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Abstract
Background  Accurately redirecting reconstructed Positron emission tomography 
(PET) images into short-axis (SA) images shows great significance for subsequent 
clinical diagnosis. We developed a system for automatic redirection and quantitative 
analysis of myocardial PET images.

Methods  A total of 128 patients were enrolled for 18 F-FDG PET/CT myocardial 
metabolic images (MMIs), including 3 image classifications: without defects, with 
defects, and excess uptake. The automatic reorientation system includes five 
modules: regional division, myocardial segmentation, ellipsoid fitting, image rotation 
and quantitative analysis. First, the left ventricular geometry-based canny edge 
detection (LVG-CED) was developed and compared with the other 5 common region 
segmentation algorithms, the optimized partitioning was determined based on 
partition success rate. Then, 9 myocardial segmentation methods and 4 ellipsoid fitting 
methods were combined to derive 36 cross combinations for diagnostic performance 
in terms of Pearson correlation coefficient (PCC), Kendall correlation coefficient (KCC), 
Spearman correlation coefficient (SCC), and determination coefficient. Finally, the 
deflection angles were computed by ellipsoid fitting and the SA images were derived 
by affine transformation. Furthermore, the polar maps were used for quantitative 
analysis of SA images, and the redirection effects of 3 different image classifications 
were analyzed using correlation coefficients.

Results  On the dataset, LVG-CED outperformed other methods in the regional 
division module with a 100% success rate. In 36 cross combinations, PSO-FCM and LLS-
SVD performed the best in terms of correlation coefficient. The linear results indicate 
that our algorithm (LVG-CED, PSO-FCM, and LLS-SVD) has good consistency with the 
reference manual method. In quantitative analysis, the similarities between our method 
and the reference manual method were higher than 96% at 17 segments. Moreover, 
our method demonstrated excellent performance in all 3 image classifications.

Conclusion  Our algorithm system could realize accurate automatic reorientation 
and quantitative analysis of PET MMIs, which is also effective for images suffering from 
interference.

Keywords  Positron emission tomography (PET), Automatic reorientation, Regional 
division, Image segmentation, Fitting algorithm
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Introduction
Positron emission tomography (PET) is increasingly being used routinely in the diag-
nosis of coronary artery disease [1, 2]. Compared to single-photon emission computed 
tomography (SPECT), PET has high resolution images and quantitative parameters in 
myocardial images [3, 4]. The myocardial PET image is a longitudinal image perpen-
dicular to the patient’s long axis but not perpendicular to the left ventricular long axis. 
However, the direction of the long axis of the left ventricle is inconsistent with that of 
the human body [5]. The left ventricle is located below the left back of the right atrium, 
and the direction of its long axis slopes from the upper right to the lower left of the body 
with individual differences [6, 7]. Moreover, other organs and tissues around the heart 
also affected the observation field. Tracer uptakes were also observed in the right atrium, 
coronary sinus, and spine, which appeared as bright areas in the image [8, 9].

In order to facilitate clinical diagnosis and accurate quantitative analysis, the longitu-
dinal image needs to be reoriented and rotated to obtain a cardiac short-axis (SA) image 
perpendicular to the left ventricular long axis [10]. Currently, steering studies focused 
on cardiac PET images are scarce, and most physicians adopted the traditional method 
manual for reorientation in clinical applications. SPECT as the mainstream imaging for 
cardiac disease, the related reorientation algorithms can be divided into traditional and 
automatic modes [11–17].

Traditional manual positioning mainly relies on the operator’s personal experience. 
According to visual judgment, the operator draws the long axis of the myocardium on 
horizontal long-axis (HLA) images and vertical long-axis (VLA) images to obtain the 
deviation angle, and then rotates the images to obtain SA images. However, this process 
is time-consuming, poorly repeatable, and error-prone [16].

The automatic algorithm obtains SA SPECT images through myocardial segmentation 
and model fitting. Employing techniques such as maximum radiation labeling or itera-
tive clustering, the left ventricular myocardium could be segmented from SPECT images 
[11–13]. Subsequently, the left ventricular myocardium is fitted to an approximate 
model through model fitting, this step can calculate the left ventricular deviation angle, 
which is used to rotate the cardiac SPECT image and generate the SA SPECT image [14, 
15].

Severe defects may lead to inaccurate positioning of the left ventricular long axis, so 
in clinical software such as Auto QUANT and Emory Cardiac Toolbox, the operator can 
manually adjust the long axis vector to ensure accurate reorientation [16–20]. Recently, 
the latest development of deep learning has also successfully introduced reorientations. 
For instance, Zhang et al. adopted convolutional neural networks (CNN) to predict six 
rigid body transformation parameters and obtained SA SPECT images by spatial trans-
formation network [21].

However, the image quality of PET images is higher than that of SPECT images [22]. 
PET images can not only provide more detailed information about the left ventricle 
but also provide information about surrounding organs and tissues, which can serve 
as interference information and affect the accuracy of automatic reorientation [23–25]. 
Thus, the methods of SPECT may not be suitable for PET images.

Recent works related to myocardial PET images mostly focused on myocardial perfu-
sion images (MPIs) and myocardial metabolic images (MMIs). In this work, MMI data 
was collected analyzed since it is widely used in China. The report of Su et al. has shown 
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that segmenting the image into regions and extracting the heart part separately could 
improve the efficiency of subsequent segmentation [26]. Given that, we added the step of 
region division before traditional myocardial segmentation and model fitting.

In total, the purpose of our research is to find a set of automatic reorientation algo-
rithms that are most suitable for 18  F-FDG PET MMIs. 6 methods of region division 
were adopted and compared, and the performances of 36 cross-combinations derived 
from 9 myocardial segmentation methods and 4 model fitting methods were evaluated.

Methods and materials
Study population

This study initially included 135 patients who underwent the 18 F-FDG PET/CT scan-
ning on a Siemens Biography 16 PET/CT scanner at the Guangdong Provincial People’s 
Hospital from 2017 to 2019. However, 7 patients were excluded due to the following rea-
sons: (1) poor image quality, or (2) incomplete clinical information. Finally, 128 PET/CT 
MMIs were included in the experiment, among them, 108 were coronary artery disease 
(CAD) patients, and the remaining 20 patients included heart failure, heart valvular dis-
ease, coronary artery aneurysm, and other cardiovascular diseases. Patient characteris-
tics of 128 18 F-FDG PET MMIs are listed in Table 1. The study was approved by the 
institutional review board.

Two nuclear medicine doctors with 3 years of clinical experience utilized PMOD 
software to confirm the SA images corresponding to the PET MMIs data. The disputed 
cases were individually reviewed and reconfirmed by a nuclear medicine doctor with 
13 years of clinical experience to obtain the reference reorientation images and refer-
ence reorientation angles for each case. The reference reorientation images were quan-
titatively analyzed by polar maps and the summed metabolism score (SMS). Cases with 
SMS > 2 were classified as patients with myocardial metabolic defect, and the cases with 
SMS < = 2 were divided into patients without myocardial metabolic defect and patients 
with right ventricle excess uptake after visual examination by two nuclear medicine doc-
tors. The dataset was specifically divided into 48 patients without myocardial metabolic 

Table 1  Patient characteristics of 128 PET MMIs
Characteristic N = 128
Age (years) 56.9 (5–81)
   Gender
   Male 89.8% (115 / 128)
Female 10.2% (13 / 128)
Weight (kg) 63.5 (19.5–93)
Heart rate (times/minute) 75 (48–117)
Systolic blood pressure (mmHg) 115 (81–172)
Diastolic blood pressure (mmHg) 74 (47–109)
Hypertension 53 (41.4%)
Diabetes 35 (27.3%)
Smoking 43 (33.6%)
With CAD 108 (84.4%)
Without CAD 20 (15.6%)
MMIs without defects 48
MMIs with defects 49
MMIs with right ventricle excess uptake 31
CAD: Coronary artery disease;

MMI: Myocardial metabolism image
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defect, 49 patients with myocardial metabolic defect, and 31 patients with right ventricle 
excess uptake.

Before the MMI scan, each patient underwent a glucose loading test. The patient’s 
blood glucose was measured after 45  min of the glucose loading test, and the insulin 
dosage by injecting insulin based on the patient’s blood glucose level. Check the patient’s 
blood sugar level every half hour, the 18 F-FDG was intravenously injected at a standard 
dose of 0.1mCi/Kg once the patient’s blood glucose level was at or below 7.8mmol/L. 
After a resting period of 90  min, each patient underwent a PET/CT scan. The scan-
ning process was conducted sequentially, starting with a CT localization scan (120kVp, 
10  mA), followed by a CT tomography scan (140kVp, 80  mA), and finally a 15-min-
ute list mode PET scan. MMI images were reconstructed using attenuation-weighted 
ordered subset expectation maximization (two iterations, 24 subsets) and a Gaussian fil-
ter (FWHM = 5 mm). CT-based attenuation, scatter, decay, and random corrections were 
applied to the reconstructed images.

The proposed cardiac PET image automatic reorientation system consisted of five 
modules. As shown in Fig. 1, there are regional division, myocardial segmentation, ellip-
soid fitting, image rotation and quantitative analysis. The inputs were 18  F-FDG PET 
MMIs, and the outputs were SA images and the quantitative analysis results.

Fig. 1  Overview of the cardiac PET image automatic redirection system, including regional division, myocardial 
segmentation, ellipsoid fitting, image rotation, and quantitative analysis
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Regional division

The region-based division method is an image division technique that divides an image 
into several regions. Dividing the area containing the left ventricle in 18  F-FDG PET 
MMIs can remove the interference from other organs and tissues, which is beneficial 
for subsequent myocardial segmentation [26]. The myocardial PET images after regional 
division are resampled to a unified size of 80 * 80 * 64. One of the most common algo-
rithms for region division is edge detection. We proposed the LVG-CED method, which 
improved the canny edge detection algorithm by introducing left ventricular position 
and size information as prior conditions. This method removed the areas that do not sat-
isfy the conditions to improve partition efficiency and adopted the active contour algo-
rithm with excellent performance in medical image division. Also, we compared some 
popular traditional algorithms for region partitioning of 18 F-FDG PET MMIs, includ-
ing watershed [27], reconstruction closure (RC), iterative threshold segmentation (ITS) 
[28, 29], local fitting-based active contour models (LF-ACM) [30, 31], curve evolution 
(CE) [32], and LVG-CED.

Myocardial segmentation

Through segmentation algorithms, we can segment the left ventricular myocardium 
from myocardial PET images. Segmentation algorithms are mainly divided into three 
categories: region-based methods, contour-based methods, and clustering-based meth-
ods [33, 34]. Region-based methods such as region partitioning and region growth are 
suitable for segmenting small regions. For the contour method, we selected an active 
contour driven by region scalable fitting and introduced a Gaussian energy Laplace 
operator optimization algorithm. Clustering-based algorithms are the most common 
and widely used segmentation methods. We compared the clustering performance 
of k-means and fuzzy C-means and used a particle swarm optimization algorithm to 
improve the speed and accuracy of clustering. In this study, a total of 9 segmentation 
algorithms were adopted for comparison, including maximum radioactivity sampling 
(MRS) [15], splitting and merging (SM) [35], region growth (RG) [34], multiplicative 
intrinsic component optimization (MICO) [36, 37], active contours driven by region-
scalable fitting and optimized Laplacian of Gaussian energy (RSF-LOG) [38, 39], 
K-means, fuzzy C-means (FCM), particle swarm optimization K-means (PSO-K-means) 
[40], and particle swarm optimization fuzzy C-means (PSO-FCM) [41]. All the men-
tioned methods are fully automatic unsupervised segmentation algorithms that elimi-
nate the need for manual adjustment or labeled data.

Ellipsoid fitting

The shape of the human left ventricular myocardium is irregular, thus it is usually fitted 
by a hemisphere of a cylinder with a hemisphere, a cone, or an ellipsoid [11, 42, 43]. We 
chose to fit it as an ellipsoid, and the formula is shown in Eq. (1).

a1x
2 + a2y

2 + a3z
2 + a4xy + a5xz + a6yz + a7x + a8y + a9z + a10 = 0� (1)

Whereai , 𝑖 = 1, 2, …10 are the 10 parameters of the ellipsoid. Based on the ellipsoid 
parameters, the long-axis deflection angle of the ellipsoid could be approximated as the 
left ventricular deflection angle, as shown in Eq. (2) and Eq. (3).
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Where 𝛼 is the X-Z axis deviation angle, and 𝛽 is the Y-Z axis deviation angle. The fitting 
algorithm of Douglas Rachford singular value decomposition (DR-SVD) [44], oblique 
projection (OP), linear least squares (LLS), and linear least squares singular value 
decomposition (LLS-SVD) were used separately.

Image rotation

According to two deflection angles, we calculated the corresponding rotation matrices, 
and used affine transformation to rotate 18 F-FDG PET MMIs. The formulas as shown 
in Eqs. 4 and 5.

H1 =




1 0 0
0 cos α − sinα

0 sinα cos α



� (4)

H2 =




cos β 0 sin β

0 1 0
− sinβ 0 cosβ



� (5)

where 𝛼 is the X-Z axis deviation angle, and 𝛽 is the Y-Z axis deviation angle. We cropped 
and resampled the rotated images to obtain SA images of the same size as 18  F-FDG 
PET MMIs.

Quantitative analysis

Polar maps were used to quantitatively analyze the results of automatic orientation. 
Relied on the hemisphere plus cylinder model proposed by Carci et al. [42], the left ven-
tricle apex was fitted by a hemisphere, the base and the mid-cavity was fitted by a cyl-
inder. Referring to the criterions proposed by the American Heart Association [45], the 
polar map was divided into 17 segments and 3 blood supply vessel regions. The left ante-
rior descending (LAD) consisted of 7 segments: 1, 2, 7, 8, 13, 14, 17. The right coronary 
artery (RCA) consisted of 5 segments: 3, 4, 9, 10, 15. The left circumflex (LCX) consisted 
of 5 segments: 5, 6, 11, 12, 16. The images manually positioned and rotated by clinical 
physicians were used as reference images. The similarity between the results obtained by 
our method and those obtained from reference images was calculated by Eq. (6).

m =
∣∣∣∣1 − pr − po

po

∣∣∣∣ × 100%� (6)

where pr  is the value of the polar map corresponding to the reference image, p0  is the 
value of the polar map corresponding to the image obtained from our method, and m  is 
the similarity. We analyzed the results of 17 segments, 3 blood supply vessel regions, and 
the overall polar map in detail.
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Results
Parameter-level analysis

Figure 2 shows the statistical results of the regional division. The method was evaluated 
based on whether the entire heart region was completely divided. The success rate of 
LVG-CED was as high as 100%, and the success rate of CE was 95.3%.

The algorithm for the regional division was fixed as LVG-CED. We cross combined 
9 myocardial segmentation methods and 4 ellipsoid fitting methods and compared the 
results with the manual method. The paired Pearson correlation coefficient (PCC) of 
different myocardial segmentation methods (in columns) and ellipsoid fitting methods 
(in rows) are shown in Fig.  3. Among them, the combination of PSO-FCM and LLS-
SVD showed the highest performance (X-Z PCC: 0.96; Y-Z PCC: 0.99), followed by the 

Fig. 3  Heat map depicting the Pearson correlation coefficients of paired myocardial segmentation and ellipsoid 
fitting methods. MRS: maximum radioactivity sampling, SM: splitting and merging, RG region growth, MICO: mul-
tiplicative intrinsic component optimization, RSF-LOG: active contours driven by region-scalable fitting and opti-
mized Laplacian of Gaussian energy, FCM: fuzzy C-means, PSO-K-means: particle swarm optimization K-means, 
PSO-FCM: particle swarm optimization fuzzy C-means, DR-SVD: Douglas Rachford singular value decomposition, 
OP: oblique projection, LLS: linear least squares, LLS-SVD: linear least squares singular value decomposition

 

Fig. 2  Statistical results of successfully dividing cardiac regions of 128 PET MMIs. RC: reconstruction closure, ITS: 
iterative threshold segmentation, LF-ACM: local fitting-based active contour models, CE: curve evolution, LVG-CED: 
left ventricular geometry-based canny edge detection

 



Page 8 of 15Yang et al. EJNMMI Physics           (2024) 11:70 

combination of PSO-K-means and LLS-SVD (X-Z PCC: 0.95; Y-Z PCC: 0.96). The rel-
evant results obtained by comparing cross combinations and the manual method are 
presented in Table 2, Supplementary Tables 1 and 2, which are PCC, Kendall correlation 
coefficient (KCC), and Spearman correlation coefficient (SCC), respectively. The results 
of similarity coefficient showed that the combination of PSO-FCM and LLS-SVD had an 
excellent agreement with the manual method (X-Z KCC: 0.87; Y-Z KCC: 0.95; X-Z SCC: 
0.96; Y-Z SCC: 0.99).

To assess the accuracy and reliability of different combined traditional algorithms, 
Fig.  4 shows the linear fitting effects between the two deflection angles and the true 
value. The first column shows the linear regression coefficients of the predicted angle 
and the manual method on the X-Z deflection angle, and the second column shows 
the coefficients on the Y-Z deflection angle. The combinations from left to right were: 

Table 2  The Pearson correlation coefficients of cross-combined myocardial segmentation methods 
and ellipsoid fitting methods
Pearson X-Z axis deviation angle Y-Z axis deviation angle

DR-SVD OP LLS LLS-SVD DR-SVD OP LLS LLS-SVD
MRS 0.12 -0.12 -0.20 0.40 0.42 0.47 0.39 0.31
SM 0.23 0.27 0.26 0.81 0.08 0.55 0.57 0.84
RG 0.11 0.31 0.28 0.88 0.23 0.58 0.58 0.89
MICO 0.26 0.41 0.35 0.78 0.32 0.73 0.73 0.80
RSF-LOG 0.21 0.40 0.36 0.67 0.20 0.54 0.52 0.68
K-means 0.21 0.02 0.05 0.45 0.29 0.49 0.47 0.56
FCM 0.15 0.18 0.04 0.25 0.03 0.30 0.22 0.40
PSO-K-means 0.13 0.20 0.18 0.95 0.22 0.71 0.70 0.96
PSO-FCM 0.16 0.29 0.24 0.96 0.26 0.70 0.70 0.99
MRS: Maximum radioactivity sampling, SM: Splitting and merging, RG: Region growth, MICO: Multiplicative intrinsic 
component optimization, RSF-LOG: Active contours driven by region-scalable fitting and optimized Laplacian of Gaussian 
energy, FCM: Fuzzy C-means, PSO-K-means: Particle swarm optimization K-means, PSO-FCM: Particle swarm optimization 
fuzzy C-means

Fig. 4  The linear regression plots between the predicted angles from our method and the reference angles 
from the manual method contain three best-performing combinations, in order: K-means + LLS-SVD, PSO-K-
means + LLS-SVD, and PSO-FCM + LLS-SVD. The first row is the linear fitting results on the X-Z axis deflection angle, 
and the second row is the linear fitting results on the Y-Z axis deflection angle
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K-means + LLS-SVD, PSO-K-means + LLS-SVD, and PSO-FCM + LLS-SVD. It is 
observed that the combination of PSO-FCM and LLS-SVD showed the best consistent 
results, with determination coefficients of 0.928 and 0.970, respectively.

Moreover, we compared our method with existing methods: topological goniometry 
(TG) [15] and MRS, the results of the correlation coefficients between the two reorienta-
tion angles are shown in Table 3. Our method performed best on all three correlation 
coefficients, while KCCs were 0.87 and 0.95, PCCs were 0.96 and 0.99, and SCCs were 
0.96 and 0.99, respectively.

Clinical quantitative analysis

To further verify the reliability of our method, Table 4 shows the similarity between the 
selected optimal combination (LVG-CED, PSO-FCM, and LLS-SVD) and the manual 
method for quantitative analysis of the poplar map. Similarities of all 17 segments were 
more than 96%, the similarity of the mid inferoseptal had the highest similarity (98.89%) 
among 17 segments, RCA had the highest similarity (98.18%) among 3 blood supply ves-
sel regions, and the overall average similarity of the left ventricle was 97.84%.

Figure 5 shows the linear regression result of 17 segments of 128 patients’ polar maps 
(2142 segments in total). The optimal combination (LVG-CED, PSO-FCM, and LLS-
SVD) was highly consistent with the manual method, and the determination coefficient 
was as high as 0.992.

Table 3  The correlation coefficient between existing methods and our method
X-Z axis deviation angle Y-Z axis deviation angle
Kendall Pearson Spearman Kendall Pearson Spearman

TG 0.34 0.39 0.47 0.38 0.40 0.51
MRS 0.24 0.40 0.34 0.25 0.31 0.33
Our Method 0.87 0.96 0.96 0.95 0.99 0.99
TG: Topological goniometry

MRS: Maximum radioactivity sampling

Table 4  The similarities of the 17 segments and the 3 blood supply vessel regions among 128 
patients
Segment 1 2 3 4 5
Similarity (%) 96.74 ± 7.20 98.01 ± 5.25 98.64 ± 3.58 97.16 ± 10.19 96.89 ± 10.91
Segment 6 7 8 9 10
Similarity (%) 97.72 ± 4.61 97.47 ± 7.08 97.95 ± 6.26 98.89 ± 3.82 97.75 ± 4.89
Segment 11 12 13 14 15
Similarity (%) 97.59 ± 7.31 98.50 ± 3.13 96.84 ± 17.29 98.55 ± 5.96 98.47 ± 6.49
Segment 16 17
Similarity (%) 97.82 ± 9.46 98.27 ± 5.13
blood supply vessel region LAD RCA LCX
Similarity (%) 97.69 ± 6.16 98.18 ± 4.54 97.70 ± 5.51
Total Similarity (%) 97.84 ± 4.86
LAD: left anterior descending

RCA: right coronary artery

LCX: left circumflex
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Image-level analysis

Figure  6 shows the PET images of four patients, including reconstructed images, ref-
erence images, images obtained by our method (LVG-CED, PSO-FCM, and LLS-SVD), 
and corresponding polar maps of SA images.

Patient #49,365 without defects, mild ischemia of the basal anterolateral didn’t affect 
the automatic reorientation, and the images obtained by our method were highly consis-
tent with reference images. Patient #49,641 and patient #42,151 are two cases with inter-
ferences. The green shear in Fig. 6 pointed out an apical ischemia, and the yellow shear 
in Fig.  6 pointed out an excessive uptake of the right ventricle. Both cases had inter-
ferences with the automatic reorientation, but our method still exhibited good perfor-
mance. However, when the concentration of excess uptakes and left ventricular uptakes 
was similar (patient #48,223), it might still affect the effectiveness of the automatic redi-
rection and cause inaccuracies in subsequent quantitative analysis.

Specific classification analysis

Table  5 shows the correlation analysis results obtained by comparing our method 
and the manual method under three different image classifications. It included MMIs 
without defects, MMIs with defects, and MMIs with right ventricle excess uptake. our 
method achieved high consistency with the manual method in all three types of patients. 
The similarity of MMIs without defects was the highest, and the similarity of MMIs with 
right ventricle excess uptake was the lowest, while KCCs were 0.736 and 0.891, PCCs 
were 0.948 and 0.968, and SCCs were 0.879 and 0.964, respectively.

Discussion
In this study, we developed an algorithm system for automatic left ventricular reorien-
tation and simultaneous quantitative analysis on 18 F-FDG PET MMIs. Our algorithm 
system included five parts: regional division, myocardial segmentation, ellipsoid fitting, 
image rotation, and quantitative analysis. We compared 6 regional segmentation meth-
ods and 36 cross combinations (9 myocardial segmentation methods and 4 ellipsoid 

Fig. 5  The linear regression plot between the 2176 segment values calculated using our method and the refer-
ence segment values using the manual method
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fitting methods) and ultimately chose the best performing method as our method: LVG-
CED, PSO-FCM, and LLS-SVD. Compared to the manual method, our method showed 
a high consistency at both the image level and the quantitative analysis level.

In the regional division module, we chose LVG-CED in our system. The prior knowl-
edge of heart contour can improve the accuracy of detection [46]. In our study, the 
prior knowledge provided the information of left ventricular location and size, and edge 

Fig. 6  Reconstructed images, reference reoriented images by the manual method, and reoriented images by our 
method for four PET MMIs: patient #49,365 without defects, patient #49,641 with defects, while patient #42,151 
and patient #48,223 have excess uptake. For each, (i) reconstructed images are shown (From left to right): Trans-
axial, coronal, and sagittal 3 orthogonal orientations, (ii) reference reoriented images by the manual method and 
(iii) reoriented images by our method are shown (From left to right): SA, HLA, VLA, polar map (576 segments) and 
polar map (17 segments). SA: short axis, HLA: horizontal long axis, VLA: vertical long axis
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detection effectively detected the left ventricular myocardial edge. The success rate of 
partitioning the left ventricular region on our dataset was 100%, which was higher than 
all other traditional partitioning algorithms (Fig. 2).

In previous studies, various algorithms such as maximum radiation sampling, cluster-
ing, feature extraction, threshold partitioning, etc. have been used for myocardial seg-
mentation [10–20]. However, due to different datasets, different preprocessing methods, 
and other variables, it is not possible to integrate and compare these methods. In our 
study, we used a total of 9 popular traditional segmentation algorithms for myocardial 
segmentation. In terms of model fitting selection, a cylinder with a hemisphere, a cone, 
or a ellipsoid have been used to fit the model of left ventricular myocardium, but the 
fitting effect of the first two models was poor in the areas with severe ischemia, which 
affects the accuracy of subsequent reorientation [11, 42]. The ellipsoid was similar in 
shape to the left ventricle and less affected by defects [43], and it was selected as the 
myocardium fitting model. The combination of myocardial segmentation and ellipsoid 
fitting had the best similarity coefficient among PSO-FCM and LLS-SVD. On the X-Z 
axis deviation angle, KCC, PCC and SCC were 0.87, 0.96 and 0.96 respectively, and were 
0.95, 0.99 and 0.99 on the Y-Z axis deviation angle as shown in Table 2, Supplementary 
Tables 1 and 2.

At present, software for fully automatic PET cardiac image reorientation has not been 
applied in clinical diagnosis. Through semi-automatic methods, doctors manually adjust 
the results of the software’s automatic segmentation of fixed points to determine rota-
tion parameters and obtain SA images, it has low repeatability and large errors [16]. 
However, due to the difficulty in obtaining PET data, there are rare studies focused on 
automatic reorientation of 18 F-FDG PET MMIs, and existing studies mainly focus on 
SPECT images. For instance, Zhang et al. used 322 SPECT images, and the determina-
tion coefficients of three rotation parameters were 0.928, 0.958, and 0.994 respectively 
[21]. Zhu et al. used 254 SPECT images, and the determination coefficients of three rota-
tion parameters were 0.987, 0.990, and 0.996 respectively [22]. On our data set of 128 
cases of 18 F-FDG PET MMIs, our method achieved similar results with the determina-
tion coefficients of 0.928 and 0.970 (Fig. 4).

The polar map, as the best semi quantitative method for visual interpretation of 
regional left ventricular abnormalities, was selected as the clinical quantitative analysis 
method in our study [47]. The linear fitting results of Fig. 5 indicated that the polar map 
values obtained through our method were highly consistent with the results obtained 
through the manual method (determination coefficient: 0.9915). The similarities were 
higher than 96% in all 17 segments, with the mid inferoseptal segment having the high-
est similarity (98.89%). Besides, we found that the similarity of RCA was the highest 
among the 3 blood supply vessel regions, at 98.18%, the total similarity of the polar maps 
corresponding to 128 18 F-FDG PET MMIs was 97.84% (Table 4).

Table 5  The 3 correlation coefficients under 3 types of image classification
X-Z axis deviation angle Y-Z axis deviation angle
Kendall Pearson Spearman Kendall Pearson Spearman

MMIs without defects 0.919 0.984 0.980 0.986 0.999 0.998
MMIs with defects 0.859 0.959 0.959 0.932 0.976 0.982
MMIs with right ventricle excess uptake 0.736 0.948 0.879 0.891 0.968 0.964
MMI: Myocardial metabolic image



Page 13 of 15Yang et al. EJNMMI Physics           (2024) 11:70 

In the study of automatic reorientation of the left ventricle, there are two main dif-
ficulties: (1) Defects, which may lead to insufficient myocardial imaging on PET images, 
increasing the difficulty of model fitting and introducing errors in ellipsoid fitting [11, 
15]; (2) Excess uptakes, when additional tracer uptake is present in the organs and tis-
sues surrounding the left ventricle, may be mistaken for the left ventricle, introducing 
errors in myocardial segmentation. Either of these situations can result in the failure of 
automatic redirection [16–18]. Based on these two difficulties, we divide images into 
three categories: MMIs without defects, MMIs with defects and MMIs with right ven-
tricle excess uptake. As shown in Fig. 6, our method performed well under all 3 classifi-
cations, and the SA images and polar maps obtained by our method had good agreement 
with those obtained by the manual method. Also notice that MMIs with defects showed 
higher correlation coefficients than that from MMIs with right vehicle excess uptake 
(KCC: 0.859 and 0.932 vs. 0.736 and 0.891, PCC: 0.959 and 0.976 vs. 0.948 and 0.968, 
SCC: 0.959 and 0.982 vs. 0.879 and 0.964). The errors caused by defects can be reduced 
to some extent by ellipsoid fitting, but the excess uptake is not easy to distinguish from 
the left ventricular myocardium, and the impact of the results is greater.

Our study had several limitations. First, as shown in Fig.  6, when the distances 
between the right ventricle and the left ventricle were close and the uptake intensities 
were similar, myocardial segmentation errors may occur, leading to errors in subsequent 
automatic reorientation. However, due to the close distance, the angle errors were still 
less than 20 degrees. Second, the methods we used are all traditional algorithms. In 
recent years, deep learning has shown excellent performance in medical image process-
ing. In subsequent experiments, we hope to collect more PET data and introduce deep 
learning into automatic reorientation to further compare and organize with traditional 
algorithms.

Conclusion
We developed an algorithm system for automatic reorientation and quantitative analysis 
of 18 F-FDG PET MMIs. Our results showed that the system was highly consistent with 
the manual method at both the image level and the quantitative analysis level. Further, 
it achieved good performance on three different image classifications (MMIs without 
defects, MMIs with defects, and MMIs with right ventricle excess uptake).
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