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Background
Quantitative SPECT/CT imaging provides a method of calculating post-therapy dosim-
etry from targeted radionuclide therapy which may provide pertinent information in 
terms of dose–response [1–6]. Terbium-161 (161Tb)-labelled targeted radionuclide 

Abstract 

Background: Terbium-161 (161Tb)-based radionuclide therapy poses an alternative 
to current Lutetium-177 (177Lu) approaches with the additional benefit of secondary 
Auger and conversion electron emissions capable of delivering high doses of localised 
damage to micro-metastases including single cells. Quantitative single-photon emis-
sion computed tomography, paired with computed tomography (SPECT/CT), enables 
quantitative measurement from post-therapy imaging. In view of dosimetry extrapola-
tions, a Tb-161 sensitivity SPECT/CT camera calibration was performed using a method 
previously validated for 177Lu.

Methods: Serial imaging of a NEMA/IEC body phantom with Tb-161 was performed 
on SPECT/CT with low-energy high-resolution collimators employing a photopeak 
of 75 keV with a 20% width. Quantitative stability and recovery coefficients were 
investigated over a sequence of 19 scans with buffered 161Tb solution at total phantom 
activity ranging from 70 to 4990 MBq.

Results: Sphere recovery coefficients were 0.60 ± 0.05, 0.52 ± 0.07, 0.45 ± 0.07, 
0.39 ± 0.07, 0.28 ± 0.08, and 0.20 ± 0.08 for spheres 37, 28, 22, 17, 13, and 10mm, respec-
tively, when considered across all activity and scan durations with dual-energy window 
scatter correction. Whole-field reconstructed sensitivity was calculated as 1.42E−5 
counts per decay. Qualitatively, images exhibited no visual artefacts and were compa-
rable to 177Lu SPECT/CT.

Conclusions: Quantitative SPECT/CT of 161Tb is feasible over a range of activities 
enabling dosimetry analogous to 177Lu whilst also producing suitable imaging for clini-
cal review. This has been incorporated into a prospective trial of 161Tb-PSMA for men 
with metastatic prostate cancer.
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therapy offers a potential alternative to Lutetium-177 (177Lu)-labelled therapeutic agents 
given its similar decay characteristics in half-life (6.95 vs 6.7 days), beta energy (154 
vs 134 keV), and gamma emission (74.6 keV [10.2%] vs 208 keV [10.4%]) suitable for 
SPECT-CT imaging [7–10]. Most notably, however, 161Tb emits additional conversion 
and Auger electrons capable of providing a significantly higher energy deposition per 
decay in micro-metastases and single cells, with consequent potential for improved ther-
apeutic efficacy as indicated by Monte-Carlo studies [11–14], and, in pre-clinical stud-
ies, with tumour-targeting folate conjugate [15] and prostate-specific membrane antigen 
(PSMA) [16].

Challenges in production have limited research with 161Tb until recent advancements 
which provided enough activity for clinical applications [17, 18]. These advancements 
have enabled the initiation of several 161Tb-labelled targeted radionuclide therapy clini-
cal trials, including the recent first in-human study with 161Tb-DOTATOC that demon-
strated the ability to visualise small metastases from SPECT/CT imaging with relatively 
low administered activity (< 1–5 GBq) [19].

In preparation for the VIOLET trial, a phase I/II clinical trial designed to evaluate the 
safety and efficacy of 161Tb-PSMA-I&T (NCT05521412) in men with metastatic castra-
tion-resistant prostate cancer [20], we aimed to assess the image quality and quantitative 
capabilities of post-therapy SPECT/CT acquisitions and reconstructions over a clinical 
activity range.

Methods
Calibrated no-carrier-added 161Tb radionuclide sample was obtained from supplier 
(Isotopia Molecular Imaging, Petah Tikva, Israel). A NEMA IEC body phantom was 
filled at 8:1 ratio between spheres and background with diethylenetriaminepentaacetic 
acid used as buffer to prevent potential adsorption to phantom linings. The phantom 
was imaged over 19 delayed timepoints to determine quantitative stability of recov-
ery coefficients relative to total in-field activity level (70–4990 MBq). All images were 
acquired on an integrated Siemens Symbia Intevo Bold SPECT/CT scanner (Siemen’s 
Healthineers, Erlangen, Germany) for 120 frames per rotation and OSEM reconstruc-
tion (Flash-3D, 6 iterations, 10 subsets, 6.0mm Gaussian smoothing, CT AC, 4.8  mm3 
voxel size) using low-energy high-resolution collimators focused on a photopeak of 74.6 
keV ± 10% with ± 6% upper and lower scatter window widths (TEW) and lower scatter 
only (DEW). Reconstruction parameters were chosen based on the work by Marin et al. 
[10] that found convergence for all NEMA spheres using the same energy window and 
image updates (subset/iteration configuration). For each study, separate acquisitions 
with frame durations of 2, 4, 8, and 16 s were performed to evaluate the effects of count 
rate and reconstruction count density with respect to apparent camera sensitivity. Addi-
tionally, the choice of dual-energy window (DEW) or triple-energy window (TEW) scat-
ter correction during reconstruction was evaluated using paired samples t test.

Phantom images were analysed for NEMA sphere contrast-to-noise ratio (CNR), mean 
volumetric recovery coefficients (RC), and background count sensitivity. NEMA sphere 
volume-of-interest (VOI) was defined by the known diameter of the spherical inserts 
of the phantom on an initial CT, drawn using MIM (MIM Software Inc., USA), and 
propagated across all reconstructed series by automated rigid image registration [21]. 
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Background VOI was defined by two large cylinders (each with 5 cm diameter, 15 cm 
length, 300 mL volume); one drawn at 2.5 cm axial offset from the 22 mm and 28 mm 
sphere VOI, and the other drawn at 2.5  cm axial offset from the 10  mm and 37  mm 
sphere (see Additional file 1: Fig. S1). Whole-field VOI was defined by all voxels in the 
reconstructed image. Sphere CNR was calculated by subtracting the average counts in 
the background VOI from the measured mean sphere VOI divided by the background 
noise (standard deviation). RC was defined by dividing the measured mean activity 
concentration in the specific sphere VOI by the activity concentration known from the 
phantom experiment preparation.

Scanner sensitivity was scored as reconstructed counts per Becquerel and second 
of acquisition (counts/Bq*s). In-field sensitivity was assessed by three methods: total 
counts in the reconstructed image relative to total activity, background VOI count con-
centration with respect to activity concentration, and IEC sphere count concentration 
with relative to 8:1 activity concentration as adjusted by measured RC. Activity values 
were measured in syringe using a Capintec-CRC 15R dose calibrator with calibration 
code number #197 based on cross-calibration of supplier quoted activity. Determination 
of final sensitivity values was obtained by calculation of the mean of observed sensitivity 
values over a range of clinically expected in-field count densities, ranging from 250 to 
2000 MBq. Additionally, count rate effects were evaluated from raw tomographic images 
in terms of count fractions of upper and lower scatter relative to photopeak window.

Voxel dose kernel for 161Tb was calculated using the Geant4 Application for Tomo-
graphic Emission (GATE) software [22] and applied to the cumulated activity map 
derived from serial quantitative 161Tb SPECT/CT images acquired at 4, 24, and 120 h 
post 5.4 GBq administration for a single patient using existing voxel registration and 
kinetics (VRAK) software [1]. SPECT/CT images were acquired using 10 s frame dura-
tion, CT attenuation correction, Flash-3D reconstruction algorithm with 4 iterations, 8 
subsets, and 8.40 mm Gaussian post-processing smoothing filter.

Results
Visually acceptable images with clear delineation of the four largest NEMA 
IEC spheres (22 + mm) were obtainable with total activities as low as 300 MBq 
(Fig. 1). When > 1e7 photopeak counts were acquired, Rose criterion (CNR > 5) was 
met for all spheres, excluding 10 mm radius (Fig.  2). Sphere  RC were 0.60 ± 0.05, 
0.52 ± 0.07, 0.45 ± 0.07, 0.39 ± 0.07, 0.28 ± 0.08, and 0.20 ± 0.08 for spheres 37, 28, 22, 

Fig. 1 Example axial slices acquired using 16 s frame duration, 60 frames of rotation, and dual-energy 
window at activity levels 5300 MBq (left), 2200 MBq (middle), 300 MBq (right). Total photopeak counts 38.5E6, 
18.9E6, and 2.96E6, respectively
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17, 13, and 10mm, respectively, when considered across all activity and scan dura-
tions with DEW scatter correction (Fig. 3). Sphere RC were comparable between both 
DEW and TEW scatter correction methods and neither technique could be charac-
terised with a clear improvement in count linearity with respect to activity (Fig. 3). 
Uncorrected dead-time effects were observed at very high in-field activities above 2 
GBq in single FOV which reduced the apparent sphere sensitivity by up to 20% at 5 
GBq; an in-field activity likely to exceed most clinical situations (Fig.  4). Evaluating 

Fig. 2 Contrast-to-noise ratio for each NEMA IEC sphere as a function of the acquired statistics (photopeak 
counts) with dual- and triple-energy window scatter corrections

Fig. 3 Measured recovery coefficients for NEMA IEC sphere phantom as a function of the acquired statistics 
(photopeak counts) with dual- and triple-energy window scatter corrections. Each point represents the 
recovery for the given sphere size at each imaging session over the course of the decayed observations
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whole-field sensitivity across a viable range of clinical count densities, from 250 to 
2000 MBq with 8 and 16 s frame durations, a sensitivity value of 1.42E−5 cts/Bq*s 
was determined.

Count rate effects were evaluated in terms of relative counts in photopeak compared 
to scatter windows and showed no evidence of count pile-up (Fig. 5). Count fractions 
were consistent across all acquisitions except for very low activity levels. Additional 
analysis of count rate in projection views was approximately linear with in-field activity 
across all windows apart from a small dark-field background count rate; in the order of 
100 counts per second in the photopeak energy window.

An appreciable increase in background region of interest (ROI) sensitivity was 
observed in conjunction with reduced local count density on the reconstructed image. 
The effect was linked to the total acquired statistics, proportional to the total activity 
present in the FOV and the length of the acquisition (i.e. the length of the frame dura-
tion) with higher apparent sensitivity observed at lower activity concentration and 
acquisition times. Because projection view count rates were approximately linear, this 
suggests that the variable sensitivity is reconstruction-related; likely owning to high 
standard deviation of counts relative to the mean of the region. Examining the histo-
gram distribution of background counts across different activity levels and scan dura-
tions (Additional file 1: Fig. S2) shows a clear deviation from normal distribution at low 
count density and may relate to systems avoidance of negative values in the reconstruc-
tion process. Additionally, the overall stability of sensitivity values to high-uptake sphere 
regions suggests that the effect is related to count density and applying the average 
37mm sphere RC (0.60) to the observed local sensitivity yielded a comparable value of 
1.36E−5 counts/Bq*s.

Fig. 4 Sensitivity (y-axis) as measured for different total 161Tb activity quantities (x-axis) based on whole-field 
counts, background, and 37mm sphere concentrations. The effect of frame duration (2–16 s) is illustrated by 
marker size
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No visual or statistical (students t test) improvement in sphere RC was observed with 
TEW scatter correction technique (p > 0.05), though a lower whole-field sensitivity was 
observed (1.25E−5 counts/Bq*s).

Single-patient dosimetry following 5.4 GBq prescription, absorbed doses to nor-
mal organs were calculated to parotid glands (0.9 Gy), submandibular glands (0.8 Gy), 
right kidney [single functional] (2.6 Gy), liver (0.5 Gy), and spleen (0.5 Gy) (Fig. 6). Total 
photopeak counts acquired per bed position, (skull, thorax, and pelvis) was: (2.9E6, 
8.0E6, 8.0E6) at 4 h, (1.22E6, 3.9E6, 4.7E6) at 24 h, and (0.3E6, 1.0E6, 1.7E6) at 120 h 
post-administration.

Fig. 5 Count fraction in lower scatter (blue), photopeak (orange), and upper scatter (green) windows in raw 
tomographic dataset with respect to imaged activity

Fig. 6 Sequential QSPECT patient imaging following 161Tb-PSMA administration (4, 24, 120 h) and derived 
dosimetric image (right)
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Discussion
The observed sensitivity appears to be moderated by a mixture of factors relating to the 
in-field activity which imparts nonlinear effects due to uncorrected dead-time at very 
high activity levels as well as the local count density. The latter yields an amplification in 
sensitivity at low counts which has implications for scoring uptake in low-avidity tissues 
such as bone marrow and may preclude measurements such as whole-body retention 
over multiple bed step locations; an effect which is more pronounced at lower activity 
levels as might be required for dosimetric scans several days after therapeutic admin-
istration. Additionally, the presence of 160Tb impurity may influence the sensitivity of 
delayed imaging if the time between end-of-separation in production and SPECT image 
acquisition are of significant time difference. Given 160Tb emits an ~ 86 keV gamma 
with > 13% probability, there is potential for counts detected in both the photopeak and 
upper scatter window to increase over time relative to the fraction of impurity. This situ-
ation, however, is unlikely to manifest in the clinical environment due to radionuclide 
impurity release limits and the relatively short typical time delay from radionuclide pro-
duction to post-therapy patient SPECT imaging.

With these potential shortcomings in mind, the stability of scanner sensitivity and RC 
for avid subregions suggests that post-therapy imaging would be suitable for measuring 
pharmacokinetics to high-avidity at-risk organs or tumour regions.

Previous work by Marin et al. showed that employing a lower energy photopeak (48.9 
keV) is inferior to the 75.4 keV photopeak due to unavoidable artefacts in the recon-
struction image. Imaging at this lower photopeak using current gamma camera tech-
nology includes several other peaks in the gamma spectrum (Additional file 1: Fig. S4) 
creating potential sources of quantitative inaccuracy due to attenuation correction from 
these merged gamma peaks which may further jeopardise the quantitative accuracy of 
the corrected image. Similar artefacts were not observed during this calibration work. 
Whilst our work focused on evaluating the linearity of reconstructed counts, future 
investigation of optimised image reconstruction updates (number of iterations & sub-
sets) and degree of quantitative effect following post-process Gaussian smoothing (see 
Additional file 1: Fig. S3) are warranted to maximise visual detectability and quantifica-
tion of small lesions.

Further evaluation of appropriate attenuation correction to account for k-edge effects 
in the energy range below 100 keV may be warranted to achieve optimal image qual-
ity and sensitivity in the presence of anatomical material differences or metal implants; 
however, in this work no apparent uniformity bias was observed with application of 
Chang’s attenuation correction method [23] in the vendor reconstruction. The energy 
separation between 75 and 49 keV photopeaks was sufficient to enable both primary 
photopeak and lower energy scatter windows to be applied without contamination 
from the lower photon yield. These suggest that existing quantitative SPECT conver-
sion workflows as used with other therapeutic radionuclides will be suitable for use with 
161Tb after determination of an appropriate, scanner-dependent sensitivity factor.

Contrast recovery and overall image quality was comparable to values obtained 
when imaging with 177Lu [24, 25]. Based on observed RC (Fig. 3) and initial patient 
dosimetric imaging (Fig.  6), reliable lesion and normal organ dosimetry using 
161Tb should be feasible for regions larger than 1–2 cm. Again, existing dosimetry 



Page 8 of 10McIntosh et al. EJNMMI Physics           (2024) 11:18 

workflows—and their potential spatial limitations—should be considered suita-
ble for 161Tb. Dosimetric emission properties are similar in terms of path length to 
177Lu with an amplification of approximately 35% higher absorbed dose per decay at 
SPECT resolution. It is notable that the biological implications of very short range 
Auger emission cannot be appreciated in the context of image-based dosimetry as the 
range of their effects are too short to untangle at SPECT resolution. These nanoscale 
contributions will need to be inferred based on the known proximity of the targeting 
molecule to nuclear DNA or based on empirical studies that define a dose–response 
relationship for a specific 161Tb radiopharmaceutical.

Conclusions
We have shown that quantitative calibration of 161Tb is possible with serial SPECT/
CT image acquisition over a range of radioactivity levels. Recovery coefficients 
obtained from 161Tb SPECT/CT imaging were comparable to that of 177Lu. An ampli-
fication in sensitivity at low in-field count rate was observed and may be attributable 
to reconstruction technique. Quantitative SPECT/CT calibration of 161Tb will enable 
future clinical dosimetric studies.
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