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Abstract 

Background:  Positron emission tomography–magnetic resonance (PET-MR) attenua-
tion correction is challenging because the MR signal does not represent tissue density 
and conventional MR sequences cannot image bone. A novel zero echo time (ZTE) MR 
sequence has been previously developed which generates signal from cortical bone 
with images acquired in 65 s. This has been combined with a deep learning model 
to generate a synthetic computed tomography (sCT) for MR-only radiotherapy. This 
study aimed to evaluate this algorithm for PET-MR attenuation correction in the pelvis.

Methods:  Ten patients being treated with ano-rectal radiotherapy received a 18

F-FDG-PET-MR in the radiotherapy position. Attenuation maps were generated 
from ZTE-based sCT (sCTAC) and the standard vendor-supplied MRAC. The radiother-
apy planning CT scan was rigidly registered and cropped to generate a gold standard 
attenuation map (CTAC). PET images were reconstructed using each attenuation map 
and compared for standard uptake value (SUV) measurement, automatic thresholded 
gross tumour volume (GTV) delineation and GTV metabolic parameter measurement. 
The last was assessed for clinical equivalence to CTAC using two one-sided paired t 
tests with a significance level corrected for multiple testing of p ≤ 0.05/7 = 0.007 . 
Equivalence margins of ±3.5% were used.

Results:  Mean whole-image SUV differences were −0.02% (sCTAC) compared 
to −3.0% (MRAC), with larger differences in the bone regions (−0.5% to −16.3%). 
There was no difference in thresholded GTVs, with Dice similarity coefficients ≥ 0.987 . 
However, there were larger differences in GTV metabolic parameters. Mean differences 
to CTAC in SUVmax were 1.0± 0.8% (± standard error, sCTAC) and −4.6± 0.9% (MRAC), 
and 1.0± 0.7% (sCTAC) and −4.3± 0.8% (MRAC) in SUVmean . The sCTAC was statisti-
cally equivalent to CTAC within a ±3.5% equivalence margin for SUVmax and SUVmean 
( p = 0.007 and p = 0.002 ), whereas the MRAC was not ( p = 0.88 and p = 0.83).

Conclusion:  Attenuation correction using this radiotherapy ZTE-based sCT algorithm 
was substantially more accurate than current MRAC methods with only a 40 s increase 
in MR acquisition time. This did not impact tumour delineation but did significantly 
improve the accuracy of whole-image and tumour SUV measurements, which were 
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clinically equivalent to CTAC. This suggests PET images reconstructed with sCTAC 
would enable accurate quantitative PET images to be acquired on a PET-MR scanner.

Keywords:  Synthetic CT, PET-MR, Attenuation correction, Radiotherapy

Background
Simultaneous positron emission tomography–magnetic resonance (PET-MR) enables 
high-quality anatomic, functional and metabolic information to be acquired with high 
degrees of spatial alignment in the same imaging session [1]. This has potential benefits 
for improved staging and treatment response assessment in rectal cancer [2, 3] as well as 
improved radiotherapy gross tumour volume (GTV) delineation [4] and identification 
of active tumour sub-volumes for dose painting [5]. This utilises the superb soft tissue 
contrast of MR anatomical imaging, as well as its functional imaging ability such as dif-
fusion-weighted (DW) MR [6]. However, this comes at the cost of accurate attenuation 
correction of the patient, compared to PET–computed tomography (CT).

Conventional MR images provide little signal from both low PET attenuating materials 
such as air and high PET attenuation materials such as cortical bone [7]. Therefore, there 
is no one-to-one map possible from conventional MR intensity values to linear attenu-
ation coefficients that applies to the whole patient image, unlike for a CT scan [8]. The 
current vendor-supplied solution for the pelvis, MR attenuation correction (MRAC), 
utilises a Dixon MR sequence to segment air, lung, fat and soft tissue compartments, 
which are then assigned population values [9]. This, however, introduces PET attenu-
ation errors through the omission of any bone information, with reported maximum 
standard uptake value (SUV) errors in soft tissue lesions of −6% and in bone lesions of 
−11% (estimated median relative differences from boxplot) [10].

This situation is very similar to the problem faced within MR-only radiotherapy, where 
MR cannot be used directly for radiotherapy dose calculations [11]. This has led to devel-
opment of methods to generate a synthetic CT (sCT) from MR images which can then 
be used for dose calculations. Therefore, there is potential to apply these sCT algorithms 
to PET attenuation correction. This could facilitate a streamlined workflow with a single 
radiotherapy planning PET-MR examination as a ‘one-stop shop’ [12]. These algorithms 
have been designed and validated for megavoltage radiotherapy dose calculations, which 
in principle is less stringent than PET attenuation correction because of the higher pho-
ton energy in radiotherapy beams.

Two previous studies have investigated applying radiotherapy sCT algorithms for PET 
attenuation correction in the pelvis. Wallstén et  al. used an atlas-based sCT derived 
from T2-weighted MR images for PET attenuation correction in 12 prostate cancer 
patients [13]. They reported reduced mean SUV differences to CT in bone regions which 
translated into significantly reduced SUV differences in the PET-avid prostate sub-vol-
ume ( p < 0.001 ). Ahangari et al. evaluated a deep learning sCT algorithm based on the 
Dixon MR sequence for cervix radiotherapy patients [12]. The model was trained with 
26 patients and evaluated on seven, with small mean differences in tumour SUVs to CT 
( < 1.0%).

There have also been a number of studies investigating methods exclusively developed 
for attenuation correction for PET-MR in the pelvis, including methods based on deep 
learning [14]. Bradshaw et al. used diagnostic quality T1 and T2 MR images as inputs 
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for a deep learning algorithm to produce a four-compartment (air, fat, water and bone) 
sCT trained on 12 patients [15]. Differences in SUVmax of soft tissue lesion to reference 
CT attenuation correction (CTAC) were −1.0± 1.3% . Abrahamsen et  al. used a deep 
learning model based on Dixon MR images trained with 22 patients for prostate-spe-
cific membrane antigen (PSMA) PET [16]. Median absolute percentage differences in 
SUVmax compared to the CTAC for 17 test patients were 3.8% and 2.2% in bone and soft 
tissue lesions, respectively. Another Dixon-based deep learning algorithm for PSMA-
PET was developed by Pozaruk et al. using images from 18 patients [17]. They reported 
mean absolute differences within the prostate for 9 test patients of 0.75± 0.52% and 
0.64 ± 0.62% for SUVmax and SUVmean , respectively.

Another radiotherapy sCT algorithm has been developed based on a zero echo time 
(ZTE) imaging sequence, which provides MR signal from bone [18]. Since this is the pri-
mary deficiency in the current MRAC technique, ZTE-based sCT algorithms potentially 
could improve PET attenuation correction significantly [10]. However, to the best of the 
authors’ knowledge, no study has investigated applying a ZTE-only based radiotherapy 
sCT for PET attenuation correction in ano-rectal cancer patients. The aim of this study 
was to apply a ZTE-based deep learning sCT algorithm developed for pelvic MR-only 
radiotherapy dose calculations to PET-MR attenuation correction for ano-rectal cancer 
patients. Since the aim was to evaluate the equivalence in PET-MR attenuation correc-
tion between sCT and CT, the statistical analysis carried out would not be conventional 
superiority testing but equivalence testing [19]. This statistical approach has been 
applied in the MR-only radiotherapy literature [20] but has not been used previously for 
PET-MR attenuation correction analysis.

Materials and methods
Patient data collection

The study population consisted of 10 patients (four male and six female) who were 
all enrolled in the deep MR-only RT study (research ethics committee reference 20/
LO/0583) and received a PET-MR scan. Patients were diagnosed with anal cancer 
(n =  6) stages T1/2N0M0-T2N1M0 and rectal cancer (n =  4) stages T2N0M0-T3b/
T4N0M0 and had a median age of 65 years (range 49-76). All patients were planned for 
radical/neoadjuvant chemoradiotherapy. Patients were excluded if they were contrain-
dicated for MR scanning, had medical implants in the pelvic area (e.g. hip prostheses), 
were unable to fit inside the coil bridge or were unable to fast for 6 h.

All patients received a simultaneous PET-MR scan on a SIGNA PET/MR 3T scan-
ner (version MP26 GE Healthcare, Waukesha, USA) after their radiotherapy plan-
ning CT scan and before their first treatment fraction. Patients were scanned in the 
radiotherapy treatment position on a flat couch top with a coil bridge supporting 
the anterior MR coil and a combined customisable foot and knee rest (Civco), with 
their position adjusted to match external lasers to the radiotherapy patient tattoos. 
All patients had fasted for 6 h prior to injection and had a measured blood glucose 
concentration of < 10 mmol L−1 . Patients were injected with 3.5 MBq kg−1 ± 10% of 
18F-fluorodeoxyglucose (FDG) (one patient received 1.7 MBq kg−1 ), with PET images 
starting to be acquired 73 min (median, range 60-86 min) post-injection. The PET 
acquisition consisted of one 5 min bed position with the patient tumour centred in 
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the PET field of view. Images were reconstructed using an ordered subset expecta-
tion maximisation (OSEM) algorithm with 4 iterations and 16 subsets and a 5.0 mm 
Gaussian filter using the manufacturer provided offline reconstruction tool Duetto 
(version 2.17, GE Healthcare) in MATLAB (version 2017a, MathWorks, Natick, 
Massachusetts, USA). Point spread function correction and time of flight informa-
tion were utilised. Images were reconstructed with a 60× 60 cm2 axial field of view, 
a 256× 256 axial matrix and 89 slices with a slice thickness of 2.78 mm.

Two MR sequences were acquired: a novel ZTE sequence [21] and the stand-
ard Dixon sequence used for the scanner-generated PET attenuation correction 
maps. The ZTE sequence was acquired with flip angle 1◦ , nominal field of view 
360× 360× 300 mm3 , resolution 2.0× 2.0× 2.0 mm3 , repetition time TR = 1.06 ms , 
nominal echo time TE = 0.016 ms , and 59392 3D centre-out radial spokes. Chemical 
shift was minimised by adjusting the centre frequency to be between fat and water 
[22] and using a receive bandwidth of 694 Hz pixel−1 . The duration of the sequence 
was 65  s and the acquisition started 29  min after the PET acquisition started 
(median, range 27-37 min). Image reconstruction was based on 3D gridding, includ-
ing two-fold field of view extension to 720× 720× 600 mm3 (enabled by two-fold 
radial oversampling), deep learning-based de-noising and de-ringing [23] and 3D 
geometry correction.

The Dixon sequence was the automatic sequence used to generate the MRAC map. 
It had a voxel size of 2.0× 2.0× 5.2 mm3 , with 2.6 mm slice gaps, a field of view 
500× 500× 312 mm3 , a repetition time TR = 4.05 ms , echo times TE = 2.232 ms (in-
phase) and TE = 1.116 ms (out-phase) and a received bandwidth of 1302 Hz pixel−1 . It 
had an acquisition duration of 14.8 seconds and occurred concurrently with the start of 
the PET acquisition. In addition, the scanner geometric accuracy and PET SUV accuracy 
were tested monthly during a radiotherapy quality assurance programme [24].

All patients received contrast-enhanced CT scans (Sensation Open, Siemens, Erlan-
gen, Germany) in the radiotherapy planning positon with the same design of foot and 
knee rest and tattoo marks matched to external lasers. Images were acquired with a voxel 
size of 1.1× 1.1× 3 mm3 and a tube voltage of V = 120 kVp . CT images were acquired 
within 6 days (median, range 5-13 days) of the PET-MR scan.

Synthetic CT generation

The sCT was generated by a deep learning algorithm from the ZTE image developed 
by GE Healthcare for MR-only radiotherapy. The algorithm as described previously 
[18, 25], consisted of a 2D convolution neural network adapted to a multi-task UNet 
framework. The network is trained by multiple loss functions, each designed to 
focus specifically on image translation, bone segmentation, and bone density value 
estimation. This supervised learning model was trained on co-registered pairs of 
ZTE and CT images from 36 pelvic radiotherapy patients (28 for model training and 
8 for validation), which did not include the 10 patients in this study. The training 
data was augmented six-fold using random flips, zoom-in and zoom-out, in-plane 
and 3D rotation and the addition of Gaussian noise. The sCT algorithm was applied 
to PET attenuation correction without modification.
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Attenuation correction maps

PET images were reconstructed with three different attenuation correction maps for 
each patient. All attenuation correction maps included the coil components within the 
scanner bed, the radiotherapy couch, coil bridge and anterior coil as described previ-
ously [26, 27] and a model of the patient. The patient model varied between the differ-
ent maps. The gold standard patient model (CTAC) consisted of the patient CT rigidly 
registered to the in-phase MR image in RayStation (v9B, RaySearch Laboratories, Stock-
holm, Sweden). A rigid registration was appropriate because the patient position was 
the same between images due to both being acquired in the radiotherapy position. Each 
patient registration was reviewed to ensure that the patient alignment was sufficient. 
Small differences in external contour were removed by cropping the registered CT to 
the in-phase MR external contour, with any missing tissue set to water density. Differ-
ences between images in the position of air pockets within the patient were removed 
by automatically delineating them on the CT and setting them to water density. The CT 
was converted to 511 keV linear attenuation coefficient map using the PET-MR vendor-
supplied calibration curve (GE Healthcare).

A second map was generated using the sCT image (sCTAC). Although the sCT was 
derived from the ZTE image acquired in the same scanning session as the in-phase MR, 
it was acquired 29  min later (median, range 25-37  min). Therefore, in case of patient 
motion, the sCT was rigidly registered to the in-phase MR image in RayStation and 
cropped to the in-phase MR external contour, with any missing tissue set to water den-
sity. The sCT automatically converted air pockets within the patient to water density. 
This was converted to 511 keV linear attenuation coefficient map using the same calibra-
tion curve.

The final map used the standard vendor-supplied (GE Healthcare) patient model 
derived from the automatic Dixon sequence (MRAC). This method segmented the MR 
into four tissue classes: air, lung, fat and soft tissue, and assigned population-derived 
bulk density 511 keV linear attenuation coefficients to each class [9]. Air pockets within 
the patient were converted to water density automatically. Despite the MRAC being 
derived from the in-phase MR, the MRAC contour was slightly larger due to differences 
in image resolution between the DIXON and MRAC. Therefore, the MRAC was also 
cropped to the in-phase MR external contour to ensure all attenuation correction maps 
had the same external contour. Examples of the three attenuation maps are shown in 
Fig. 1.

Tumour delineation

GTVs were automatically thresholded on each PET image using 40% of the maximum 
SUV [28] within a manual tumour volume contoured by an experienced consultant PET 
radiologist using RayStation. Primary and nodal volumes were delineated separately. 
Examples of the three PET images and automatic GTVs are shown in Fig. 2.

Data analysis

The per pixel percentage difference in SUV for MRAC - CTAC and sCTAC - CTAC 
relative to CTAC was calculated using MICE toolkit (v2021.2.1) [29]. Only differences 
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within the CTAC external contour were included. This was automatically contoured 
using a threshold of 0.05 gml−1 , and the same contour applied to the sCTAC and 
MRAC images. Relative SUV differences were binned into 400 bins between −100% 

Fig. 1  Attenuation correction maps for an example patient. All maps included the MR coils components, flat 
couch top and coil bridge. Patient models were based on CT (a), ZTE-derived sCT (b) and Dixon derived MR 
(c)

Fig. 2  Example PET images reconstructed using the sCTAC (a), MRAC (b) and CTAC (c) attenuation correction 
maps. The threshold GTV contour is shown in purple, blue and red, respectively. Zoomed in pictures of the 
same GTVs are shown in (d). The patient was selected as having the sCTAC and MRAC SUVmax differences 
closest to the mean differences
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and +100% for each patient, and the mean difference within each bin over all patients 
determined. An example whole-image difference map is shown in Fig. 3.

A major discrepancy between the MRAC and gold standard CTAC is that the 
MRAC does not reproduce bone. Therefore, SUV differences in the bone region were 
additionally investigated. A bone region of interest was automatically delineated on 
the CT using the ‘Bone ROI’ function in RayStation. This uses thresholding and con-
nected regions function to contour bone. The per pixel percentage difference in SUV 
was calculated as described above but only within the region masked by the bone 
contour.

The similarity of the automatic GTV contours on sCTAC and MRAC PET images 
to CTAC was determined using the volumetric Dice similarity coefficient (DSC), 
the mean and maximum distances to agreement and the GTV volume, all calculated 
within RayStation. The accuracy of the calculation of a set of metabolic parameters 
on the sCTAC and MRAC GTVs was determined by comparing to CTAC measure-
ments. The metabolic parameters assessed were SUVmax and SUVmean of the tumour 
volumes. Large variation between patient SUVs meant the volume and metabolic 
comparisons between sCTAC and MRAC with CTAC were carried out as per-patient 
percentage differences relative to CTAC.

The SUV results were statistically tested for equivalence, with a null hypothesis that 
the sCTAC/MRAC PET images were different to the CTAC images. This is the oppo-
site to conventional superiority testing which aims to determine if differences are sta-
tistically significant and has a null hypothesis that the sCTAC/MRAC PET images are 
not different to CTAC images. Equivalence between MRAC/sCTAC and CTAC was 
assessed using two one-sided t tests for paired data [19]. Tests were done for differ-
ences in SUVmax and SUVmean , for both MRAC and sCTAC and both primary and 
nodal GTVs (i.e. 8 tests in all). A significance level of p ≤ 0.05 was used, corrected for 
multiple testing by p < 0.05/(8− 1) = 0.007 [30].

Equivalence testing considers sCTAC/MRAC PET images clinically equivalent 
to CTAC images if the SUV differences are smaller than a pre-defined equivalence 
margin, which is the maximum difference that would be considered clinically unim-
portant. There were no reported equivalence margins for PET attenuation correction 
in the literature. Therefore, an equivalence margin was defined as the maximum dif-
ference that would not increase the overall literature PET-CT SUV uncertainty by 
> 0.5% . The method assumed that the only additional SUV uncertainty from PET-MR 

Fig. 3  Example SUV difference maps to CTAC PET images for the sCTAC PET image (a) and MRAC PET image 
(b) for the same patient and slice as shown in Fig. 2
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compared to PET-CT was due to attenuation correction, which was independent of 
all other PET uncertainties. Therefore, the attenuation correction uncertainty can be 
added in quadrature:

where �PETMR is the overall PET-MR SUV uncertainty, �PETCT is the overall PET-CT 
uncertainty and �AC is the attenuation correction uncertainty. The equivalence margin 
( �AC ) was defined such that �PETMR −�PETCT ≤ 0.5% . Literature values for PET-CT 
SUV repeatability were taken as 12%, using a meta-analysis of repeatability tests on the 
same scanner [31]. Using �PETCT = 12% in equation (1) gives an equivalence margin of 
�AC = 3.5%.

Results
sCTs were successfully generated for each patient. There were 9 primary and 5 
nodal GTVs contoured, (one patient had no primary following surgery before 
chemoradiotherapy).

The whole-image SUVs in the sCTAC- and MRAC-reconstructed PET images were 
lower than those in the CTAC PET images with the mean difference being −3.0% for 
the MRAC and −0.02% for the sCTAC. The distributions of SUV differences were 
quite different, with the sCTAC SUV differences a much narrower distribution as well 
as closer to zero (see Fig. 4). The differences within the bone mask were much larger 

(1)�PETMR = �2
PETCT +�2

AC,

Fig. 4  Histogram of relative number of voxels with percentage differences in SUV to CTACT for sCTAC (green) 
and MRAC (blue). Relative number of voxels given as percentage of total voxels within patient external 
contour. Solid lines show mean counts over all patients for each bin, and shaded areas ± one standard error. 
The dashed line indicates zero difference
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than the whole image, with the mean MRAC difference being −16.3% and the sCTAC 
difference −0.5% (see Fig. 5).

The thresholded GTVs for the primary and nodal tumours were very similar 
to CTAC on both MRAC and sCTAC, with all metrics agreeing within one stand-
ard error (Table  1). Both MRAC and sCTAC volume differences were close to zero 
(within two standard errors).

There were larger differences between MRAC and sCTAC in the metabolic param-
eters. In the primary tumours, the mean MRAC differences in SUV from CTAC were 
−4.6± 0.9% (± standard error, range −8.4%, −1.3%) for SUVmax and −4.3± 0.8% 
(−9.0%, −1.6%) for SUVmean . The sCTAC SUV differences were closer to zero and 

Fig. 5  Histogram of relative number of voxels with percentage differences in SUV to CTAC for sCTAC (green) 
and MRAC (blue) within the bone region. Relative number of voxels given as percentage of total voxels within 
patient external contour. Therefore y-axis is in the same units as Fig. 4 but the scale is different. Solid lines 
show mean counts over all patients for each bin, and shaded areas ± one standard error. The dashed line 
indicates zero difference

Table 1  Delineation metrics for GTVs on MRAC and sCTAC​

Volume indicates the volume difference between MRAC/sCTAC and CTAC, relative to the CTAC volume. All results given as 
mean ± standard error (minimum, maximum)

Metric GTV MRAC​ sCTAC​

DSC Primary 0.990± 0.002(0.978, 0.994) 0.992± 0.002(0.983, 0.998)

DTAmean[mm] Primary 0.06± 0.01(0.02, 0.13) 0.06± 0.01(0.01, 0.11)

DTAmax[mm] Primary 1.87± 0.24(0.97 ,3.16) 1.76± 0.13(1.23, 2.53)

Volume [ %] Primary 0.7± 0.5(−0.4 , 4.2) 0.7± 0.5(−1.3 , 3.2)

DSC Nodal 0.988± 0.006(0.968, 1.000) 0.987± 0.008(0.955, 1.000)

DTAmean[mm] Nodal 0.04± 0.01(0.00, 0.07) 0.04± 0.02(0.0, 0.11)

DTAmax[mm] Nodal 1.4± 0.4(0.0, 2.34) 1.4± 0.4(0.0, 2.0)

Volume [ %] Nodal 0.8± 0.3(0.0, 1.6) 1.1± 0.6(−0.1 , 2.8)
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less dispersed (Fig.  6), with differences of 1.0± 0.8% (−1.7%, 6.3%, SUVmax ) and 
1.0± 0.7% (−1.5%, 4.5%, SUVmean ). The absolute differences in SUV for the sCTAC 
were 1.8± 0.6% (0.1%, 6.3%, SUVmax ) and 1.7± 0.5% (0.1%, 4.5%, SUVmean ). The 
MRAC was not clinically equivalent to CTAC within ±3.5% for SUVmax ( p = 0.88 ) 
or SUVmean ( p = 0.83 ). Conversely, the sCTAC was clinically equivalent to CTAC for 
both SUVmax ( p = 0.007 ) and SUVmean ( p = 0.002).

The SUV differences between MRAC and sCTAC were greater for the nodal vol-
umes than the primary tumours. SUVmax differences were −6.2± 1.3% ( −9.4% , 
−1.9% , MRAC) and −0.1± 1.3% (−2.4%, 4.8%, sCTAC) and SUVmean differences 
were −6.0± 1.2% ( −9.2% , −2.0% , MRAC) and 0.2± 1.4% ( −2.5% , 5.4% , sCTAC). Nei-
ther MRAC or sCTAC was clinically equivalent for SUVmax ( p = 0.95 and p = 0.03 , 
respectively), or SUVmean ( p = 0.94 and p = 0.04 ). The absolute differences in nodal 
tumours SUV for the sCTAC were 2.0± 0.8% ( 0.3% , 4.8% , SUVmax ) and 1.9± 1.0% 
( 0.1% , 5.4% , SUVmean).

Discussion
This study has assessed the use of a MR-only radiotherapy sCT algorithm for PET-MR 
attenuation correction in the pelvis compared to the current Dixon-based MRAC. The 
sCTAC reduced the whole-image SUV difference to CTAC to −0.02%, compared to 
−3.0% for the MRAC. This did not translate into improvements in thresholded GTV 
delineation, with both MRAC and sCTAC having DSC ≥ 0.987 for primary and nodal 
GTVs. However, differences in GTV metabolic parameters were larger, with differences 
to CTAC in SUVmax being 1.0± 0.8% (sCTAC) rather than −4.6± 0.9% (MRAC) for pri-
mary GTVs. SUVmean calculated on the sCTAC was clinically equivalent to CTAC val-
ues within a ±3.5% equivalence margin for primary GTVs with p = 0.002 , whereas the 
MRAC was not ( p = 0.88).

Fig. 6  Boxplot of SUV differences to CTAC PET images for the MRAC (blue) and sCTAC (green) images. Solid 
bars indicate primary volumes (n = 9) and hatched bars nodal volumes (n = 5). The rectangles indicate the 
interquartile range (IQR), with the horizontal black line the median value, the black whiskers the maximum 
(minimum) data point within Q3+ 1.5IQR ( Q1− 1.5IQR ), and the black crosses outlier data points. The dotted 
line indicates zero difference, and the yellow filled regions indicate the equivalence margins ( ±3.5%)
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The sCTAC-reconstructed PET images had smaller SUV differences to CTAC over the 
whole image than the MRAC-reconstructed images (Fig. 4). The mean sCTAC difference 
was very close to zero, and the distribution of differences tightly clustered around the 
mean. In contrast, the MRAC SUV difference was larger (−3.0%) and had a substan-
tially broader distribution of differences. The MRAC had substantially larger differences 
within the bone mask (−16.3% compared to −0.5%). Although these only made up a 
small proportion of the overall voxels in the image, the absence of bone also caused the 
MRAC to over-estimate SUVs adjacent to the bone (Fig. 3). This suggests that the ZTE-
based sCT model is accurately capturing the bone information.

The automatic GTV delineation using thresholds of 40% of SUVmax were very sim-
ilar between CTAC and both sCTAC and MRAC. The DSC results ( ≥ 0.987 , with 1.0 
indicating perfect agreement) were higher than the reported inter-observer variability 
of 0.96 in automated rectal cancer GTV delineation on the same PET image [32]. This 
implies both sCTAC and MRAC provide sufficient SUV accuracy for accurate GTV 
delineation.

The differences in patient attenuation produced larger differences in the metabolic 
parameter analysis. The sCTAC SUV differences to CTAC were smaller than MRAC for 
both SUVmax and SUVmean for both primary and nodal GTVs, and sCTAC was clinically 
equivalent to CTAC for the primary GTVS (within ±3.5% ), whereas the MRAC SUVs 
were not. The nodal GTVs were not clinically equivalent for either sCTAC or MRAC, 
although for the sCTAC this is likely due to there only being five patients having nodal 
GTV and the results from one patient that may have been an outlier (see Fig. 6). Examin-
ing the sCT and CT for this patient showed there was a small discrepancy in the bone 
alignment on the few slices that the nodal GTV was on (it only had a volume of 1.4 cm3 ). 
This resulted in more bone on the sCT for these slices than on the CT, resulting in an 
over-correction of the attenuation, leading to higher SUVs in the sCTAC image.

This highlights a limitation of this study which is that the CT image used as the gold 
standard was acquired on a different scanner and on a different day to the PET-MR 
image. Both CT and PET-MR images were acquired in the same radiotherapy position 
with the same immobilisation, each patient registration was reviewed to ensure it was 
appropriate, the external contours of all attenuation correction maps were cropped to 
be the same, and air pockets within the patient (which varied between images) were all 
set to water density. These all ensured a high degree of alignment between the images. 
However, there could still be small discrepancies between patient images, which would 
be confounding differences due to misalignments rather than incorrect HU assignment 
in the sCT. This could potentially be improved through the use of a deformable registra-
tion between CT and MR, although this would not completely remove discrepancies and 
may have introduced additional ones. PET-CT also suffers from this problem to some 
extent, where although the PET and CT images are acquired in the same imaging ses-
sion, they are separated in time. This can result in discrepancies due to gross patient 
motion or changes in internal anatomy (e.g. from breathing).

These results demonstrate that the sCTAC-reconstructed PET images produce SUV 
differences that are clinically equivalent to CTAC for primary GTVs within equiva-
lence margins of ±3.5% at the 90% confidence level (using a multiple testing corrected 
p-value of p = 0.05/(8− 1) = 0.007 [30]). Equivalence testing is a well-established 
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statistical methodology in clinical trials [33], although has not been used previously in 
evaluating PET-MR attenuation correction accuracy. Therefore, there was not a standard 
equivalence margin in the literature, which is critical to the validity of equivalence test-
ing [19]. A methodology was developed to derive the margins of ±3.5% . This assumed 
that the attenuation correction method is independent of the other uncertainties in the 
PET imaging and that increases in the overall SUV uncertainty from 12 to 12.5% can be 
considered negligible. The overall PET-CT uncertainty was estimated as the test–retest 
repeatability values of SUV measurements reported in the literature. Different values 
have been given, with a meta-analysis of five studies investigating the repeatability of 
PET-CT scans reporting values of 30% ( SUVmax ) and 20% ( SUVmean ) [34]. However, this 
included data from patients scanned on different scanners which would increase vari-
ability in SUV measurements. A more recent meta-analysis of repeatability studies using 
data from patients scanned on the same scanner sequentially reported average repeat-
ability of ∼ 10% , with a majority of studies reporting repeatability of ≤ 12% [31]. This 
is similar to the data reported in a study focused on SUV measurements in ano-rectal 
tumours, which reported repeatability of 10–12% [35]. This lead to the choice of 12% as 
the overall PET-CT uncertainty, from which was derived the ±3.5% equivalence margin.

The sCTAC results in this study compare well with previous published results on PET-
MR attenuation correction in the pelvis. Shandiz et al. investigated using a short echo 
time sequence and automated image segmentation techniques to generate a bulk density 
sCT with five tissue classes (cortical bone, air cavity, fat, soft tissue and background) 
[36]. PET errors were estimated using simulated PET data for one healthy patient, with 
mean voxel-by-voxel SUV errors of −14 ± 15% , 4 ± 6% , 8± 13% and 4 ± 2% in the bone, 
soft tissue, fat and prostate regions. Bradshaw et al. used a deep learning model to gener-
ate a four tissue class sCT from T1 and T2 Dixon MR images from 12 patients [15]. This 
was evaluated on 16 FDG-avid lesions from five patients, with mean SUVmax differences 
of −1.0± 1.3% , the same magnitude of difference reported in this study ( 1.0± 0.8% ). The 
same ZTE sequence investigated here was used in combination with a Dixon MR images 
in a deep learning model with 10 training patients to generate sCTs [10]. Median SUVmax 
differences for 30 bone lesions from 16 patients were −1% (range −8%, 3%, relative dif-
ferences estimated from boxplot) and −2% (−12%, 5%) for 60 soft tissue lesions. Two 
other studies developed deep learning models for prostate lesions using PSMA-PET. 
Abrahamsen et al. reported median absolute percentage differences to CTAC in SUVmax 
of 2.2% for soft tissue lesions [16], very similar to the 1.8± 0.6% and 2.0± 0.8% absolute 
differences for the primary and nodal tumours in this study. Pozaruk et al. found slightly 
smaller absolute differences of 0.75± 0.52% and 0.64 ± 0.62% for SUVmax and SUVmean , 
respectively [17]. However, these measurements were restricted to the prostate organ 
and so may not be not directly comparable to the results from rectal primary and nodal 
tumours in this study.

The results in this study also demonstrated comparable or superior performance to 
other MR-only radiotherapy sCT algorithms which had been applied to PET attenua-
tion correction. Wallstén et al. gave whole-image SUV differences of −0.5% and within-
bone differences of −4.2% [13], which were larger than the −0.02% and −0.5% reported 
here. This translated into SUVmean differences in PET-avid lesions within the prostate 
of −2.3%, again a larger difference than the 1.0± 0.7% reported in this study. Ahangari 
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et al. found mean differences in SUVmax of −0.8± 1.2% (± standard error, range −4.9%, 
4.7%, estimated from bar graph) and in SUVmean of −0.3± 1.8% ( −5.9% , 7.4% ) [12]. 
These were similar to the results reported here (absolute differences ≤ 1.0%).

The MRAC results also show good agreement with the literature. Wallstén et al. found 
mean SUV differences within soft tissue of −3.6% and within the bone region of −17.7% 
[13], very similar to the −3.0% and −16.3% found here. The SUVmean difference in the 
prostate PET-avid lesion was −5.9% , similar to the −4.3± 0.8% reported here. Leynes 
et al. found median SUVmax differences in soft tissue lesions of −6% (−18%, 4%) [10], 
which agrees within two standard errors with the −4.6± 0.9% (−8.4%, −1.3%) reported 
in this study.

There are two aspects to consider when applying radiotherapy sCT algorithms to PET 
attenuation correction. On the one hand, PET is more sensitive to HU errors due to the 
lower energy of PET photons compared to those produced by megavoltage linear accel-
erators, so this makes PET attenuation correction more challenging for sCT algorithms. 
On the other hand, the overall uncertainty of SUV measurements is much higher than in 
radiotherapy dosimetry. The overall repeatability of SUV measurements is 10–12% [31], 
whereas the overall uncertainty in radiotherapy dose delivered to the patient is 3–5% 
[37]. Thus, clinical equivalence in SUV accuracy could be achieved with differences of 
3–4% whereas the dose uncertainty of any individual component of the radiotherapy 
pathway has to be ≤ 1% to not increase the overall dose uncertainty [37]. This suggests 
that sCT requirements for MR-only radiotherapy are more stringent than for PET atten-
uation correction, and so sCTs that are clinically acceptable for radiotherapy are likely to 
be able to be used for PET attenuation correction without modification. This agrees with 
the data found in this study and the two other studies applying radiotherapy developed 
sCTs to PET attenuation correction [12, 13].

A limitation of this study was that only small numbers of patients were evaluated, 
especially for the nodal evaluation. This is likely to have prevented clinical equivalence in 
nodal SUV measurements being demonstrated due to the study being under-powered. 
In addition, measurements have only been made on one manufacturer’s scanner in one 
centre, which was the same scanner on which the ZTE images used to the sCT model 
were acquired on. Evaluating the sCT algorithm on more patients acquired in different 
centres and on different scanners would enable the generalisability of this method to be 
tested [14].

Conclusions
A ZTE-based deep learning sCT algorithm for MR-only radiotherapy has been suc-
cessfully applied for PET-MR attenuation correction. There were substantial reductions 
in SUV differences to gold standard CTAC, with mean whole-image differences being 
−0.02% , compared to −3.0% for the current MRAC. The improvements in the bone 
regions were particularly large, −0.5% rather than −16.3% . This had no impact on the 
accuracy of thresholded GTV delineation. However, it did have a significant impact on 
metabolic parameters, with SUV differences in SUVmax and SUVmean being 1.0± 0.8% 
and 1.0± 0.7% , respectively, rather than −4.6± 0.9% and −4.3± 0.8% for the MRAC. 
The SUV measurements in the primary GTVs were clinically equivalent to CTAC within 
±3.5% , respectively ( p = 0.007 and p = 0.002 ), whereas MRAC measurements were 
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not ( p = 0.83 and p = 0.83 ). This suggests that PET images reconstructed using sCTAC 
substantially improve in SUV accuracy compared to current MRAC approaches and 
were comparable to PET images reconstructed using other deep learning state-of-the-
art attenuation correction methods. Using this sCT developed for MR-only radiotherapy 
without modification would enable highly accurate quantitative PET images in the pelvis 
to be acquired on a PET-MR scanner.
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