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Background
Lung cancer remains a significant global public health concern, characterized by a high 
incidence and mortality rate, and is recognized as a leading cause of cancer death [1–3]. 
In 2022, there are estimated 236,740 new cases of lung and bronchial cancer diagnosed, 
and 130,180 related deaths in United States [2]. Despite huge progress in screening, 
diagnosing and treating lung cancer, it remains a serious health issue that demands con-
tinued attention and researches [4, 5].

These years, imaging has gained more importance in clinical practice for disease detec-
tion, diagnosis, staging and treatment monitoring, especially since the concept of per-
sonalized precision medicine was put forward [6, 7]. Nuclear medicine imaging (NMI), 
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Abstract
Radiomics is an emerging field of medical imaging that aims at improving the 
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art radiomics progress in lung cancer, highlighting the potential benefits and existing 
limitations of this approach. The radiomics workflow was introduced first including 
image acquisition, segmentation, feature extraction, and model building. Then the 
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mainly comprising of single photon emission computed tomography (SPECT) and 
positron emission tomography (PET), represents one of the most vigorously evolving 
imaging modalities [8]. With the prominent advantage of showing anatomical positions 
and functional conditions simultaneously, the quantitative technique, PET combined 
with CT, has been widely introduced in imaging, remarkably in oncologic imaging [9]. 
2-Deoxy-2-[fluorine-18]-fluoro-D-glucose (18F-FDG) PET/CT has been proven to be an 
important tool for the detection, identification, and staging of non-small cell lung can-
cer (NSCLC), the predominant type of lung cancer, demonstrating evident superiority 
over conventional anatomy-based imaging modalities [10]. It can detect distant metas-
tases and mediastinal lymph node involvement with higher sensitivity and specificity 
and help guide treatment decisions. While the utility of PET in small cell lung cancer 
(SCLC) remains debated due to the potential for false-positive metastases detected on 
PET scans, the European Society for Medical Oncology (ESMO) guidelines recommend 
the use of PET/CT to aid in radiation therapy volume delineation for this aggressive 
cancer type [11]. However, the prone bias influenced by multiple factors such as tumor 
heterogeneity, image noise, segmentation algorithms and so on during repeated mea-
surements, and unestablished interpretation criteria in many diseases of PET metrics 
remain to be problems worthy further studying [12, 13].

Radiomics, of which the concept was first brought up by Lambin et al. in 2012 [14], is 
considered to improve the imaging analysis as an advanced computer vision technique, 
that can maximize the imaging features extracted from radiologic imaging instruments 
[15]. Radiomics consists of the high-throughput extraction processes of considerable 
quantitative imaging features associated with both phenotype and microenvironment of 
tumor, that are attained by medical imaging modalities [7, 14]. Imaging mining exhib-
its an encouraging potential for improving the non-invasive diagnosis, characterization, 
prognosis and treatment planning [16]. It allows for detection of whole tumor despite of 
its spatial heterogeneity and as well treatment monitoring over time [17]. What’s more, 
it has been demonstrated that some specific imaging traits are linked with sub-visual 
information about pathogenesis of diseases and even the underlying genotypic altera-
tions which could determine tumor growth patterns and therapy response, and sequen-
tially guide the choice of treatment strategies.

NMI radiomics in lung cancer has gained increasing interest these years. Many stud-
ies have been conducted to develop predictive models derived from PET or SPECT 
images for detection and diagnosis, histological and molecular subtyping, evaluation of 
treatment response, and prognostication of disease outcomes. The available studies of 
nuclear medicine radiomics in lung cancer are summarized in Table 1. However, while 
radiomics holds great promise in improving lung cancer management, challenges and 
obstacles persist such as the lack of standardization, limited validation and integration 
with clinical data. Further research and collaborative efforts are necessary to address the 
remaining hurdles in its translation from bench to bedside. In this review, we summarize 
the current state-of-the-art radiomics progress in lung cancer, highlighting the poten-
tial benefits and existing limitations of this approach. Firstly, we introduce the radiomics 
workflow, including image acquisition, segmentation, feature extraction, and model 
building. Then we review the published literature on radiomics-based prediction models 
for lung cancer diagnosis, differentiation, prognosis and efficacy evaluation. In the end, 
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we discuss current challenges and provide insights into future directions and potential 
opportunities for integrating radiomics into routine clinical practice.

Radiomics workflow
The workflow of radiomics can be divided into four main steps (Fig.  1): (1) medical 
image acquisition and reconstruction; (2) regions of interest segmentation; (3) feature 
extraction and selection; and (4) model building and validation. Each step contributes to 
building a reliable and accurate predictive model. By understanding each step in detail, 
researchers and clinicians can better utilize radiomics to improve clinical decision.

Medical image acquisition and reconstruction

Radiomics features (RFs) we extracted from medical images are supposed to measure 
tumor heterogeneity without unnecessary confounding variability due to nonstan-
dardised imaging protocols, which would introduce bias to the analysis [7, 18, 19]. Some 
imaging factors are prone to be influenced by the so called scanner or protocol effect, 
and it’s indispensable to harmonize the image acquisition procedures, e.g. patient prepa-
ration, scanner difference, imaging parameters and reconstruction settings, especially in 
multicenter trials [20]. Compared to the radiomics workflows of CT and MR, the PET/
CT radiomics workflow faces challenges in accurately co-registering PET metabolic data 
with CT anatomical data, particularly in the presence of motion artifacts.

It’s fundamental for any quantitative features to gain repeatability and reproducibil-
ity, and some associations have made efforts to bring up common guidelines for stan-
dardized imaging procedures such as the European Association of Nuclear Medicine 
(EANM) and its Research Ltd. (EARL) 18F-FDG PET/CT accreditation program [21, 
22]. EANM tumor imaging guidelines version 2.0 summarized 18F-FDG PET/CT exami-
nation procedures including medical history review, patient preparation, PET and CT 
acquisition protocols and image reconstruction in details to ensure image quality and 
image harmonisation in multi-center researches [21].

Image reconstruction has been considered as a pivotal process since it would signifi-
cantly impact the robustness of PET/CT RFs if researchers don’t pay attention to the 
reconstruction schemes, with nearly 99% features inclined to be instable to the variety 

Fig. 1 The pipeline of radiomics research analysis of nuclear medicine. The Figure was partly generated using 
Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license
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of reconstruction algorithms [23, 24]. Pfaehler et al. [25] carried out a multicenter phan-
tom study to compare the feature consistency using different reconstructions that are 
EARL-compliant or the clinically preferred setting, and found that RFs were more likely 
to gain a high intraclass correlation coefficient (ICC) with EARL-compliant reconstruc-
tions, demonstrating their utility in harmonizing a wide range of imaging traits. And the 
updated EARL standards (EARL2) are recommended, especially in multicenter settings, 
as they offer improved contrast recovery and spatial resolution than the earlier EARL1 
standards.

Conventional post-reconstruction harmonization procedures such as post-recon-
struction filtering can be used to reduce variability between different PET scanners and 
reconstruction protocols [26]. However, spatial resolution of images could be affected 
during these postprocessing, that is to the disadvantage of subsequent quantitative and 
radiomics studies [20]. The ComBat was introduced to deal with batch effects, i.e. the 
non-biological experimental variation, in researches of gene expression microarrays in 
the first place [27] and Orlhac et al. [28] determined its efficacy to remove batch effect 
and harmonize RFs in PET, which could be directly applied to the extracted quantitative 
features other than the image itself [29]. Recently, Leithner el al [30]. conducted a retro-
spective study including 200 patients to investigate the capacity of ComBat to improve 
tissue classification accuracy in a pooled PET/CT and PET/MRI radiomics dataset. The 
results showed ComBat-harmonized group gained higher median accuracies in both 
train and validation datasets, for various feature classes such as gray-level histogram, 
gray-level size-zone matrix, and neighborhood gray-tone difference matrix, which sug-
gested ComBat as a promising and recommended tool for the generalization of PET 
data, especially for technically heterogeneous datasets.

The evolving landscape of PET/CT imaging, such as digital detectors and long axial 
field-of-view (LFOV) scanners, holds significant potential to impact and refine the cur-
rent radiomics workflow. These cutting-edge techniques facilitate higher resolution, 
signal-to-noise ratio and sensitivity, enable faster whole-body acquisitions and concomi-
tantly reduce radiation exposure [31]. Improved quantitative accuracy can provide more 
reliable and reproducible measurements of radiotracer uptake, benefiting the extraction 
of quantitative radiomics features. Digital PET/CT, combined with optimal reconstruc-
tion algorithms, can significantly reduce image noise and artifacts, yielding cleaner and 
more accurate images for radiomics analysis [32]. However, the introduction of these 
new PET/CT technologies necessitate more efforts for the development of standardized 
protocols to ensure consistent feature extraction across different systems and sites.

Regions of interest segmentation

Delineation of volume of interest (VOI) or region of interest (ROI) influences the deter-
mination of voxels to be analyzed and is crucial for the sequent outcome of quantita-
tive feature extraction [33]. Some studies showed less than 20% PET features could be 
stable with variable segmentation algorithms [34]. Segmentation can be processed 
manually, semi-automatically or fully automatically [7]. In consideration of the time-
consuming and observer-dependent nature of manual segmentation, as well as the high 
inter-observer variability that can arise, even with the consensus of several experts [35], 
semi-automatic and automatic methods are more preferable in present radiomics stud-
ies for tumor contour delineation [36, 37].
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A large quantities of (semi-)automatic segmentation algorithms have been evolved and 
applied in both pre-clinical and clinical studies and semi-automatic methods are consid-
ered to be able to maximize the accuracy while saving time and reducing tedious work 
[38]. Currently, thresholding-based methods are the most frequent segmentation tech-
nique, defining all voxels above a certain threshold as foreground and others as back-
ground, of which the optimal threshold is expected to minimize within-class variance 
or maximize between-class variance [39]. Iterative and adaptive thresholding segmen-
tations are proposed to improve fixed thresholding algorithm, adapting the threshold 
on the basis of actual images [35]. However, there are many limitations remaining to 
be tackled for thresholding including inhomogeneity of tumors, motion artefacts, low 
resolution and inherent noise, making it hard to gain consensus on the threshold value, 
which will hinder its further application in clinical practice [40, 41]. Matteo et al. [42] 
used the Dice similarity coefficient to compare automatic segmentation (nnU-Net) with 
a reference manual segmentation performed by a physician in images of patients with 
lung tumour. It was found that there was no statistical difference in the accuracy of sur-
vival classifiers when using manual and automatic contours, and the results supported 
the promise of nnU-Net in automatic segmentation.

Other PET segmentation methodologies are identified as region-based, boundary-
based, stochastic and learning-based algorithms [41]. Recent years, segmentation meth-
ods based on deep-learning (DL) approaches have captured extensive attention for its 
improved accuracy attributed to their capability to adapt to more complex actual con-
ditions [43, 44]. The Medical Image Computing and Computer Assisted Intervention 
(MICCAI) challenge carried out the first study that compared the performance of 13 
advanced automatic segmentation algorithms on a large dataset and demonstrated DL 
method using convolutional neural network (CNN) scored the highest median accuracy 
[45]. One of the most famous CNN based networks, U-Net, initially proposed by Ron-
neberger et al. [46], could be trained end-to-end from small amount of training images 
due to data augmentation with elastic deformations, and lots of variations of U-Net have 
been created to enhance its precision and robustness, for example, the recurrent residual 
U-Net [47], ICA U-Net [48], dNet [49], and V-Net [50]. Li et al. [51] introduce a tech-
nique for multimodality segmentation in PET/CT, leveraging a 3D fully convolutional 
network (FCN) based on the V-Net architecture for CT segmentation, along with a fuzzy 
variational model for integration, which could conquer the disadvantages of low spatial 
resolution and blur tumor edges of PET and enables the combination of PET and CT 
information to enhance the overall segmentation results. Similarly, Protonotarios et al. 
[52] proposed a few-shot learning (FSL) strategy integrated into dual-channel U-Net for 
global-local fused PET/CT image segmentation and illustrated that dual-channel U-Net 
performed better in terms of F1-score and intersection over union (IoU) than both PET 
U-Net and CT U-Net. FSL U-Net significantly decreased the error rate of F1-score, IoU, 
and accuracy compared with original dual-channel U-Net, suggesting its promising 
potential in clinical practice.

Feature extraction and selection

There are four primary subcategories for the most widely used RFs: statistical features, 
which include histogram-based and texture-based, shape-based, model-based, and 
transform-based features [53]. The image biomarker standardization initiative (IBSI), 
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an independent international collaboration, has taken steps to standardise the extrac-
tion of these RFs from acquired imaging. This initiative has established consensus-based 
nomenclature, definitions and reference values for image features and defined a general 
radiomics image processing workflow to enhance reproducibility of radiomic studies. 
The detailed definitions of these RFs have been summarized in the reference manual [54, 
55].

Various feature extraction platforms have been constructed by investigators for feature 
calculation, such as the extensive CERR [56], 3D Slicer [57], PyRadiomics [58], LIFEx 
[59], RaCaT [60] and CGITA [61]. 3D slicer is a free and powerful open source software 
for medical image computing and visualization. It supports various image formats, pro-
vides tools for image registration, segmentation, and quantitative analysis, and offers a 
modular architecture, allowing users to extend its function through plugins and exten-
sions, including radiomics extension [57]. PyRadiomics is an open-source Python library 
for standardised image processing and radiomics quantification. This platform offers two 
interfaces: a convenient front-end interface in 3D Slicer, and a back-end interface allow-
ing automation in data processing and feature definition. It can extract a comprehensive 
set of commonly used and IBSI compliant features, supports 2D and 3D segmentations 
of various imaging modalities and can be easily integrated into existing Python-based 
workflows and has been widely adopted in radiomics researches [58]. LIFEx is a free, 
multiplatform software which enables the calculation of histogram-, texture-, and shape-
based features and allows characterization of tumor heterogeneity from multimodal 
imaging data. The platform has been widely used in radiomics studies focused on cancer 
diagnosis, prognosis, and treatment response prediction [62, 63].

Studies demonstrated that different calculation settings and platform versions had 
significant impacts on the reliability of RFs and prognostic models [64, 65]. Therefore, 
researchers should be cautious about the new proposed packages in their research and 
should publish the unreserved calculation parameters in order that their achievement 
could be applicable to extensive studies [65]. Meanwhile, additional endeavors need to 
be taken to standardize feature extraction procedures including feature naming conven-
tion, arithmetical definitions and calculation methodologies to ensure consistency and 
reproducibility in further radiomics studies.

Feature selection is one of the fundamental steps in radiomics workflow. It refers to the 
process of choosing the most relevant and informative features to analyze from the vast 
amounts of data generated in medical images. The application of the limitless number of 
RFs, which are regarded as high-dimensional data, can not only result in the increased 
cost of data storage and computing time but lead to the model overfitting, making the 
model “self-assessing” and decreasing in its prediction performance in real-world data-
sets [7, 66]. Additionally, it’s important to select the robust features which are less sus-
ceptible to variations in imaging protocols, scanner types, and other technical factors 
to ensure the reproducibility of radiomics models across different centers and clini-
cal settings. Thus, the most robust, informative and archetypal features with the high-
est interpatient variability should be selected from a high-dimensional dataset through 
supervised selection methods or unsupervised ones.

Those methods are mostly based on dimensionality reduction algorithms for the 
intention of reducing redundancy and elevating accuracy while maintaining the char-
acteristics of original data [53]. Supervised feature selection is usually executed with 
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users having some prior ground knowledge related directly to a specific clinical problem, 
especially classification labels such as benign and malignant, while learning from data 
[67, 68]. Unsupervised methods refers to the algorithms without pre-existing classifica-
tions that are expected to automatically create class labels by searching for similarities 
and grouping pieces of data together [68]. Most commonly used unsupervised methods 
include the linear category such as principal component analysis (PCA) [69], the non-
linear category such as t-distributed stochastic neighbor embedding (t-SNE) [70], multi-
dimensional scaling (MDS) [71], and consensus cluster analysis [72].

Each has its own strengths and weaknesses that supervised techniques are more 
likely to cause overfitting while the unsupervised tend to mix variables and increase the 
complexity of identifying the original predictors in the initial feature set [53]. Anowar 
et al. [73] conducted an empirical study comparing performance of 10 dimensionality 
reduction algorithms in terms of classification accuracy and run-time in three binary 
and multi-class datasets and observed that all of these algorithms could elevate the data 
quality and classification accuracy. Nonlinear and manifold-based architectures outper-
formed linear and random projection-based ones, respectively, in most cases, while as 
for the multi-class datasets, supervised algorithms surpassed unsupervised. However, 
there was no definite superior choice and the optimal algorithm could be determined 
based on the nature and quality of specific datasets. Lian et al. [74] developed exten-
sive feature selection systems based on Dempster-Shafer theory, namely Evidential Fea-
ture Selection (EFS), with the improvement of prior knowledge and data balancing, to 
deal with the uncertain and imprecise information and usually small-sized and imbal-
anced training samples for prediction of tumor treatment outcome. However, effective 
feature approaches is often hindered by some similar challenges such as limited sample 
size, lack of standardization and biological interpretability which should be addressed in 
future radiomics studies.

The selected features are supposed to be robust to imaging parameters and image 
processing steps, including scan interpolation which is applied to address image resolu-
tion variations [75]. To prevent 3D feature distortion due to anisotropic voxels in rou-
tine clinical imaging, resampling images using 3D interpolation with equal resolution 
in all three dimensions (i.e. ∆z = ∆x = ∆y) is recommended [76, 77]. Whybra et al. [77] 
assessed the stability of 141 texture features to interpolation for a variety of isotropic 
voxel dimensions, using PET images of 441 esophageal cancer patients and categorized 
93 features as stable response, 34 as systematic response that were potentially correct-
able to a correction model, and 8 as unstable response. And they also observed signifi-
cant feature value variations when chose different interpolation methods.

Model building and validation

Once the relevant features have been identified, the next step is to train a predictive 
model that employs these features to identify patterns that are indicative of certain dis-
ease outcomes, which could be scalar (e.g., survival time) or categorical (e.g., benign or 
malignant) [38, 53].

Multiple machine learning (ML) methods are available for constructing models, 
including logistic regression (LR) [78], support vector machines (SVM) [79], multilayer 
perceptron (MLP) [80], random forests [81], k-nearest neighbors (kNN) [82], CNN [83], 
k-means clustering [84, 85], and consensus clustering [86], which could be also classified 
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into supervised and unsupervised. SVM is one of the most earliest and popular clas-
sifiers used in radiomics [38]. It’s a supervised algorithm that works by identifying the 
best possible boundary line, so called hyperplane, to separate data points and maximize 
the distance between support vectors, that are defined as the nearest examples to the 
hyperplane [87, 88]. Recently, Choi et al. constructed a predictive radiomics model uti-
lizing SVM combined with absolute shrinkage and selection operator to identify aggres-
sive subtypes of lung adenocarcinoma (ADC). It showcased remarkable performance in 
terms of categoric precision and accuracy compared with conventional predictor SUV-
max [89]. MLP is also a powerful supervised DL algorithm. MLP models the compu-
tational units of multiple layers by mimicking signal transmission and this deep neural 
network architecture helps overcome limitations of getting trapped in local optimal 
solutions during the training process [80].

Similar to the previous session of feature selection algorithms, supervised and unsu-
pervised classifiers are prone to some disadvantages when implemented in model con-
struction. Though supervised algorithms are more prevalent in radiomics practice, it 
warrants close consideration of the risk to overfitting and bias which may amplify the 
original noise, and additionally, the collection of sufficient labeled data sometimes can 
be difficult and time-consuming [90]. While based on distance metric and without priori 
variables, unsupervised algorithms tend to result in decreased accuracy [38]. Janghel et 
al. [91] implemented different classifiers along with the feature extraction architecture, 
VGG-16 of CNN, to build a model for AD diagnosis and found that SVM, kNN, and lin-
ear discriminant classifiers scored highest mean accuracy for fMRI dataset and kNN for 
PET dataset.

Semi-supervised learning (SSL) algorithms merge large number of unlabeled data, 
which is easily obtainable, with a limited amount of labeled data during the training pro-
cess, exploiting the strengths of unsupervised learning to enhance the supervised model, 
while also balancing accuracy and lack of sufficient data sources [92]. Much experimen-
tation has been carried out testing the performance of SSL in medical image classifica-
tion [93]. There is a requirement for additional investigation in its utility in PET imaging 
considering its limited literature which mainly focuses on AD and MCI neuroimaging 
[94].

Model validation is an essential step in radiomics researches to ensure the reliability 
and generalizability of its predictive performance (e.g., discrimination and calibration) 
and to prevent false optimistic estimate. Internal validation only uses the original data-
set and usually incorporates the procedure of dividing a single dataset into training and 
validation subsets, of which the statistical sampling methods should be reported clearly 
[7]. Bootstrapping is a classic internal validation approach of which the basic strategy is 
to resample a bootstrap set (size n) with replacement using the original set (size n) and 
compare the performance of the bootstrap model and the original model [95]. In cross-
validation, original dataset is divided into several subsets and the training and testing 
subsets are rotated in turns [53]. However, external validation, of which the test data 
is independent, especially attained from another scanner or institution, is more cred-
ible and recommended by researchers and statisticians [96]. Many radiomics models 
are trained on limited sample size with high-dimensional RFs and powerful deep learn-
ing algorithms and this extremely increase the risk of overfitting. External validation 
using independent datasets is crucial to assess the true generalization performance and 
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prevent overly optimistic results due to overfitting. Up to now, most radiomics studies 
lack external validation, significantly limiting the quality and clinical translation [96].

Radiomics application in diagnosis and differentiation in lung cancer
Diagnosis and typing

If diagnoses are made depending on clinical manifestations and imaging examina-
tions, it is possible for some benign lesions to be erroneously identified as lung cancer. 
Tuberculosis is the common misdiagnosis in areas characterized by a high prevalence 
of tuberculosis [10, 97]. Hu et al. [98] gathered a retrospective collection of 113 patients 
with lung cancer and 104 patients with tuberculosis and incorporated PET/CT-based 
RFs for building a predictive model to differentiate between ADC and tuberculosis. The 
findings demonstrate that the performance of the PET/CT radiomics model, as mea-
sured by the AUC (area under the curve), was significantly superior to that of the clinical 
model. In addition, compared with the complex model (i.e. the integration of clinical 
and radiomics model), the radiomics model had a slightly lower AUC in both the train-
ing and validation cohorts, though without statistical difference (P > 0.05). Zhang et al. 
[99] aimed to improve the accuracy of differentiating between tuberculosis nodules and 
lung cancer by applying deep learning techniques. An integrated model that incorpo-
rates radiomic features, deep learning outputs, and clinical information was identified 
as the most effective classification model for diagnosing tuberculosis nodules and solid 
lung cancer.

In another study, Zhang et al. [100] developed a comprehensive model that combines 
clinical characteristics with PET/CT imaging features. The results showed that the logis-
tic regression classifier exhibited enhanced predictive accuracy in the validation cohort 
of the radiomic model. The combined model, with an AUC of 0.870, demonstrated supe-
rior predictive capability compared to the clinical model (AUC 0.848) and the radiomics 
model (AUC 0.774).

The two main histologic subtypes of NSCLC are adenocarcinoma (ADC) and squa-
mous cell carcinoma (SCC), representing roughly 60% and 35%, respectively [101]. There 
are notable differences in the treatment strategies, prognostic outcomes, and recurrence 
rates between ADC and SCC [102]. However, CT-guided biopsy poses a huge challenge 
in cases where lesions are located at a considerable depth within the anatomical struc-
tures or adjacent to crucial structures such as bronchia and vasculature. Ji et al. [103] 
formulated a stage-specific predictive model using PET radiomics that took into account 
the varying levels of glucose metabolic heterogeneity between different stages of lung 
ADC and SCC, enabling accurate differentiation between the two lung cancer types. The 
results found that in both the training and validation cohorts, the radiomics signature 
performed well for distinction, with AUCs of 0.883 and 0.932, 0.854 and 0.944, and 0.895 
and 0.886 for stages I, II, and III NSCLC, respectively. And radiomics-clinical nomo-
grams, which integrated RFs with predictive clinical variables yielded better discrimina-
tive performance with higher AUCs across all stages in both cohorts.

Some solitary pulmonary nodules (SPNs), as early indicators of lung cancer, present 
significant challenges in determining their nature, complicating clinical diagnosis and 
treatment. The aim of Zheng et al.‘s study was to assess the effectiveness of 18F-FDG-
PET/CT combined with radiomics in predicting the malignancy probability of SPNs 
[104]. The area under the ROC curve for the joint, CT, and PET models was 0.929, 0.819, 
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and 0.833, respectively, in the training group, and 0.844, 0.759, and 0.748 in the test-
ing group. With ongoing advancements in image feature extraction technologies, we can 
achieve higher classification accuracy, which provides a robust tool for guiding clinical 
decisions, monitoring, and prognosis.

Salihoğlu et al. [105] utilized ML methods to construct predictive models incorporat-
ing 18F-FDG PET/CT-based radiomic factors for the purpose of discriminating malig-
nant solitary pulmonary nodules (SPN) from benign SPN. A retrospective analysis of 48 
patients with SPN were conducted, with DL and classical ML algorithms used to build 
the models. The predictive models exhibited reasonable performance (AUC = 0.81) for 
distinguishing SPNs, with higher sensitivity for the DL model and higher specificity for 
the classic learning model compared to conventional evaluation. Researchers concluded 
that PET/CT-based RFs had the potential to enhance the differentiation of SPNs. Lym-
phovascular invasion (LVI), considered a high-risk pathological feature, significantly 
increases the incidence of relapse and lymph node metastasis [106]. Wang et al. [107] 
explored the potential of PET/CT radiomics to predict LVI status and prognosis prior to 
surgery in patients with early-stage solid lung cancer. A PET/CT radiology nomogram 
(PET/CT model) was developed for estimating LVI; this model demonstrated notable 
predictive accuracy in both training (C-index: 0.766; 95% CI: 0.728–0.805) and valida-
tion cohorts (C-index: 0.774; 95% CI: 0.702–0.846). To identify independent predictors 
of brain metastasis, Zheng et al. [108] examined metabolic indicators, CT features, and 
clinical characteristics in an 18F-FDG PET/CT radiomics model for NSCLC patients. 
The C-indices for this model in the training, internal validation, and external validation 
cohorts were 0.911, 0.825, and 0.800, respectively. This model offers physicians a novel 
approach for screening NSCLC patients at high risk of brain metastasis.

Prediction of therapeutic target expression

Immune checkpoint therapy is currently a hotspot in the clinical practice of NSCLC 
[109]. It is crucial to develop a new approach to evaluate PD-L1 expression levels and 
predict the therapeutic efficacy of immune inhibitors. Radiomics may be able to predict 
immunotherapy response and outcome noninvasively [110]. Jiang et al. [111] included 
399 patients with NSCLC and established CT-, PET-, and PET/CT radiomics models 
based on features obtained from corresponding imaging modality, which had the capa-
bility to assess the expression levels of various PD-L1 types. The AUC for predicting 
PD-L1 (SP142) expression level exceeding 50% were 0.80, 0.65, and 0.77, respectively. 
In terms of PD-L1 (28 − 8), the AUC performance score was measured at 0.91, 0.75, 
and 0.88 across the three types of models. And they concluded PD-L1 expression sta-
tus could be predicted fairly accurately using radiomics-based predictive methods in 
NSCLC patients (Fig. 2). In clinical practice, this may help guide immunotherapy. In a 
retrospective study of 58 NSCLC patients, Zhang et al. [112] analyzed the relationship 
between presurgery 18F-FDG PET/CT examination and postsurgery PD-L1 expression. 
The results of multivariate logistic regression analysis revealed that the CT radiomics 
feature GLZLM_SZE and the PET radiomics feature GLRLM_LGRE were both identi-
fied as independent predictors of PD-L1 status. 18F-FDG PET and CT-based RFs related 
to heterogeneity showed good non-invasive prediction ability for PD-L1. The research 
by Li et al. [113] underscores the importance of combining radiomics and deep learning 
to predict PD-L1 expression in NSCLC. The fusion model surpassed both the individual 
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radiomics and deep learning models in performance, achieving higher AUC and accu-
racy, thereby enhancing efficiency. In the training and validation cohorts, the fusion 
model recorded AUCs of 0.954 and 0.910, respectively.

EGFR mutation status identification

As our understanding of molecular mechanism about lung cancer has advanced, tyro-
sine kinase inhibitors (TKIs) targeting at epidermal growth factor receptor (EGFR) have 
gained widespread usage in managing NSCLC [114, 115], and patients harboring EGFR 
mutations demonstrate significantly prolonged overall survival (OS) and progression-
free survival (PFS) in contrast to wild-type EGFR (EGFR-WT) [116, 117]. Therefore, it is 
vital to detect EGFR mutations before starting targeted therapy with TKIs.

There are two most common subtypes of EGFR mutations in clinical practice: the exon 
19 deleterious (E19del) mutation and the exon 21 mis-mutation. After TKI treatment, 
patients exhibiting E19del mutation possibly experience a superior survival benefit than 
those harboring the exon 21 mis-mutation, according to increasing evidence [118, 119]. 

Fig. 2 PET/CT radiomics models for assessing PD-L1 expression level in NSCLC. (A) The flowchart of patients. (B) 
Correlation heat-map of the selected feature set. Features numbered 0–11 derived from CT and 12–23 from PET. 
Classifiers’ performance on predicting 1% level of PD-L1 (28 − 8) (C), 1% level of PD-L1 (SP142) (D), 50% level of 
PD-L1 (28 − 8) (E) and 50% level of PD-L1 (F). Data derived from Jiang et al. [111]
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In an analysis of PET/CT images containing 18F-FDG, Liu et al. [120] developed pre-
dictive models for lung cancer. The model achieved satisfactory prediction power in 
identifying the EGFR mutation and its certain mutation subtypes. Two sets of RFs were 
discovered for predicting the prognosis of distinct subtypes of EGFR mutation includ-
ing 5 features for E19 deletions and 5 features for E21 L858R mutations. Radiomics 
prediction accuracy was 0.77 and 0.92, respectively, for both predictors. By combining 
these two predictors, a model to distinguish positive EGFR mutation could also be con-
structed, achieving an AUC value of 0.87. Li et al. [121] conducted an integrated study 
collecting data of 115 NSCLC patients, combining somatic molecular test with PET/
CT image, and successfully established a correlation between imaging phenotypes and 
molecular mutation status. PET/CT-based RFs outperformed individual RFs (the PET 
radiomics signature, CT radiomics signature, and the common PET parameters such as 
max standardized uptake value [SUVmax], SUVmean, metabolic tumor volume [MTV], 
and total lesion glycolysis [TLG]) in discriminating between EGFR-mutant type (EGFR-
MT) and EGFR-WT with an AUC of 0.805. To develop robust and comprehensive mod-
els, several clinical characteristics that might affect image features, such as age, gender, 
smoking status, clinical stage, and lesion location, were integrated with radiomics mod-
els, with the PET/CT model resulting in an impressive AUC of 0.822. The results of Zhao 
et al. further supported this view [122]. The retrospective study included 88 patients 
with ADC and established 4 models based on clinical factors, PET-based RFs, CT-based 
RFs, and PET/CT-based RFs combined with clinical factors, respectively. The combined 
model outpaced other prediction models, demonstrating a superior AUC of 0.864 with 
a specificity of 0.784 and a sensitivity of 0.714. The calibration curve of the nomogram 
model demonstrated a concordance index (C-index) value of 0.778 in the validation 
cohort, indicating good clinical utility.

A study by Yang et al. [123] investigated the predictive value of 18F-FDG PET/CT 
signatures for EGFR mutation profiles, mutation site, and survival with TKI therapy in 
313 patients of NSCLC. In multivariate analysis, SUVmax was one of the independent 
predictors for EGFR mutation condition and specific mutation sites. To develop inte-
grated models, 2 clinical factors, 8 CT-based RFs, and 6 PET-based RFs were obtained, 
which showed excellent ability to distinguish between EGFR-WT, EGFR-19-MT, and 
EGFR-21-MT. Additionally, researchers conducted a performance comparison of differ-
ent model construction algorithms and observed that SVM outperformed in the pre-
diction models of the EGFR-WT, EGFR-19-WT, and EGFR-21-WT in both the training 
and validation cohorts in comparison with the random forest and decision tree mod-
els. The integrated nomogram predicts OS better than either the clinical or radiomics 
nomograms, with C-indexes of 0.80 in the training sets and 0.83 in the validation sets. 
Improved survival outcomes of NSCLC patients receiving targeted therapy may be 
achieved through PET/CT-based radiomics model to predict EGFR mutation profiles. 
Yang et al. [124] retrospectively collected 174 patients diagnosed with ADC over a period 
of 7 years and found that the combination of 18F-FDG PET/CT-based RFs and several 
clinical factors had the potential to indicate genetic differences and provide a prediction 
for prognosis. The mutation status model was evaluated in both the training and valida-
tion groups, achieving an AUC of 0.77 and 0.71, respectively. In the training and valida-
tion sets, the E19/21-MT model demonstrated an AUC of 0.82 and 0.73, respectively. 
The multi-factor Cox proportional hazard (CPH) model, which incorporated radiomics 
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and five clinicopathological variables, demonstrated a C-index of 0.757. Patients with 
EGFR mutations survived significantly longer with targeted therapy than chemotherapy 
(P = 0.03). Nevertheless, the model’s generalizability was limited as there was no exter-
nal validation performed. For further improvement of the research process, a consen-
sus should be reached regarding the harmonization of PET/CT radiomics workflows for 
predicting EGFR mutation profiles in NSCLC patients [125].

Prediction of alternative pathway

While current research is predominantly centered on the identying mutations of EGFR, 
it is of great importance to predict other common gene mutations such as KRAS, ROS1 
and ALK as patients harboring these gene mutations may benefit from targeted therapies 
[126]. Previous evidence has demonstrated that KRAS mutation status exhibits associa-
tion with EGFR mutation status as they manifest a distinct pattern of mutual exclusiv-
ity [127]. Wang et al. [128] retrospectively analyzed a dataset of 258 NSCLC patients, 
including a 180 training cohort and a 78 validation cohort, to investigate whether the 
mutation exclusion information can optimize the PET/CT radiomics algorithms for 
predicting KRAS mutation. The composite model which integrated EGFR mutation 
information into the KRAS PET/CT model exhibited improved accuracy and AUC for 
predicting KRAS mutations. KEAP1 and/or NFE2L2 mutations also play a crucial role 
in the pathogenesis and therapeutic resistance of lung cancer. Disruption of the KEAP1-
NFE2L2 pathway results in the activation of NRF2, thus promoting the survival, prolif-
eration, and resistance to oxidative stress and chemotherapeutic agents of cancer cells 
[128]. Additionally, KEAP1- NFE2L2 mutations could be used as biomarkers for predic-
tion of immunotherapy and radiotherapy response in patients with NSCLC [128, 129]. A 
study conducted by Bourbonne et al. [129] built a PET/CT radiomics model from a 158 
patients cohort and validated its effect for predicting KEAP1/NFE2L2 mutation status in 
2 cohorts, including an external cohort. The developed model was demonstrated to be 
able to efficiently identify KEAP1/NFE2L2 mutation and stratify patients at risk of local 
relapse after radiotherapy.

Dichotomize hypoxic/well-oxygenated tumor evaluation

Radiotherapy and systemic treatment are typically resistant to tumor hypoxia [130]. 
Hypoxia-indicating methods, such as immunohistology staining utilizing 2-nitroimid-
azoles, perfusion CT, and various PET imaging agents, including the commonly used 
18F-fluoromisonidazole (18F-FMISO), 18F-flortanidazole (18F-HX4), and 18F-fluoroaz-
omycinarabinoside (18F-FAZA), has been widely applied in the determination of the 
oxygenation status of solid tumors [131–133]. It is assumed that radiomics characteris-
tics derived from CT and FDG-PET can be employed to detect tumors with substantial 
hypoxia areas. Sanduleanu et al. [134] proposed and validated CT, FDG-PET and PET/
CT based radiomics models for hypoxia classification, either agnostic with unknown 
solid tumor sites or site specific (lung, head and neck [H&N]), and explored the cor-
relation with relevant hypoxia-response genes and the predictive value for OS of these 
signatures. In three cohorts for external validation, an 11-feature “disease-agnostic CT 
model” achieved AUCs of 0.78, 0.82, and 0.78. A “disease-agnostic FDG-PET model” 
achieved an AUC of 0.73 in the validation dataset by combining 5 features. In addition, 
Kaplan-Meier analysis in an external cohort demonstrated a significant split (P < 0.05) 
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in OS between hypoxic and normoxic CT-classification. After correction for multiple 
testing, 117 significant correlations were found between radiomics features extracted 
from the CTAgnostic, non−SMOTE-signature and hypoxia response genes, demonstrating that 
both CT- and 18F-FDG PET-based radiomics signatures can properly divide tumor into 
hypoxic and non-hypoxic groups based on hypoxic fractions cutoffs.

Radiomics application in prognosis and therapeutic efficacy evaluation in lung 
cancer
Radiomics in surgical planning and prognosis

ADC is a clinically heterogeneous disease and has a high mortality rate, and despite 
having the same TNM stage, patients may still have widely varying clinical outcomes 
[135, 136]. Thus, an improved method for predicting death or recurrence risk in ADC 
patients is necessary. 18F-FDG PET is extensively employed for ADC staging, restaging, 
and response evaluation [137]. Li et al. [138] analyzed a gene expression dataset contain-
ing 334 patients with stage I–IIIA ADC by using a “weighted gene coexpression network 
analysis” R package to identify a prognostic gene coexpression module, and then devel-
oped a noninvasive radiomics signature based on PET-metabolic features that could be 
individually applied in a clinical setting to recognize patients with ADC who are at an 
increased risk of death and recurrence. Prognostic capability of the coexpression mod-
ule with genes enriched in tumor-associated processes such as DNA replication, cell 
cycle, and p53 signaling pathway was validated and the selected module was sequentially 
leveraged for extracting a radiomics signature incorporating 3 PET metabolic features. 
Multivariate Cox regression analysis revealed that the radiomics signature was an inde-
pendent prognostic factor for OS and recurrence-free survival (RFS) in patients with 
ADC. Moreover, the radiomics nomograms significantly outperformed the clinicopath-
ological nomograms in terms of concordance index. Chen et al. [139] investigated the 
prognostic efficacy of 18F-FDG PET RFs in fifty-one patients of EGFR-mutated ADC and 
treated by targeted TKI. They identified two independent prognostic risk factors asso-
ciated with decreased OS and PFS, that were high SUV entropy of the primary tumor 
(> 5.36) for radiomics analysis and the presence of pleural effusion for clinical variables 
and then formulated a score system (ranking from 0 to 2) containing the above items. 
The new system was found to be superior to the traditional TNM staging system in 
terms of C-index for OS and PFS and promote survival prognosis stratification in stage 
III-IV ADC patients. The results may be helpful to optimize individualized treatment 
strategies.

Radiomics in chemoradiotherapy

A number of semiquantitative FDG PET features, such as the SUV, MTV, and TLG, are 
associated with particular prognoses in patients with NSCLC [140–142]. Neoadjuvant 
chemotherapy can decrease tumor size prior to surgery, thereby enhancing the like-
lihood of a curative resection [143]. Yang et al. [144] aimed to develop and validate a 
radiomics model using 18F-FDG PET/CT images for predicting the pathological com-
plete response (pCR) to neoadjuvant chemoimmunotherapy in NSCLC patients. The 
study demonstrated that this PET/CT radiomics model achieved an AUC of 0.818, 
indicating its effectiveness in forecasting pCR in NSCLC patients undergoing neoad-
juvant chemoimmunotherapy. The treatment guidelines for lung cancer recommend 
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stereotactic body radiation therapy (SBRT) for patients who are medically ineligible for 
surgery or who opt out of surgical interventions [145]. Nemoto et al. [146] developed 
and thoroughly assessed models for predicting local, regional, and distant recurrence 
post-SBRT, utilizing radiomic features and machine learning techniques on PET and CT 
images. The findings indicate that the model integrating PET imaging features and SVM 
effectively predicts local and regional lymph node recurrence, while the model incorpo-
rating CT imaging features and SVM reliably forecasts distant recurrence. The research 
conducted by Lucia et al. reached similar conclusions [147].

In an NSCLC patient cohort receiving definitive chemoradiotherapy, Krarup et al. 
[148] validated the prognostic value of 6 selected RFs extracted from 18F-FDG PET/
CT in both univariate and multivariate cox regression analysis, which were jointed with 
stage, histology and gross tumor volume (GTV) for prognostic assessment. They found 
that 4 RFs were identified as informative predictors for PFS in the univariate analysis 
and none in the multivariate analysis, while GTV and clinical stage were observed to be 
prognostic indicators. They concluded the combined analysis didn’t exhibit significant 
prediction performance and the negative findings was possibly attributed to changes in 
technical parameters. The stability of RFs is a matter of concern in providing important 
clinical information. At present, risk evaluation and treatment decision of NSCLC are 
based on the TNM staging system. There are, however, some limitations to the TNM 
staging system. For instance, patients with the same stage have varying recurrence rates 
after curative surgery [149]. A study by Kirienko et al. [150] confirmed the RFs extracted 
from baseline PET/CT scans could indicate disease-free survival (DFS) in NSCLC 
patients undergoing surgery. Using Cox models that included RFs for CT, PET, and PET/
CT images, the research obtained AUCs of 0.75, 0.68, and 0.68, respectively. As a result 
of adding clinical predictors (tumor stage) to Cox models, AUCs for CT, PET, and PET/
CT images were 0.61, 0.64, and 0.65, respectively (Fig.  3). However, the present study 
was not able to test smoking habits and differentiation grading because these data were 
not available for the entire patient cohort. Unfortunately, the findings from Ciarmiello 
et al. [151] suggest that a radiomic model incorporating tumor stage, SUVmax, and a 
specific radiomic feature (NGTDM_Coarseness) predicts survival in NSCLC patients 
as effectively as a reference model consisting solely of tumor stage and SUVmax. The 
selected radiomic variable did not offer any significant additional value beyond that pro-
vided by the tumor stage and SUVmax combination.

Radiomics in lymph node metastasis

Patients with NSCLC will be precluded from receiving primary surgery in the presence 
of contralateral or multiregional mediastinal-hilar lymph node metastasis, which is sig-
nificantly predictive of poor clinical prognosis [152, 153]. In recent years, 18F-FDG PET/
CT has become a favorable imaging strategy for detecting abnormal lymph nodes [154]. 
A retrospective study included 259 NSCLC patients who received preoperative 18F-FDG 
PET/CT scan and were detected with hypermetabolic mediastinal-hilar lymph nodes 
(LNs) [155]. The researchers developed a PET-based radiomics model to discriminate 
metastatic LNs from LNs with elevated uptake, and test the model’s predictive value in 
an external dataset. The combined PET/CT model demonstrated excellent discrimina-
tion performance for identifying the true metastatic LNs from the hypermetabolic LNs, 
with an AUC of 0.874, 0.845, and 0.841, respectively.
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Different ML algorithms will yield models with varying performances in outcome 
stratification of patients [156]. Sepehri et al. [156] prospectively conducted an assess-
ment of the effectiveness of a 18F-FDG PET/CT-based radiomics model built using the 
consensus of 3 ML algorithms for the prediction of outcomes in patients with stage II-III 
NSCLC. Three different ML pipelines (SVM, random forest, and LR) were exploited to 
predictively classify OS into binary groups. Two clinical endpoints, namely the median 
OS and OS less than 6 months, were examined. The results highlighted that distinct ML 
methods demonstrate huge differences in feature selection and achieved differing levels 
of classification performance and as well demonstrated that a collective agreement of 
ML algorithms could enhance the radiomics performance. In both scenarios, averaging 
probabilities improved the results better than majority voting. While additional valida-
tion of these preliminary findings in a larger sample size cohort is necessary, the pres-
ent study holds promise for pinpoint higher-risk cases within stage II-III populations, 
thereby allowing for the implementation of more intensive interventions and increased 
frequency of post-treatment follow-ups, which could result in significant benefits for 
those individuals.

Challenges and future direction
Radiomics in NMI possesses the potential to extract archetypal signatures as substitute 
biomarkers to identify cancer characteristics, which is attributed to the ability to capture 
tumor heterogeneity non-invasively and to show anatomical and functional information 
simultaneously, and it has seen significant progress over the past decade in this field. 

Fig. 3 PET/CT radiomics models for predicting disease-free survival in NSCLC patients undergoing surgery. Ka-
plan-Meier curves for the DFS resulting from the Cox regression models built using the radiomic signature within 
the CT (A), the PET (B) and the PET + CT (C) dataset. The AUCs for the different Cox regression models were 0.75 
(95% CI:0.65–0.85), 0.68 (95%CI: 0.57–0.80) and 0.68 (95%CI: 0.58–0.74). Clinical cases PET/CT images of a low-risk 
(D) and a high-risk (E) patient. Low-risk patient: axial PET, CT, PET/CT and a three-dimensional reconstruction of 
PET/CT images (a, b, c, and d, respectively) of a 64-year-old female with ADC, pathological stage 2a (T2N0M0), with 
no evidence of disease 31 months after surgery. High-risk patient: axial PET, CT, PET/CT, and a three-dimensional 
reconstruction of PET/CT images (a, b, c and d, respectively) of a 60-year-old male, with squamous cell carcinoma, 
pathological stage 2a (T2N0M0), who experienced disease recurrence 11 months after surgery. Data derived from 
Kirienko et al. [150]
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Despite the rapid growth, the focus of radiomics research remains predominantly on 
the proof of concept stage and the transformation from a top-tier research area into an 
indispensable clinical decision-making strategy is in high demand [23]. To achieve this, 
there exist obstacles that are imperative to be tackled before it can be effectively incor-
porated into clinical practice.

The robustness and reproducibility of radiomics factors are subject to variability due to 
diverse factors including the image acquisition protocols (e.g. patient preparation, radio-
tracer dosage and uptake time), scanner vendors, reconstruction algorithms (e.g. match-
ing of resolution and iterative reconstruction convergence) and data analysis [157, 158]. 
The inferior spatial resolution and unsatisfactory statistical attributes of PET images 
can engender greater instability [159]. To improve the generalization of radiomics 
researches, it is necessary to establish inter-institutional standardized imaging parame-
ters, reconstruction technologies and segmentation methods, that will facilitate the suc-
cessful application of promising outcomes that are found in one particular study to be 
utilized in another [160]. PET imaging guidelines, including those proposed by EANM 
[21] and a Netherlands cooperative group [161], can provide unified specifications in 
multi-center PET studies and it’s the responsibility of manufacturers and researchers to 
support the implementation and maintenance of these guidelines in future studies and 
practice. Additionally, considerable disparity exists between the definitions and nomen-
clature of features in current literature and available software [162]. The Quantitative 
Imaging Biomarkers Alliance (QIBA) [163] and IBSI [55] are being undertaken to facili-
tate the harmonization of the definitions, reference values and calculation schemes of 
quantitative imaging biomarkers, enhancing the reproducibility and comparability. Post-
harmonization techniques such as ComBat are proposed to address the batch effect vari-
ability, improve model performance and increase data sharing capabilities. However, 
there are concerns that these techniques may notably alter feature values and even result 
in impossible values, e.g. negative volume values, for which further in-depth investiga-
tion is needed [23, 164].

As previously discussed, validation of the established model is a crucial component in 
radiomics pipeline. The TRIPOD (i.e. transparent reporting of a multivariable prediction 
model for individual prognosis or diagnosis) statement highlights that development of 
prediction models should always include validation to quantify overestimation or bias 
in the predictive performance [165]. The absence of multi-center studies and external 
validation in existing literature decreases the reliability of positive outcomes and pres-
ents a limitation to the clinical translation of radiomics [166, 167]. For further studies, 
it is necessary to employ large, multi-center cohorts in model validation to mitigate the 
risk of statistical biases and avoid over-positive findings [162]. One concerns the cre-
ation of large, publicly available, open access image databases, which preferably should 
be encouraged by public organisations.

For past published papers, uniform assessment criteria are needed to incorporate a 
publication into confound meta-analyses and reviews. Lambin et al. [7] proposed a 
radiomics quality score (RQS) for evaluating the quality of radiomics researches and pro-
moting the execution of standardized guidelines and rigorous reporting requirements. It 
consists of 16 items such as the image protocol compliance and reporting, multiple seg-
mentations, imaging at multiple time points, multivariable analysis with non-radiomics 
features, validation and cost-effectiveness analysis. RQS can enable researchers to ensure 
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the high-quality of their studies that are likely to generate meaningful outcomes, as well 
as assist readers in identifying the reliability and informativeness [168]. Despite its use-
fulness, however, the RQS score has limitations that some components are not univer-
sally applicable, while some have relatively ambiguous score criteria and additionally, 
inter-reviewer discrepancies exist [169]. It is important to acknowledge these limita-
tions and use the RQS in conjunction with other methods to get a more accurate and 
complete picture of the quality of a study [170]. Adhering more closely to established 
guidelines is essential for facilitating the widespread adoption of radiomics and machine 
learning in routine clinical practice [171].

Although radiomics studies have garnered increasing interest in recent years, their 
integration into large-scale clinical trials has been relatively slow. Despite radiomics 
approaches potentially offering the highest level of evidence, only a few trials have 
included radiomics projects as ancillary studies. Incorporating radiomics approaches 
into large clinical trials could catalyze the rapid development of radiomics, accelerating 
the translation of scientific theories from preclinical experimentation to clinical imple-
mentation, ultimately conferring benefits to more patients. There is a pressing need for 
collaborative efforts between radiologists, oncologists, and biostatisticians to propel the 
integration.

Artificial intelligence (AI) technologies including classical ML and DL have penetrated 
into various procedures of radiomics including but not limited to image reconstruc-
tion, segmentation, extraction of radiomics features and data analysis and opened up 
new possibilities for NMI, paving the way for more effective and personalized patient 
care [172]. One of the factors hindering the wider application of AI in clinical practice 
is its tendency to sacrifice interpretability in favor of better prediction accuracy, result-
ing in the so-called “black box” problem [173]. Graph-based methods and advanced 
visualization tools represent as promising approaches to enhance the interpretability of 
radiomics data for clinicians [173].

As for lung cancer, it is suggested that in future studies, radiomics may need to be 
combined with more clinical risk factors for instance the patient’s performance status, 
smoking habits and complications including pneumonia and chronic obstructive pul-
monary disease in order to accurately predict survival of lung cancer patients [23, 174]. 
Compared to CT, PET studies on the correlation between RFs and tumor biology, such 
as gene expression or blood serum biomarkers, are less in number and yield less sat-
isfactory outcomes [23]. To advance PET radiomics studies in lung cancer, exploring 
multimodality studies in large patient cohorts and developing novel radiotracers that 
target other biomarkers and pathophysiological processes could be promising directions 
for future research. Furthermore, current radiomics researches are predominantly cen-
tered on NSCLC, while investigations into SCLC remain scarce. This paucity highlights 
the need for future endeavors to carry out studies focusing on SCLC to improve clinical 
management strategies.

Implementing AI in clinical practice presents challenges such as limited resources and 
the need for proper training and education among healthcare professionals. Healthcare 
systems should establish substantial infrastructure and training programs for all person-
nel to effectively use and interpret AI tools. In the context of rapidly evolving healthcare 
systems and workflows, these tools must be regularly updated to ensure seamless per-
formance [175]. Additionally, maintaining patient privacy, data security, data ownership, 
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and compliance with regulations like HIPAA presents complexities. A framework with 
clear guidelines for the acceptance and deployment of AI models in healthcare is essen-
tial to guarantee patient safety and uphold ethical standards in data management.

Conclusion
In this review, we presented an outline of the radiomics workflow, its current progress 
in the context of lung cancer, the existing pitfalls and future directions. Overall, both 
nuclear medicine radiomics and its application in lung cancer are rapidly evolving fields 
that hold great promise for improving the accuracy of diagnosis, staging, and prognosis 
of lung cancer. Its ability to capture and analyze high-throughput quantitative imaging 
features directly related to the biological function provides valuable insights into tumor 
heterogeneity and can improve personalization of treatment plans. While there are still 
challenges to the implementation of PET radiomics in clinical practice, ongoing research 
efforts are addressing these challenges and it will play an increasingly important role in 
the management of lung cancer in the future.
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