] or SPECT imaging [11]. However, 
LGDL was investigated for absolute GDL (LGDL

1) vs. squared GDL (LGDL
2) (see Supple-

mentary Material). The contested values of ω, the weighting factor of LGDL, were 1, 3, 
and 5.

Training hyper‑parameters

The number of training epochs was set to 100 with a batch size of eight. Early stopping 
rules were applied during the first 10 epochs. An adaptive moment estimation optimizer 
was used with a learning rate of 0.001 and an exponential decay rate of 0.96. Flip augmenta-
tion was applied along the x, y, and z axes. The training time was approximately 30 min per 

L(G(X),Y ) = L1(G(X),Y )+ ω × LGDL(G(X),Y )

Fig. 1  Network architecture for μ-map generation
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epoch. The computer hardware used for the network training was an AMD Ryzen7 5800X 
CPU (AMD Inc., Santa Clara, CA, USA) and an Nvidia RTX 3090 GPU (Nvidia Corp., 
Santa Clara, CA, USA).

Metrics for outcome evaluations

To evaluate the performance of the AI algorithm for synthetic μ-map generation, R squared 
(R2), mean squared error (MSE), and percent normalized mean absolute error (%NMAE) 
were used for pixel-wise comparisons of attenuation coefficients.
R2, MSE, and %NMAE were defined as:

where N represents the total number of voxels as 1,048,576 ( = 64 × 128 × 128), Y the 
target (i.e., original μ-map), Y  the mean of Y, and G(X) the synthetic μ-map from SPECT 
input X.

A kidney segmentation tool currently under development was applied to both con-
ventional SPECT/CT and CT-free SPECT to measure the renal parenchymal radioactiv-
ity (manuscript in preparation). GFR was calculated from the parenchymal radioactivity 
(that is, %uptake) using the established equation: GFR (mL/min) = %uptake × 9.1462 + 
23.0653 [16].

Statistical analysis

Parametric tests (i.e., t-test or analysis of variance) were performed for continuous 
variables when the Shapiro-Wilk test did not reject normal distribution features. Oth-
erwise, non-parametric tests (i.e., Mann-Whitney U test or Kruskal–Wallis test) were 
performed. Categorical variables were compared using the chi-squared test. The Fried-
man test was conducted to evaluate performance under optimal AI conditions. Statisti-
cal significance was set at p < 0.05. All analyses were performed using statistical software 
(MedCalc, version 22.013; Ostend, Belgium).

Results
We investigated the optimal AI working conditions in generating μ-maps, starting from 
the following baseline conditions: using only primary emission SPECT as input, applying 
maximum normalization to the SPECT input, employing the L1 loss function, and utiliz-
ing transpose convolution in the expanding pathway of the CNN.

R
2 = 1−

∑

((G(X)− Y )2

∑
(

Y − Y
)2

MSE =
1

N

∑

(G(X)− Y )2

% NMAE =
1

N
·

∑

|G(X)− Y |

max (Y )−min(Y )
× 100%
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Input spects

We first tested whether adding scattering SPECT to the primary emission SPECT would 
improve AI performance in μ-map generation. This is important because SPECT imag-
ing has the advantage of easily obtaining scattering information, which is, in principle, 
difficult or impossible with PET imaging. The R2 value increased whereas the MSE and 
%NMAE values decreased, indicating an improvement in AI performance (P alone vs. 
PS, Table 2). These findings were actually consistent with previous results, which advo-
cated for the combined use of SPECT inputs (primary emission and scattering SPECT 
scans) for the μ-map generation [8, 11].

Normalization of the input SPECT images

Next, we investigated the normalization of the input SPECT images. This step was cru-
cial because SPECT data often exhibit characteristics of localized SPECT signals in the 
renal parenchyma against very low background signals, leading to a highly asymmetric 
data distribution (Fig. 2). In this context, conventional maximum normalization could 
result in the under-representation of low signal areas in synthetic μ-map generation. 
Thus, we adopted a logarithmic maximum normalization method (see Supplemental 
Material) to mitigate the data scarcity or imbalance arising from the unique features 
of SPECT data. The application of logarithmic maximum normalization resulted in an 
overall greater signal strength and lower variance in the data distribution compared with 
conventional maximum normalization (Fig. 2). This approach was successful across all 
outcome measures of R2, MSE, and %NMAE (maximum vs. log-maximum, Table 2).

Loss function optimization

Regarding the loss function, we tested the absolute GDL (LGDL
1) versus the squared GDL 

(LGDL
2) using three weighting factors (that is, 1, 3, and 5) in addition to the L1 loss func-

tion. LGDL
1 with a weighting factor of three showed the best performance (Supplemen-

tal Table 1 and Supplemental Fig. 1). The change in the loss function from L1 alone to 
L1+3 × LGDL

1 increased R2 and decreased the MSE and %NMAE (L1 vs. L1+3 × LGDL
1, 

Table 2).

Table 2  Performance of AI algorithms for synthetic μ-map generation (n = 100 testing cases)

P: primary emission SPECT, S: scattering SPECT, TC: transpose convolution, Max: maximum normalization, Log-max: 
logarithmic maximum normalization, Date are mean ± standard deviation

Input Normalization Loss function Up-sampling R2 MSE (× 10−4) %NMAE

P alone Max L1 TC 0.9802 ± 
0.010300

1.1081 ± 0.5767 1.7975 ± 0.4452

PS Max L1 TC 0.9814 ± 
0.009381

1.0417 ± 0.5367 1.7762 ± 0.4253

PS Log-max L1 TC 0.9818 ± 
0.009789

1.0216 ± 0.5825 1.7049 ± 0.4588

PS Log-max L1+3 × LGDL
1 TC 0.9822 ± 

0.009555
0.9998 ± 0.5673 1.6790 ± 0.4315

PS Log-max L1+3 × LGDL
1 Interpolation 0.9824 ± 

0.009811
0.9880 ± 0.5601 1.6690 ± 0.4315

p < 0.00001 p < 0.00001 p < 0.00001
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In a recent investigation, the LGDL was tested without taking the absolute values of the 
operator [22] (supplemental equation); thus, we investigated different LGDL with variable 
weighting factors but failed to show any benefit over the LGDL using the absolute opera-
tor value (Supplemental Table 2).

Nearest‑neighbor interpolation during up‑sampling

The SPECT input sometimes exhibited high focal activity in the kidney, which often 
resulted in checkerboard artifacts in the synthetic μ-map (Fig. 3A). Such artifacts have 
been reported to occur in or adjacent to high-signal areas during image generation using 
neural networks [23]. In the case of kidney SPECT imaging, artifacts often appeared 
in both kidneys when primary emission SPECT was used alone as input (Fig. 3A), and 
tended to lateralize to one of the two kidneys when scattering SPECT was additionally 
employed as input (Fig. 3B). Application of log-max normalization slightly diminished 
the size of the artifacts (Fig. 3C). Moreover, the addition of a 3 × LGDL

1 loss function 
systemically shifted the artifact location from the renal parenchyma to the central renal 
pelvis (Fig.  3D). Finally, replacing the transpose convolution with nearest-neighbor 
interpolation completely eliminated checkerboard artifacts (Fig.  3E), thereby improv-
ing the outcome parameters R2, MSE, and %NMAE (TC vs. interpolation, Table 2). The 
error maps of attenuation coefficients (the ground truth minus the generated synthetic 
μ-maps) clearly demonstrated the sequential reduction of the checkerboard artifact 
(Fig. 4). As a result, the AI-based corrected ASCSRR SPECT was indistinguishable from 
the ground truth CT-based corrected ASCSRR SPECT, with minimal differences (Fig. 5).

Fig. 2  Effects of logarithmic maximum normalization on input single-photon emission computed 
tomography (SPECT) scans. A Maximum normalization of primary emission and scattering SPECT scans 
resulted in a highly asymmetric data distribution, exhibiting skewness values of 7.508 and 4.819 for primary 
emission and scattering SPECT scans, respectively (see the Supplementary Material for the equation of 
skewness). This approach also led to relatively weaker signal strength, with normalized mean attenuation 
coefficients of 0.028 cm−1 and 0.014 cm−1 for primary emission and scattering SPECT scans, respectively. B 
In contrast, logarithmic maximum normalization reduced the data imbalance, indicated by skewness values 
of 2.059 and 3.161 for primary emission and scattering SPECT scans, respectively. It also enhanced the signal 
strength, with normalized mean attenuation coefficients of 0.257 cm−1 and 0.162 cm−1 for primary emission 
and scattering SPECT scans, respectively.



Page 8 of 15Kwon et al. EJNMMI Physics           (2024) 11:84 

Fig. 3  Resolution of checkerboard artefacts using optimal training conditions for μ-map generation. The 
sequence of applying training conditions follow the same order as presented in Table 2. A Shows the result 
using only primary emission single-photon emission computed tomography (SPECT) as input. B depicts 
the outcome with the addition of scattering SPECT to primary emission SPECT (PS) imaging. C illustrates the 
effect of applying log-max normalization to the PS input. D presents the result using the additional 3 × LGDL

1 
loss function to C. E demonstrates the impact of applying nearest-neighbor interpolation to D, replacing 
transpose convolution. F provides the ground truth of the CT-derived μ-map for comparison

Fig. 4  Error maps showing the resolution of checkerboard artifacts. Individual panels show the difference 
of attenuation coefficients between the ground truth (computed tomography-derived μ-map) vs. A primary 
emission single-photon emission computed tomography (SPECT) alone input, B primary emission and 
scattering SPECT (PS) input, C PS with log-max normalization, D PS with log-max normalization using an 
additional 3 × LGDL

1 loss function, and E nearest-neighbor interpolation application to D instead of transpose 
convolution. The scale bar indicates the attenuation coefficients in unit of cm−1

Fig. 5  Comparison of ASCSRR (attenuation correction, scatter correction, and resolution recovery) SPECT 
images between the AI-based corrected SPECT A and the ground truth CT-based corrected SPECT B. The 
differences were minimal in terms of SPECT counts/voxel C 
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The interpolation application was also tested in various ways, but modifications of the 
nearest-neighbor interpolation produced halo artifacts (Supplemental Table 3 and Sup-
plemental Fig. 2); thus, further modifications were abandoned.

The iodine contrast effects for μ‑map generation

We divided the 100 SPECT/CT cases in the testing group into 50 cases with contrast 
effects from the previous iodine contrast-enhanced CT (Table  3) and 50 cases with-
out these effects (Table  4). Overall, the same trends in AI performance improvement 
were observed in both subgroups using optimal training conditions for AI (that is., PS 
[primary emission and scattering SPECT imaging]) input, logarithmic maximum nor-
malization of the SPECT images, L1 plus 3 × LGDL

1 combinatory loss function, and near-
est-neighbor interpolation during up-sampling). One exception was found in the last 
step of the subgroup without the iodine contrast effect (Table 4). Here, the application 
of nearest-neighbor interpolation instead of transpose convolution slightly reduced R2 
and increased the MSE and %NMAE (Table 4). However, only when using the nearest-
neighbor interpolation did the checkerboard artifacts completely disappear (Fig. 3E for 
μ-map, and Fig. 4E for error map of attenuation coefficients).

The AI algorithm was trained on approximately half the cases involving contrast-
enhanced CT as labels (Table 1). In other words, the iodine contrast media was present 
in half of the cases of the ground truth μ-maps during the AI training. The existence 
of iodine contrast media was typically apparent in the renal pelvis (Fig.  6A), but the 
trained AI algorithm consistently generated μ-maps without iodine contrast effects in 
the renal pelvis (Fig.  6B). This was because the μ-maps were primarily created from 
SPECT radioactivity signals originating from the renal parenchyma. The renal pelvis is 
the site of urine accumulation without a functional renal parenchyma. As a result, the 
output of the AI algorithm was always a signal void in the renal pelvis, even in the pres-
ence of iodine contrast medium in the ground truth (Fig. 6B). In contrast, the presence 
of iodine contrast media in the renal parenchyma was visually inconspicuous (Fig. 6A) 
and led to a subtle increase in attenuation coefficients compared to the synthetic μ-map 
(Fig.  6B), subsequently leading to over-correction of radioactivity in the renal paren-
chyma (arrow heads in Fig. 6C). The levels of attenuation coefficients in the synthetic 
μ-maps fell within an intermediate range between those derived from contrast-enhanced 
and non-contrast-enhanced CT, which was indicated by the positive difference from 
the contrast-enhanced ground truth and the negative difference from the non-contrast-
enhanced ground truth (Table  5). Therefore, the radioactivity associated with CT-free 
SPECT and the subsequent GFR values derived from the developed AI algorithm were 
significantly lower (p < 0.0001) than those obtained by SPECT/CT with contrast effects 
(n = 50), but significantly higher (p < 0.0001) than those obtained by SPECT/CT imag-
ing without contrast effects (n = 50; Table 5). However, the effect of the presence of con-
trast media was insignificant because the maximum difference in GFR using the extreme 
limits for contrast CT (0.4530 + 1.0658 mL/min = 1.5188 mL/min) and non-contrast 
CT (−0.4394–0.9316 mL/min = −1.371 mL/min) was only 2.8898 mL/min, which was 
only 2.78% of the mean GFR values in this study (Table  5). Furthermore, in a total of 
100 SPECT/CT cases collectively, the sums of attenuation coefficients (1147.0796 ± 
216.4121  cm−1 vs. 1146.5204 ± 215.2922  cm−1), the quantitative radioactivity (6.9259 
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± 1.6659% vs. 6.9232 ± 1.6600%), and the GFR values (104.4920 ± 17.1096  mL/min 
vs. 104.4852 ± 17.1736 mL/min) in the renal parenchyma were not significantly differ-
ent between the ground truth SPECT/CT and the AI-driven CT-free SPECT (p > 0.05). 
Therefore, all of the findings above can be attributed to the nearly equal contribution of 
contrast-enhanced and non-contrast-enhanced CT to the development of the AI algo-
rithm for μ-map generation (Table 1).

The reduction of radiation exposure to patients

Radiation exposure from SPECT/CT, which included both SPECT and CT components, 
ranged from 3.313 to 8.563 mSv in terms of effective dose. The SPECT component from 
the Tc-99m DTPA injection was 0.0049  mSv/MBq [24], resulting in an effective dose 
of 1.813  mSv for a 370  MBq injection. The effective dose from CT component varied 
within a range of 1.5–6.75 mSv, using a conversion factor of 15 μSv/mGy-cm [25]. This 
variation was due to the variable dose-length product (100–450 mGy-cm), reflecting the 
differing extents of CT coverage of the abdomen and pelvis. Consequently, the potential 
reduction in radiation exposure by transitioning from conventional SPECT/CT to AI-
based CT-free SPECT is 45.3–78.8%.

Discussion
The issue of AC in nuclear medicine, specifically SPECT imaging, has been effectively 
addressed over the last few decades with the advent of hybrid scanners, such as SPECT/
CT scanners [2, 3]. Despite the widespread adoption of these scanners, concerns regard-
ing radiation exposure in patients have persisted in the field of nuclear medicine. Moreo-
ver, misalignment between CT and SPECT images, often resulting from patient motion, 
has been a significant topic of discussion regarding the accuracy of quantitative SPECT/
CT [26]. Consequently, alternatives to CT have been intensively explored.

Recent advancements in AI have shown promise for various medical imaging applica-
tions, including reducing radiation exposure to patients and enabling CT-less imaging. 
These studies required the acquisition of low-dose or ultra-low-dose CT, allowing the 
enhancement of CT images with poor signal-to-noise ratios to the quality of usual dose 
CT through AI applications [27, 28]. Several other researchers have focused primarily on 
AI-driven AC techniques for SPECT. Those studies did not require CT acquisition, and 
the performance of the AI was validated using SPECT/CT as a reference, paving the way 
for CT-free (rather than CT-less) imaging studies [8, 29, 30].

In this study, we explored the potential use of AI as a substitute for CT in the AC of 
kidney SPECT. Our approach was inspired by other studies on myocardial perfusion 
SPECT/CT [9, 31] or thyroid SPECT/CT imaging [11]. In these studies, AI algorithms 
were trained using only SPECT images as inputs and CT-derived μ-maps as labels, thus 
generating synthetic μ-maps for AC of SPECT imaging. We optimized the AI working 
conditions (incorporating scattering SPECT with primary emission SPECT as input, 
applying log-maximum normalization instead of maximum normalization for SPECT 
input, using a combined loss function of L1 and 3 × LGDL

1 and preferring nearest-neigh-
bor interpolation over transpose convolution in the CNN up-sampling process) and 
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demonstrated the effectiveness of the developed AI algorithm for Tc-99m DTPA kidney 
SPECT.

Previous deep-learning-based studies on AC in nuclear medicine imaging have pri-
marily focused on PET rather than SPECT [32–34]. We believe that a completely differ-
ent approach may be required for SPECT because scattering information is more readily 
obtainable for SPECT than for PET scans, and the addition of scattering SPECT con-
sistently improved the performance of AI algorithms for the μ-map generation in other 
SPECT studies [8, 9, 11]. The standard OSEM reconstruction algorithm may be effective 
for single-bed SPECT applications such as kidney SPECT or thyroid SPECT [11]. This 
contrasts with PET, which typically requires whole-body coverage and a more compli-
cated reconstruction algorithm [22, 35].

Limitations
Despite the promising outcomes of our study, it is important to acknowledge its limita-
tions. Firstly, the study utilized an 8:1:1 allocation for training, validation, and test sets, 
respectively. While the dataset included 1000 cases, the relatively smaller proportions 

Table 3  Performance of AI algorithms for synthetic μ-map generation in SPECT/CT cases with 
iodine contrast effect (n = 50)

P: primary emission SPECT, S: scattering SPECT, TC: transpose convolution, Max: maximum normalization, Log-max: 
logarithmic maximum normalization, Date are mean ± standard deviation

Input Normalization Loss function Up-sampling R2 MSE (× 10−4) %NMAE

P alone Max L1 TC 0.9801 ± 0.009098 1.1249 ± 0.500390 1.8288 ± 
0.404589

PS Max L1 TC 0.9818 ± 0.008471 1.0316 ± 0.470583 1.7831 ± 
0.374997

PS Log-max L1 TC 0.9818 ± 0.008833 1.0374 ± 0.504221 1.7323 ± 
0.407806

PS Log-max L1+3 × LGDL
1 TC 0.9822 ± 0.008021 1.0010 ± 0.458064 1.6994 ± 

0.364543

PS Log-max L1+3 × LGDL
1 Interpolation 0.9827 ± 0.007784 0.9821 ± 0.436738 1.6780 ± 

0.361764

Table 4  Performance of AI algorithms for synthetic μ-map generation in SPECT/CT cases without 
iodine contrast effect (n = 50)

P: primary emission SPECT, S: scattering SPECT, TC: transpose convolution, Max: maximum normalization, Log-max: 
logarithmic maximum normalization, Date are mean ± standard deviation

Input Normalization Loss function Up-sampling R2 MSE (× 10−4) %NMAE

P alone Max L1 TC 0.9802 ± 0.011486 1.0912 ± 0.648855 1.7663 ± 
0.484568

PS Max L1 TC 0.9809 ± 0.010364 1.0517 ± 0.600247 1.7693 ± 
0.474100

PS Log-max L1 TC 0.9819 ± 0.010758 1.0058 ± 0.656376 1.6776 ± 
0.507255

PS Log-max L1+3 × LGDL
1 TC 0.9821 ± 0.010999 0.9901 ± 0.663409 1.6586 ± 

0.492409

PS Log-max L1+3 × LGDL
1 Interpolation 0.9820 ± 0.011443 0.9938 ± 0.665576 1.6600 ± 

0.495213
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for validation and test sets may have impacted the model’s reliability. This aspect war-
rants further investigation in future research. Secondly, our study was conducted within 
a single institution, which might introduce a selection bias and limit the external valid-
ity of the findings. Thirdly, while our AI algorithm showed high accuracy in generat-
ing μ-maps neutral to contrast-media effects, it was trained and tested on datasets from 
specific CT and SPECT machines. The performance of the algorithm might vary when 
applied to data from different equipment or settings, necessitating additional tuning 
and validation. Fourthly, our study focused primarily on kidney SPECT/CT imaging for 
GFR measurement; thus, the application of our findings to other organs or conditions 
requires further investigation. Finally, the impact of the AI algorithm on clinical out-
comes was not directly assessed in this study. Future research should aim to not only 

Fig. 6  Characteristics of the artificial intelligence (AI) algorithm neutral to the iodine contrast media. A and 
D represent the ground truth μ-maps with and without iodine contrast media effects, respectively. B and E 
are the corresponding synthetic μ-maps generated by the AI algorithm. C and F show the corresponding 
error maps of radioactivity, comparing the ground truth single-photon emission computed tomography/
CT (SPECT/CT) with CT-free SPECT imaging. Despite the presence of contrast-media in the renal pelvis of the 
CT-driven μ-map A, the synthetic μ-map generated by the AI algorithm did not exhibit contrast effects B. 
This can be appreciated in the intense red area of the right renal pelvis on the error map of radioactivity (long 
arrow) C. The μ-map with iodine contrast in the renal parenchyma, while subtle in the ground truth μ-map 
A, had slightly higher attenuation coefficients than the AI-driven synthetic μ-map B, as evident in the error 
map (arrow heads) C. The ground truth μ-map without iodine contrast D showed slightly lower attenuation 
coefficients in the renal parenchyma than the AI-driven synthetic μ-map E, which was noticeable in the error 
map (arrow heads) F 

Table 5  The difference between the SPECT/CT (the ground truth) and the AI-driven CT-free SPECT 
imaging according to the presence of iodine contrast media in the SPECT/CT imaging (n = 100)

Presence of contrast media (n 
= 50)

No contrast media (n = 50) P value

Attenuation coefficients (cm−1) 19.8139 ± 15.7953 −18.8138 ± 5.9526 < 0.0001

Radioactivity (%point) 0.0517 ± 0.1167 −0.0464 ± 0.1058 < 0.0001

GFR (mL/min) 0.4530 ± 1.0658 (99.7065 ± 
16.2896 vs. 99.2535 ± 15.9208 
for SPECT/CT vs. CT-free SPECT, 
respectively)

−0.4394 ± 0.9316 (109.2775 ± 
16.7141 vs. 109.7169 ± 16.9279 
for SPECT/CT vs. CT-free SPECT, 
respectively)

< 0.0001
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replicate these findings in a multi-center context but also explore the clinical implica-
tions of using AI-supported CT-free SPECT imaging in routine practice.

Conclusion
We clarified the importance of scattering information for μ-map generation in SPECT, 
found the effect of logarithmic maximum normalization on the input SPECTs, opti-
mized the loss function and removed SPECT-specific checkerboard artifacts by an 
interpolation up-sampling. The AI algorithm was influenced equally by both contrast-
enhanced and non-contrast-enhanced CT scans. As a result, it generated μ-maps with 
attenuation coefficients in an intermediate range, making the CT-free SPECT imaging 
neutral to the effects of contrast-media present in the ground truth SPECT/CT. Conven-
tional kidney SPECT/CT imaging for GFR measurement could potentially be replaced 
by CT-free SPECT imaging using the developed AI algorithm.
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