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Introduction
More recently, radiomic analysis in positron emission tomography (PET) imaging is of 
growing interest for quantitative assessment of tumor treatment response and prognosis 
[1, 2]. A typical challenge in PET imaging-based radiomic analysis is the lack of standard 
segmentation methods that could be robust and accurate against various imaging acqui-
sition procedures in clinical scenarios [3, 4]. Although the variability and redundancy of 
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radiomic features has been extensively explored, the results are varied and/or conflicting 
in many studies [5–10], which pose additional clinical challenges in radiomic analysis.

To overcome the inconsistency in tumor delineation and analysis, the consensus meth-
ods have been employed in many recent studies [11–15]. McGurk et  al. [11] assessed 
consensus contour derived from different segmentation methods and found that con-
sensus contour could improve accuracy and robustness compared with the varying 
performances of different segmentation methods. Schaefer et  al. [12] also found that 
consensus contour could enhance robustness against the inconsistent performance of 
different segmentation results. Lv et al. [13] assessed the radiomics prognostic perfor-
mance for patients with nasopharyngeal carcinoma (NPC) using the overlapping parts 
of two manual contours to derive radiomic features. Liang et al. [14] compared two radi-
omics tools for image analysis and clinical prediction with consensus agreement based 
on manual contour by three radiation oncologists.

In our previous companion study, we investigated the robustness and accuracy of con-
sensus contour based on different individual segmentation results using clinical NPC 
cases and extended cardio-torso (XCAT) simulated tumors. Our results demonstrated 
that consensus contour could be a robust approach to mitigate segmentation variabil-
ity, but did not appear to improve the segmentation accuracy on average [15]. Yet, on 
the basis of results published in the literature so far, it is still questioned to the impact 
of consensus contour from different PET segmentation methods on the robustness and 
accuracy for radiomic features. In this study, by focusing on the consensus contour, our 
aim is to provide a more clinically adaptable solution capable of achieving enhanced 
robust and accurate radiomic features in 2-deoxy-2-[18F]fluoro-D-glucose ( 18F-FDG) 
PET imaging.

Methods
XCAT simulation

The realistic anthropomorphic simulations were conducted using the XCAT phantom 
[16] and software for tomographic image reconstruction (STIR) [17] as built exactly the 
same as our previous study (Fig. 1) [15]. In this study the respiratory motion was not 
taken into consideration to avoid the influence of respiratory movement. The imaging 
matrix size for the simulated XCAT data was 200 × 200 with a voxel size of 0.50 × 0.41 × 
0.41 cm3 . In all, 13 tumors with heterogeneous uptake levels at the location of the right 
lung were simulated.

Clinical NPC database

We reanalyzed PET/CT scans on 225 NPC patients who underwent 18F-FDG PET/CT 
scans at Meizhou people’s hospital from 2018 to 2020. Patient characteristics were previ-
ously described [15]. All PET images have a matrix size of 200 × 200 voxels with a voxel 
size of 0.30 × 0.41 × 0.41 cm3 . The present study was approved by Meizhou people’s hos-
pital ethics committee.

Tumor segmentation

In PET images the boundaries of the primary tumors of NPC patients were delineated 
using four different segmentation methods: a method for automatic segmentation using 
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an active contour model (MASAC) [18], an affinity propagation algorithm (AP) [19], the 
contrast-oriented thresholding method (ST) of Schaefer et  al. [20], and segmentation 
using 41% of the maximum tumor value as a threshold (41MAX) [21]. The parameter of 
lambda in MASAC was set to 3 and the largest grouping was taken as the segmentation 
result for AP while keeping other parameters unchanged. Besides, all segmentation were 
also conducted with two different user-defined masks (rectangular and irregular crop-
ping masks to roughly cover the tumor area, Supplemental Figure 1), repectively. Both 
two initial masks were manually defined by a clinical nuclear physician who also visu-
ally assessed whether the segmented contours were clinically acceptable and adjusted 
the initial masks as needed to exclude the high uptake area nearby. Finally, the consensus 
contour using the majority vote rule (Conseg) was derived from four different segmenta-
tion results [11, 12, 15].

Extraction of radiomics features

The extraction of texture features was conducted using the Pyradiomics open-source 
python package (version 3.1) which was developed by van Griethuysen et  al. [22]. It 
offers a reference standard for radiomic analysis and has been previously applied to sev-
eral radiomics researches [23, 24]. For radiomics feature extraction, firstly, the original 
images were converted to standardized uptake value (SUV) images in which SUV was 
defined as the radioactivity concentration in a certain region normalized to the total 
injected dose and body weight of the patient. Then segmentation were performed using 
different approaches. Subsequently, a fixed binwidth of 0.25 units SUV was adopted for 
the calculations of radiomics features as taken by other studies [5, 9, 25]. No additional 
resampling or filters were applied in our study. Finally, 107 radiomic features were gen-
erated, including 14 shape-based, 18 first order statistics, 24 gray level co-occurrence 
matrix (GLCM), 16 gray level run length matrix (GLRLM), 16 gray level size zone matrix 

Fig. 1  Flowchart illustrating various steps in the simulation of the realistic anthropomorphic model
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(GLSZM), 5 neighbouring gray tone difference matrix (NGTDM), and 14 gray level 
dependence matrix (GLDM) features (Supplemental Figures  2-15). The mathematical 
definitions and calculations of radiomic features could be found online (https://​pyrad​
iomics.​readt​hedocs.​io/​en/​latest/​featu​res.​html). Most features were consistent with fea-
ture described by the Imaging Biomarker Standardization Initiative (IBSI) [8, 26–28], 
where feature definitions varying were specified as notes online by van Griethuysen et al. 
[22].

Robustness and accuracy assessment

The intraclass correlation coefficient (ICC) was employed in our study, which has been 
widely used in robustness tests for quantitative studies [5, 9, 29]. Specifically, the ICC 
were computed for radiomic features between two different initial masks or among 
MASAC, AP, ST and 41MAX segmentation to compare the five segmentation methods, 
or two initial masks, respectively. In the simulated XCAT data, the ICC for radiomic 
features between segmentation and simulated ground truth (GT) were also calculated 
to access the accuracy of extracted radiomic features. For both robustness and accu-
racy tests, a two-way random effects model was adopted with single unit to measure the 
absolute agreement as the relationship between/among groups. The larger the value of 
ICC, the stronger the correlation between multiple variables. Some ICC were inadvert-
ently estimated to be negative in this study due to the use of a small number of samples 
(13 cases) relative to the variability in the dataset [30, 31], and were neglected in our 
study because they were close to zero and less than 1% of the data (Supplemental Fig-
ures 2-15) [32, 33].

Feature clustering

To minimize the redundancy of radiomic features, the Spearman’s correlation coef-
ficients were usually adopted to assess the monotonic relationship between radiomic 
features for feature clustering [5], and then representative features were selected after 
clustering as candidates for classification or modelling. In this study, the Spearman’s cor-
relation coefficients were employed as well to assess whether the relations between fea-
tures and the composition of feature clusters were affected by the dataset, segmentation 
method, and/or initial mask.

Data analysis

The calculation of ICC, Spearman’s correlation coefficients and their corresponding 
visualizations were performed with R 4.1.3 software [34]. Specifically, the ICC between 
multiple variables was classified with its absolute values as having repeatability that was 
excellent (≥ 0.9), good (0.75–0.89), moderate (0.5–0.74), or poor (<0.5) [35], and illus-
trated using a heatmap that displayed the ICC as a color-coded matrix with the color in 
the cell representing the strength and direction of the correlations. Besides, the trian-
gle correlation heatmap was presented to show the Spearman’s correlation coefficients 
between each pairwise combination of radiomic features. The violin plot was employed 
as well, with its boundary representing the distribution of data and the centered dot at 
the middle symbolizing the median of the distribution. The median ICC of all features 

https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html
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were also adopted as the criteria of robustness and accuracy in each subgroup in the 
results.

Results
Tumor contours

Representative contours by different segmentation methods under two initial masks for 
NPC and XCAT data were illustrated in Supplemental Figure 1. The median volume for 
five segmentation methods was 11.09 cm3 (range, 1.41–245.90 cm3 ) in NPC, and 16.64 
cm3 (range, 3.45–56.40 cm3 ) in XCAT. The median maximum SUV for five segmenta-
tion methods was 12.45 with range 3.49–34.17 in NPC, and 6.87 with range 4.58–7.87 in 
XCAT.

Robustness test

As illustrated in Figs. 2, 3 and Supplemental Figures 2-8, the ICC varied according to 
the dataset, segmentation method, initial mask and feature type. Overall, compared 
with XCAT the ICC of radiomics features showed higher average values in NPC for 
MASAC (9.37%), AP (44.62%), and both initial masks (Rectangular: 31.11%, Irregular: 
8.36%), respectively. For both datasets in Figs. 2, 3 AP exhibited the lowest ICC (NPC: 

Fig. 2  Heatmaps showing various intraclass correlation coefficients (ICC) for all radiomic features calculated 
based on two initial masks as function of segmentation method (A) and MASAC, AP, ST and 41MAX 
segmentation results as function of initial mask (B) in clinical NPC and XCAT simulation studies
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Fig. 3  Violin plots showing various intraclass correlation coefficients (ICC) for all radiomic features calculated 
based on two initial masks as function of segmentation method (A), MASAC, AP, ST and 41MAX segmentation 
results as function of initial mask (B) as well as segmentation and ground truth as function of segmentation 
method and initial mask (C). The centered dot at the middle of the violin plot represents the median of the 
distribution
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0.79, XCAT: 0.55) across two different initial masks compared with other segmenta-
tion methods, whereas ConSeg showed similar high ICC values (NPC: 0.98, XCAT: 
0.97) with ST and 41MAX. There were some differences however in MASAC that 
presenting poorer ICC (−  8.25%) in XCAT yet similar ICC in NPC compared with 
ConSeg.

As seen in Figs.  2, 3, Supplemental Figures  2-8 and Table  1 there were a greater 
proportion of ICC categorized as excellent (NPC: 85.05%, XCAT: 84.11%) in Con-
Seg compared with the average of four segmentation methods (NPC: 66.36%, XCAT: 
57.94%) and AP (NPC: 16.82%, XCAT: 11.21%), respectively. Besides, ConSeg gener-
ally presented less poor parts in ICC (NPC: 2.80%, XCAT: 7.48%) compared with the 
average of four segmentation methods (NPC: 5.61%, XCAT: 13.08%), while AP had 
more poor parts (NPC: 13.08%, XCAT: 40.19%).

Furthermore, it could be summarized from Figs.  2, 3, Supplemental Figures  2-8 
and Table 2 that irregular initial masks produced more excellent ICC (NPC: 60.75%, 
XCAT: 36.45%) compared to rectangular masks (NPC: 39.25%, XCAT:14.95%). Irreg-
ular masks showed similar amount of poor ICC in NPC but much better results in 
XCAT (7.47%) compared with rectangular masks (30.56%).

In addition, 19 features (17.76%) were found to be independent of initial mask and 
segmentation method (ICC ≥ 0.75) for both datasets (Table 3). Among them, the ICC 

Table 1  Comparison of ICC calculated based on two inital masks for four segmentation methods, 
the average of four segmentation results and consensus contour

NPC Excellent Good Moderate Poor

MASAC 85 17 1 4

AP 18 49 26 14

ST 87 13 3 4

41MAX 92 9 3 3

Average 71 22 8 6

ConSeg 91 9 4 3

XCAT​ Excellent Good Moderate Poor

MASAC 49 38 19 1

AP 12 24 28 43

ST 92 9 0 6

41MAX 94 6 1 6

Average 62 19 12 14

ConSeg 90 8 1 8

Table 2  Comparison of ICC calculated based on MASAC, AP, ST and 41MAX for two initial masks

NPC Excellent Good Moderate Poor

Rectangular 42 39 20 6

Irregular 65 30 6 6

XCAT​ Excellent Good Moderate Poor

Rectangular 16 29 29 33

Irregular 39 36 24 8
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of X90Percentile, Energy, Maximum, and TotalEnergy in first order statistics were 
found to ≥ 0.9 against different initial masks or segmentation methods for both data-
sets (Table 3 and Supplemental Figure 3).

Accuracy test

As for the ICC calculated based on segmentation and GT, ConSeg was found to be simi-
lar with 41MAX and ST regardless of initial masks in Figs. 3, 4 and Supplemental Fig-
ures 9-15. Although AP presented higher ICC (0.89) in irregular masks compared with 
other segmentation methods (MASAC: 0.66, ST: 0.78, 41MAX: 0.80, ConSeg: 0.79), the 
lowest ICC was also seen for AP (0.44) with rectangular masks among different segmen-
tation methods (MASAC: 0.66, ST: 0.74, 41MAX: 0.77, ConSeg: 0.70).

Besides, it could be found in Table 4 that ConSeg showed similar ICC across two initial 
masks compare with the average of four segmentation methods, and the ICC for radiom-
ics features generally presented better results for ConSeg in irregular masks (Excellent: 
28.97%, Poor: 26.17%) than rectangular masks (Excellent: 19.63%, Poor: 32.71%). Similar 
results could also be found in the average of four segmentation methods for irregular 
masks (Excellent: 28.04%, Poor: 28.97%) compared with rectangular masks (Excellent: 
18.69%, Poor: 36.44%).

In general, radiomic features that were more stable in robustness tests were also found 
to be more accurate in accuracy tests. Specifically, the same 19 features (17.76%) were 
found to be robust (ICC ≥ 0.75) against either segmentation method or initial mask, and 
the ICC in X90Percentile, Energy, Maximum and TotalEnergy in first order statistics, and 

Table 3  19 selected radiomic features showing ICC ≥ 0.75 for all segmentation methods and initial 
masks in both robustness and accuracy tests

a  ICC ≥ 0.90 for all segmentation methods and initial masks in both robustness and accuracy tests

Class Feature

Shape LeastAxisLength

Maximum2DDiameterColumn

MinorAxisLength

SurfaceArea

First Order X90Percentile a

Energy a

Maximum a

TotalEnergy a

GLCM Imc1

Imc2

GLRLM GrayLevelNonUniformity

LongRunEmphasis

RunLengthNonUniformityNormalized

RunPercentage

RunVariance

ShortRunEmphasis

GLSZM GrayLevelNonUniformity

GLDM DependenceNonUniformityNormalized

LargeDependenceEmphasis
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DependenceVariance in GLDM were shown to be ≥ 0.90 in the accuracy test for any of the 
segmentation methods or initial masks (Table 3 and Supplemental Figures 10, 15).

Interaction between radiomic features

The Spearman’s correlation coefficients matrixes between radiomic features for ConSeg 
segmentation were shown in Fig. 5, and the corresponding matrixes for other segmentation 
methods were appended as supplementary data (Supplemental Figures 16-19). In order to 
present the differeces in correlation, the feature order in correlation matrixes for ConSeg 
with irregular mask in NPC (in the uper left corner of Fig. 5) was adopted to illustrate the 
correlation matrixes of other settings. It could be found that different segmentation meth-
ods and initial masks had little influence on the correlation matrix. Despite that, the chang-
ing of datasets posed a much larger impact on the correlation matrixes between radiomic 
features and the corresponding feature clusters as a consequence.

Discussion
A confounding issue in radiomic analysis for medical imaging is the variation of 
results for the repeatability and dimensionality reduction in radiomic features, and 
the variation creates difficulties in the standardization and verification, making it 

Fig. 4  Heatmaps showing various intraclass correlation coefficients (ICC) for all radiomic features calculated 
based on segmentation and ground truth as function of segmentation method and initial mask in XCAT 
simulation studies
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Fig. 5  Heatmaps showing Spearman’s correlation coefficients calculated between radiomic features as 
function of dataset and initial mask with ConSeg segmentation. The feature order in correlation matrics was 
set according to the correlation coefficients for ConSeg with irregular mask in NPC dataset

Table 4  Comparison of ICC calculated based on segmentation and ground truth for four 
segmentation methods, the average of four segmentation results and consensus contour

Rectangular Excellent Good Moderate Poor

MASAC 6 37 32 32

AP 11 19 22 55

ST 29 23 21 34

41MAX 32 23 18 34

Average 20 26 23 39

ConSeg 21 31 20 35

Irregular Excellent Good Moderate Poor

MASAC 5 38 24 40

AP 51 17 13 26

ST 29 27 23 28

41MAX 33 23 23 28

Average 30 26 21 31

ConSeg 31 24 24 28



Page 11 of 15Zhuang et al. EJNMMI Physics           (2024) 11:48 	

difficult to develop a meaningful and clinically adaptable solution for radiomic analy-
sis [5–10, 36]. Kocak et  al. [37] also investigated the reliability of radiomic features 
based on consensus segmentation in MR and CT images, and consensus segmenta-
tion was found to have significant reliability issues in radiomic analysis, suggesting 
careful reliability validation on consensus segmentation should be performed before 
clinical use.

To our knowledge, our study provided the first quantitative assessment on the 
robustness and accuracy of consensus contour in radiomic analysis using PET imag-
ing. We investigated potential factors that affected radiomic features in this study 
and focused on establishing an optimal solution for reproducible radiomic analysis 
in clinic. It was found that although the ICC varied with the dataset, segmentation 
method, initial mask and feature type, consensus contour combined with irregular 
initial mask could improve the robustness and accuracy in radiomic analysis to some 
extent, which could be eventually applicable in clinical settings without increasing 
workload due to the possibility to extend multiple auto segmentation methods in 
workstations. The results in this study were also consistent with our previous study 
demonstrating that consensus contour could enhance the robustness in PET imaging 
segmentation [15]. Additionally, the correlation relationships between radiomic fea-
tures as well as feature clusters were found to be highly influenced by the dataset, but 
not segmentation method or initial mask.

Based on these findings, we believe that the highly varied or even conflicting results 
in radiomic analysis could be explained by the use of different datasets, segmentation 
procedures and/or investigated feature types. Similar findings were also observed in 
some studies examining the robustness of radiomic features [3, 5, 10, 38]. Traverso 
et  al. [38] evaluated 41 studies on the repeatability and reproducibility of radiomic 
features and found that the repeatability of radiomic features are varied at various 
degrees with image acquisition settings, reconstruction protocol, image preprocess-
ing, and software to derive radiomic features. Pfaehler et al. [5] explored the repeat-
ability of radiomic features in PET images with different reconstruction protocols, 
noise and segmentation methods, and found that feature repeatability and space 
reduction depended on all investigated factors, suggesting the standardization of 
image acquisition and preprocessing before clinical application. Eertink et  al. [10] 
assessed the discriminative power of radiomics features with different segmentation 
methods, and showed that no substantial difference among the segmentation meth-
ods, in which the observations were consistent with our results to some extent that 
showing the segmentation method had minor impact on the relationships between 
radiomic features.

In our study a majority of the investigated features showed varied ICC for different 
segmentation methods or initial masks, which recapitulated the need to have care-
ful feature selection in radiomic analysis. More specifically, 19 features (17.76%) were 
found to be robust against different segmentation methods or initial masks in either 
robustness or accuracy tests. It should be noted that those features, such as contrast, 
coarseness, busyness, homogeneity, entropy, dissimilarity (mathematically equal to 
DifferenceAverage in this study), high-intensity emphasis (names as HighGrayLev-
elEmphasis in this study), and zone percentage, that have been previously considered 
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as reliable candidates in tumor discrimination [3, 39, 40], presented large variations 
in our results (ICC < 0.75 in at least one of the robustness and/or accuracy tests). 
Similar results could also be observed in other studies [5, 41]. Therefore, the features 
employed to quantify changes in response to therapy should be carefully selected and 
reviewed.

Of the 19 selected radiomic features, X90Percentile, Energy, Maximum and Total-
Energy in first order statistics were found to have excellent reliability against different 
segmentation methods or initial masks in both robustness and accuracy tests, indi-
cating these features might be better candidates for reproducible radiomic analysis. 
The first order features were also reported to be more reproducible than shape and 
textural features in general [38, 41]. Despite that, it is worth noting that TotalEnergy 
is the value of Energy feature scaled by the volume of the voxel, highly corelating with 
Energy by definition, and X90Percentile is the 90th percentile of the voxels within 
segmentation that is also closely linked to Maximum. Therefore, it seems more rea-
sonable to adopt one or two of them for radiomic analysis in clinic, such as Energy 
and/or Maximum.

As a point of caution, it must be emphasized that the radiomic feature values we 
observed in PET images differ from those in reality (real tumor) due to the processes 
of image projection, reconstruction and the corresponding noise. In our previous 
study [40], we found that most assessed radiomic features were significantly differ-
ent in either SUV or Ki images compared with those obtained from the noise-free 
ground truth. Pfaehler et  al. [9] also proposed that careful consideration should be 
given to small lesions which may not reflect their actual heterogeneity information in 
PET images.

One of the limitations of this study was that there was no statistical comparisons 
between groups in our radiomic analysis. This is because the relationships between radi-
omic features may vary under different scenarios as shown in our results and so only 
heatmaps and violin plots were adopted to display the results to avoid the bias in the 
analysis. Moreover, we did not study the influence of respiratory motion on consensus 
contour in radiomic analysis. Adachi et  al. [42] evaluated the influence of respiratory 
motion on the robustness of radiomic features for four-dimensional CT images using an 
anthropomorphic chest phantom and found that the amplitude of target motion <1 mm 
could help to the robustness of radiomic features. Xu et al. [43] investigated the impact 
of respiratory motion on radiomic features in 18F-FDG PET imaging and showed that 
respiratory motion had considerable impact on feature stability and optimizing preproc-
essing configuration may help to improve feature stability and diagnostic performance. 
Besides, the absence of ground truth in NPC dataset does not allow the assessment of 
data accuracy, and the simulated cases may also not be sufficient to fully illustrate the 
data accuracy in radiomic analysis. Our study is also limited to a single center with rela-
tively homogeneous populations. Therefore, further studies with more heterogeneous 
data would be needed to assess whether the conclusion is valid under different scenar-
ios. Additionally, slightly different interpolated results for some radiomic features may 
be caused due to differences between Pyradiomics and IBSI regarding pre-processing 
[26, 44]. These differences are likely to be small and documented online (https://​pyrad​
iomics.​readt​hedocs.​io/​en/​latest/​faq.​html).

https://pyradiomics.readthedocs.io/en/latest/faq.html
https://pyradiomics.readthedocs.io/en/latest/faq.html
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Conclusions
The present study demonstrated that although the ICC for radiomic features were 
sensitive to the dataset, segmentation method, initial mask and feature type, the con-
sensus contour combined with irregular initial mask could improve the robustness 
and accuracy in radiomic analysis to some extent, which might be the optimal solu-
tion for reproducible radiomic analysis in clinic. In addition, 19 features with low 
level of variations under different segmentation methods and initial masks in either 
robustness or accuracy tests were identified as well, and the correlation relationships 
between radiomic features as well as feature clusters were found to be highly influ-
enced by the dataset, but not segmentation method or initial mask.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s40658-​024-​00652-0.

Supplementary file1 

Supplementary file2 

Acknowledgements
Not applicable

Author contributions
Mingzan Zhuang, Xianru Li, Zhifen Qiu and Jitian Guan contributed to conception and design of the study. Mingzan 
Zhuang, Xianru Li, and Zhifen Qiu organized the database and analyzed the data. Mingzan Zhuang and Jitian Guan 
wrote and revised the draft of the manuscript. All authors contributed to results discussion and manuscript revision, and 
approved the submitted version.

Funding
This work was supported by Guangdong Basic and Applied Basic Research Foundation (2024A1515012267, 
2023A1515220187), Meizhou Social Development Science and technology Project ([2022]43: 2022B39) and Scientific 
Research Cultivation Project of Meizhou People’s Hospital in 2022 (PY-C2022009).

Availability of data and materials
The datasets used and analysed during the current study are available from the corresponding author on reasonable 
request.

Declarations

Ethics approval and consent to participate
This retrospective study was approved and informed consent was waived for this retrospective study by the ethics 
committee of Meizhou people’s hospital. All methods were performed in accordance with the relevant guidelines and 
regulations in the ethics committee of Meizhou people’s hospital.

Consent for publication
Informed consent was waived by the ethics committee of Meizhou people’s hospital because of the use of anonymous 
clinical data.

Competing interests
The authors declare that they have no Conflict of interest.

Received: 14 March 2024   Accepted: 30 May 2024

References
	1.	 Mohandas A, Marcus C, Kang H, Truong M-T, Subramaniam RM. Fdg pet/ct in the management of nasopharyn-

geal carcinoma. AJR Am J Roentgenol. 2014;203(2):146–57. https://​doi.​org/​10.​2214/​AJR.​13.​12420.
	2.	 Shen G, Xiao W, Han F, Fan W, Lin X-P, Lu L, Zheng L, Yue N, Haffty B, Zhao C, Deng X. Advantage of PET/CT in 

target delineation of MRI-negative cervical lymph nodes in intensity-modulated radiation therapy planning for 
nasopharyngeal carcinoma. J Cancer. 2017;8(19):4117–23. https://​doi.​org/​10.​7150/​jca.​21582.

	3.	 Zhuang M, García DV, Kramer GM, Frings V, Smit EF, Dierckx R, Hoekstra OS, Boellaard R. Variability and repeata-
bility of quantitative uptake metrics in (18)F-FDG PET/CT of non-small cell lung cancer: Impact of segmentation 

https://doi.org/10.1186/s40658-024-00652-0
https://doi.org/10.2214/AJR.13.12420
https://doi.org/10.7150/jca.21582


Page 14 of 15Zhuang et al. EJNMMI Physics           (2024) 11:48 

method, uptake interval, and reconstruction protocol. J Nuclear Med: Off Publication, Soc Nuclear Med. 
2019;60(5):600–7. https://​doi.​org/​10.​2967/​jnumed.​118.​216028.

	4.	 Hatt M, Lee JA, Schmidtlein CR, Naqa IE, Caldwell C, De Bernardi E, Lu W, Das S, Geets X, Gregoire V, Jeraj R, Mac-
Manus MP, Mawlawi OR, Nestle U, Pugachev AB, Schöder H, Shepherd T, Spezi E, Visvikis D, Zaidi H, Kirov AS. Clas-
sification and evaluation strategies of auto-segmentation approaches for PET: Report of AAPM task group no. 211. 
Med Phys. 2017;44(6):1–42. https://​doi.​org/​10.​1002/​mp.​12124.

	5.	 Pfaehler E, Beukinga RJ, de Jong JR, Slart RHJA, Slump CH, Dierckx RAJO, Boellaard R. Repeatability of (18)F-FDG PET 
radiomic features: a phantom study to explore sensitivity to image reconstruction settings, noise, and delineation 
method. Med Phys. 2019;46(2):665–78. https://​doi.​org/​10.​1002/​mp.​13322.

	6.	 Papanikolaou N, Matos C, Koh DM. How to develop a meaningful radiomic signature for clinical use in onco-
logic patients. Cancer Imag: Off Publication Int Cancer Imag Soc. 2020;20(1):33. https://​doi.​org/​10.​1186/​
s40644-​020-​00311-4.

	7.	 Yang F, Simpson G, Young L, Ford J, Dogan N, Wang L. Impact of contouring variability on oncological pet radiomics 
features in the lung. Sci Rep. 2020;10(1):369. https://​doi.​org/​10.​1038/​s41598-​019-​57171-7.

	8.	 Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte A, Ashrafinia S, Bakas S, Beukinga RJ, 
Boellaard R, Bogowicz M, Boldrini L, Buvat I, Cook GJR, Davatzikos C, Depeursinge A, Desseroit M-C, Dinapoli N, Dinh 
CV, Echegaray S, El Naqa I, Fedorov AY, Gatta R, Gillies RJ, Goh V, Götz M, Guckenberger M, Ha SM, Hatt M, Isensee 
F, Lambin P, Leger S, Leijenaar RTH, Lenkowicz J, Lippert F, Losnegård A, Maier-Hein KH, Morin O, Müller H, Napel S, 
Nioche C, Orlhac F, Pati S, Pfaehler EAG, Rahmim A, Rao AUK, Scherer J, Siddique MM, Sijtsema NM, Socarras Fernan-
dez J, Spezi E, Steenbakkers RJHM, Tanadini-Lang S, Thorwarth D, Troost EGC, Upadhaya T, Valentini V, van Dijk LV, van 
Griethuysen J, van Velden FHP, Whybra P, Richter C, Löck S. The image biomarker standardization initiative: standard-
ized quantitative radiomics for high-throughput image-based phenotyping. Radiology. 2020;295(2):328–38. https://​
doi.​org/​10.​1148/​radiol.​20201​91145.

	9.	 Pfaehler E, Mesotten L, Zhovannik I, Pieplenbosch S, Thomeer M, Vanhove K, Adriaensens P, Boellaard R. Plau-
sibility and redundancy analysis to select FDG-PET textural features in non-small cell lung cancer. Med Phys. 
2021;48(3):1226–38. https://​doi.​org/​10.​1002/​mp.​14684.

	10.	 Eertink JJ, Pfaehler EAG, Wiegers SE, Van T, Brug D, Lugtenburg PJ, Hoekstra OS, Zijlstra JM, de Vet HCW, Boellaard R. 
Quantitative radiomics features in diffuse large b-cell lymphoma: Does segmentation method matter? J Nuclear 
Med: Off Publication Soc Nuclear Med. 2022;63(3):389–95. https://​doi.​org/​10.​2967/​jnumed.​121.​262117.

	11.	 McGurk RJ, Bowsher J, Lee JA, Das SK. Combining multiple FDG-PET radiotherapy target segmentation methods 
to reduce the effect of variable performance of individual segmentation methods. Med Phys. 2013;40(4): 042501. 
https://​doi.​org/​10.​1118/1.​47937​21.

	12.	 Schaefer A, Vermandel M, Baillet C, Dewalle-Vignion AS, Modzelewski R, Vera P, Massoptier L, Parcq C, Gibon D, 
Fechter T, Nemer U, Gardin I, Nestle U. Impact of consensus contours from multiple pet segmentation methods on 
the accuracy of functional volume delineation. Eur J Nucl Med Mol Imaging. 2016;43(5):911–24. https://​doi.​org/​10.​
1007/​s00259-​015-​3239-7.

	13.	 Lv W, Yuan Q, Wang Q, Ma J, Feng Q, Chen W, Rahmim A, Lu L. Radiomics analysis of PET and CT components of PET/
CT imaging integrated with clinical parameters: application to prognosis for nasopharyngeal carcinoma. Mol Imag 
Biol. 2019;21(5):954–64. https://​doi.​org/​10.​1007/​s11307-​018-​01304-3.

	14.	 Liang Z-G, Tan HQ, Zhang F, Rui Tan LK, Lin L, Lenkowicz J, Wang H, Wen Ong EH, Kusumawidjaja G, Phua JH, Gan SA, 
Sin SY, Ng YY, Tan TW, Soong YL, Fong KW, Park SY, Soo K-C, Wee JT, Zhu X-D, Valentini V, Boldrini L, Sun Y, Chua ML. 
Comparison of radiomics tools for image analyses and clinical prediction in nasopharyngeal carcinoma. Br J Radiol. 
2019;92(1102):20190271. https://​doi.​org/​10.​1259/​bjr.​20190​271.

	15.	 Zhuang M, Qiu Z, Lou Y. Does consensus contours improve robustness and accuracy on 18F-FDG PET imaging 
tumor delineation? EJNMMI Phys. 2023;10(1):18. https://​doi.​org/​10.​1186/​s40658-​023-​00538-7.

	16.	 Le Maitre A, Segars WP, Marache S, Reilhac A, Hatt M, Tomei S, Lartizien C, Visvikis D. Incorporating patient-specific 
variability in the simulation of realistic whole-body 18F-FDG distributions for oncology applications. Proc IEEE. 
2009;97(12):2026–38. https://​doi.​org/​10.​1109/​JPROC.​2009.​20279​25.

	17.	 Thielemans K, Tsoumpas C, Mustafovic S, Beisel T, Aguiar P, Dikaios N, Jacobson MW. Stir: software for tomographic 
image reconstruction release 2. Phys Med Biol. 2012;57(4):867–83. https://​doi.​org/​10.​1088/​0031-​9155/​57/4/​867.

	18.	 Zhuang M, Dierckx RAJO, Zaidi H. Generic and robust method for automatic segmentation of pet images using an 
active contour model. Med Phys. 2016;43(8):4483. https://​doi.​org/​10.​1118/1.​49548​44.

	19.	 Foster B, Bagci U, Xu Z, Dey B, Luna B, Bishai W, Jain S, Mollura DJ. Segmentation of pet images for computer-aided 
functional quantification of tuberculosis in small animal models. IEEE Trans Biomed Eng. 2014;61(3):711–24. https://​
doi.​org/​10.​1109/​TBME.​2013.​22882​58.

	20.	 Schaefer A, Kremp S, Hellwig D, Rübe C, Kirsch C-M, Nestle U. A contrast-oriented algorithm for FDG-PET-based 
delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements 
and validation in patient data. Eur J Nucl Med Mol Imaging. 2008;35(11):1989–99. https://​doi.​org/​10.​1007/​
s00259-​008-​0875-1.

	21.	 Frings V, van Velden FHP, Velasquez LM, Hayes W, van de Ven PM, Hoekstra OS, Boellaard R. Repeatability of 
metabolically active tumor volume measurements with FDG PET/CT in advanced gastrointestinal malignancies: a 
multicenter study. Radiology. 2014;273(2):539–48. https://​doi.​org/​10.​1148/​radiol.​14132​807.

	22.	 van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin J-C, Pieper S, 
Aerts HJWL. Computational radiomics system to decode the radiographic phenotype. Can Res. 2017;77(21):104–7. 
https://​doi.​org/​10.​1158/​0008-​5472.​CAN-​17-​0339.

	23.	 Granzier RWY, Ibrahim A, Primakov S, Keek SA, Halilaj I, Zwanenburg A, Engelen SME, Lobbes MBI, Lambin P, Wood-
ruff HC, Smidt ML. Test-retest data for the assessment of breast MRI radiomic feature repeatability. J Magn Reson 
Imag. 2022;56(2):592–604. https://​doi.​org/​10.​1002/​jmri.​28027.

	24.	 Jiang Y-W, Xu X-J, Wang R, Chen C-M. Radiomics analysis based on lumbar spine CT to detect osteoporosis. Eur 
Radiol. 2022;32(11):8019–26. https://​doi.​org/​10.​1007/​s00330-​022-​08805-4.

https://doi.org/10.2967/jnumed.118.216028
https://doi.org/10.1002/mp.12124
https://doi.org/10.1002/mp.13322
https://doi.org/10.1186/s40644-020-00311-4
https://doi.org/10.1186/s40644-020-00311-4
https://doi.org/10.1038/s41598-019-57171-7
https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.1002/mp.14684
https://doi.org/10.2967/jnumed.121.262117
https://doi.org/10.1118/1.4793721
https://doi.org/10.1007/s00259-015-3239-7
https://doi.org/10.1007/s00259-015-3239-7
https://doi.org/10.1007/s11307-018-01304-3
https://doi.org/10.1259/bjr.20190271
https://doi.org/10.1186/s40658-023-00538-7
https://doi.org/10.1109/JPROC.2009.2027925
https://doi.org/10.1088/0031-9155/57/4/867
https://doi.org/10.1118/1.4954844
https://doi.org/10.1109/TBME.2013.2288258
https://doi.org/10.1109/TBME.2013.2288258
https://doi.org/10.1007/s00259-008-0875-1
https://doi.org/10.1007/s00259-008-0875-1
https://doi.org/10.1148/radiol.14132807
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1002/jmri.28027
https://doi.org/10.1007/s00330-022-08805-4


Page 15 of 15Zhuang et al. EJNMMI Physics           (2024) 11:48 	

	25.	 van Velden FHP, Kramer GM, Frings V, Nissen IA, Mulder ER, de Langen AJ, Hoekstra OS, Smit EF, Boellaard R. Repeat-
ability of radiomic features in non-small-cell lung cancer [(18)F]FDG-PET/CT studies: impact of reconstruction and 
delineation. Mol Imag Biol. 2016;18(5):788–95. https://​doi.​org/​10.​1007/​s11307-​016-​0940-2.

	26.	 Whybra P, Zwanenburg A, Andrearczyk V, Schaer R, Apte AP, Ayotte A, Baheti B, Bakas S, Bettinelli A, Boellaard R, Bol-
drini L, Buvat I, Cook GJR, Dietsche F, Dinapoli N, Gabryś HS, Goh V, Guckenberger M, Hatt M, Hosseinzadeh M, Iyer A, 
Lenkowicz J, Loutfi MAL, Löck S, Marturano F, Morin O, Nioche C, Orlhac F, Pati S, Rahmim A, Rezaeijo SM, Rookyard 
CG, Salmanpour MR, Schindele A, Shiri I, Spezi E, Tanadini-Lang S, Tixier F, Upadhaya T, Valentini V, van Griethuysen 
JJM, Yousefirizi F, Zaidi H, Müller H, Vallières M, Depeursinge A. The image biomarker standardization initiative: 
standardized convolutional filters for reproducible radiomics and enhanced clinical insights. Radiology. 2024;310(2): 
231319. https://​doi.​org/​10.​1148/​radiol.​231319.

	27.	 Zwanenburg A, Leger S, Agolli L, Pilz K, Troost EGC, Richter C, Löck S. Assessing robustness of radiomic features by 
image perturbation. Sci Rep. 2019;9(1):614. https://​doi.​org/​10.​1038/​s41598-​018-​36938-4.

	28.	 Zwanenburg A. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data 
analysis traps and replication crisis. Eur J Nucl Med Mol Imaging. 2019;46(13):2638–55. https://​doi.​org/​10.​1007/​
s00259-​019-​04391-8.

	29.	 Xue C, Yuan J, Lo GG, Chang ATY, Poon DMC, Wong OL, Zhou Y, Chu WCW. Radiomics feature reliability assessed by 
intraclass correlation coefficient: a systematic review. Quant Imaging Med Surg. 2021;11(10):4431–60. https://​doi.​
org/​10.​21037/​qims-​21-​86.

	30.	 Hocking R. The analysis of linear models. Brooks/Cole Pub Co. 1985. https://​doi.​org/​10.​2307/​25312​21.
	31.	 Noble S, Scheinost D, Constable RT. A decade of test-retest reliability of functional connectivity: a systematic review 

and meta-analysis. Neuroimage. 2019;203: 116157. https://​doi.​org/​10.​1016/j.​neuro​image.​2019.​116157.
	32.	 Braun U, Plichta MM, Esslinger C, Sauer C, Haddad L, Grimm O, Mier D, Mohnke S, Heinz A, Erk S, Walter H, Seiferth N, 

Kirsch P, Meyer-Lindenberg A. Test-retest reliability of resting-state connectivity network characteristics using FMRI 
and graph theoretical measures. Neuroimage. 2012;59(2):1404–12. https://​doi.​org/​10.​1016/j.​neuro​image.​2011.​08.​
044.

	33.	 Park B, Kim JI, Lee D, Jeong S-O, Lee JD, Park H-J. Are brain networks stable during a 24-hour period? Neuroimage. 
2012;59(1):456–66. https://​doi.​org/​10.​1016/j.​neuro​image.​2011.​07.​049.

	34.	 R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 
Vienna, Austria 2022. R Foundation for Statistical Computing. https://​www.R-​proje​ct.​org/

	35.	 Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J 
Chiropr Med. 2016;15(2):155–63. https://​doi.​org/​10.​1016/j.​jcm.​2016.​02.​012.

	36.	 Qiu Q, Duan J, Duan Z, Meng X, Ma C, Zhu J, Lu J, Liu T, Yin Y. Reproducibility and non-redundancy of radiomic 
features extracted from arterial phase CT scans in hepatocellular carcinoma patients: impact of tumor segmentation 
variability. Quant Imaging Med Surg. 2019;9(3):453–64. https://​doi.​org/​10.​21037/​qims.​2019.​03.​02.

	37.	 Kocak B, Yardimci AH, Nazli MA, Yuzkan S, Mutlu S, Guzelbey T, Sam Ozdemir M, Akin M, Yucel S, Bulut E, Bayrak ON, 
Okumus AA. Reliability of consensus-based segmentation in radiomic feature reproducibility (remind): a word of 
caution. Eur J Radiol. 2023;165: 110893. https://​doi.​org/​10.​1016/j.​ejrad.​2023.​110893.

	38.	 Traverso A, Wee L, Dekker A, Gillies R. Repeatability and reproducibility of radiomic features: a systematic review. Int J 
Radiat Oncol Biol Phys. 2018;102(4):1143–58. https://​doi.​org/​10.​1016/j.​ijrobp.​2018.​05.​053.

	39.	 Tixier F, Vriens D, Cheze-Le Rest C, Hatt M, Disselhorst JA, Oyen WJG, de Geus-Oei L-F, Visser EP, Visvikis D. Comparison 
of tumor uptake heterogeneity characterization between static and parametric 18F-FDG PET images in non-small 
cell lung cancer. J Nuclear Med: Off Publication, Soc Nuclear Med. 2016;57(7):1033–9. https://​doi.​org/​10.​2967/​
jnumed.​115.​166918.

	40.	 Zhuang M, Karakatsanis NA, Dierckx RAJO, Zaidi H. Quantitative analysis of heterogeneous [(18)F]FDG static (SUV) 
vs. Patlak (KI) whole-body pet imaging using different segmentation methods: a simulation study. Mol Imag Biol. 
2019;21(2):317–27. https://​doi.​org/​10.​1007/​s11307-​018-​1241-8.

	41.	 Galavis PE, Hollensen C, Jallow N, Paliwal B, Jeraj R. Variability of textural features in FDG pet images due to different 
acquisition modes and reconstruction parameters. Acta Oncologica (Stockholm, Sweden). 2010;49(7):1012–6. 
https://​doi.​org/​10.​3109/​02841​86X.​2010.​498437.

	42.	 Adachi T, Nagasawa R, Nakamura M, Kakino R, Mizowaki T. Vulnerabilities of radiomic features to respiratory motion 
on four-dimensional computed tomography-based average intensity projection images: A phantom study. J Appl 
Clin Med Phys. 2022;23(3):13498. https://​doi.​org/​10.​1002/​acm2.​13498.

	43.	 Xu H, Lv W, Zhang H, Ma J, Zhao P, Lu L. Evaluation and optimization of radiomics features stability to respiratory 
motion in (18) F-FDG 3D PET imaging. Med Phys. 2021;48(9):5165–78. https://​doi.​org/​10.​1002/​mp.​15022.

	44.	 Wright DE, Cook C, Klug J, Korfiatis P, Kline TL. Reproducibility in medical image radiomic studies: contribution of 
dynamic histogram binning 2022 . ArXiv:​ 2211.​05241

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s11307-016-0940-2
https://doi.org/10.1148/radiol.231319
https://doi.org/10.1038/s41598-018-36938-4
https://doi.org/10.1007/s00259-019-04391-8
https://doi.org/10.1007/s00259-019-04391-8
https://doi.org/10.21037/qims-21-86
https://doi.org/10.21037/qims-21-86
https://doi.org/10.2307/2531221
https://doi.org/10.1016/j.neuroimage.2019.116157
https://doi.org/10.1016/j.neuroimage.2011.08.044
https://doi.org/10.1016/j.neuroimage.2011.08.044
https://doi.org/10.1016/j.neuroimage.2011.07.049
https://www.R-project.org/
https://doi.org/10.1016/j.jcm.2016.02.012
https://doi.org/10.21037/qims.2019.03.02
https://doi.org/10.1016/j.ejrad.2023.110893
https://doi.org/10.1016/j.ijrobp.2018.05.053
https://doi.org/10.2967/jnumed.115.166918
https://doi.org/10.2967/jnumed.115.166918
https://doi.org/10.1007/s11307-018-1241-8
https://doi.org/10.3109/0284186X.2010.498437
https://doi.org/10.1002/acm2.13498
https://doi.org/10.1002/mp.15022
http://arxiv.org/abs/2211.05241

	Does consensus contour improve robustness and accuracy in 18F-FDG PET radiomic features?
	Abstract 
	Purpose: 
	Methods: 
	Results: 
	Conclusions: 

	Introduction
	Methods
	XCAT simulation
	Clinical NPC database
	Tumor segmentation
	Extraction of radiomics features
	Robustness and accuracy assessment
	Feature clustering
	Data analysis

	Results
	Tumor contours
	Robustness test
	Accuracy test
	Interaction between radiomic features

	Discussion
	Conclusions
	Acknowledgements
	References


