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Abstract 

Background: The Otsu method and the Chan–Vese model are two methods proven 
to perform well in determining volumes of different organs and specific tissue frac-
tions. This study aimed to compare the performance of the two methods regard-
ing segmentation of active thyroid gland volumes, reflecting different clinical settings 
by varying the parameters: gland size, gland activity concentration, background activity 
concentration and gland activity concentration heterogeneity.

Methods: A computed tomography was performed on three playdough thyroid 
phantoms with volumes 20, 35 and 50 ml. The image data were separated into play-
dough and water based on Hounsfield values. Sixty single photon emission computed 
tomography (SPECT) projections were simulated by Monte Carlo method with isotope 
Technetium-99 m ( 99mTc). Linear combinations of SPECT images were made, generat-
ing 12 different combinations of volume and background: each with both homoge-
neous thyroid activity concentration and three hotspots of different relative activity 
concentrations (48 SPECT images in total). The relative background levels chosen were 
5 %, 10 %, 15 % and 20 % of the phantom activity concentration and the hotspot activi-
ties were 100 % (homogeneous case) 150 %, 200 % and 250 %. Poisson noise, (coef-
ficient of variation of 0.8 at a 20 % background level, scattering excluded), was added 
before reconstruction was done with the Monte Carlo-based SPECT reconstruction 
algorithm Sahlgrenska Academy reconstruction code (SARec). Two different segmenta-
tion algorithms were applied: Otsu’s threshold selection method and an adaptation 
of the Chan–Vese model for active contours without edges; the results were evaluated 
concerning relative volume, mean absolute error and standard deviation per thyroid 
volume, as well as dice similarity coefficient.

Results: Both methods segment the images well and deviate similarly from the true 
volumes. They seem to slightly overestimate small volumes and underestimate large 
ones. Different background levels affect the two methods similarly as well. However, 
the Chan–Vese model deviates less and paired t-testing showed significant difference 
between distributions of dice similarity coefficients (p-value < 0.01).
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Conclusions: The investigations indicate that the Chan–Vese model performs better 
and is slightly more robust, while being more challenging to implement and use clini-
cally. There is a trade-off between performance and user-friendliness.

Keywords: Image segmentation, Monte Carlo, SPECT, Thyroid volume, Radioiodine 
therapy, Otsu, Chan–Vese

Background
The thyroid gland, which is shaped like a butterfly, is located anterior to the trachea and 
plays a critical role in regulating the body’s metabolism through the production of the 
hormones Triiodothyronine (T3) and Thyroxine (T4). The volume of the thyroid gland 
can vary due to natural causes, but it is also influenced by various factors such as gen-
der, age, height, weight, iodine intake, smoking, and environmental circumstances. The 
relationship between the thyroid gland volume and these characteristics is known to be 
nonlinear. In a healthy adult without iodine deficiency, the mean sonographic volume of 
the thyroid gland is estimated to be 7 to 10 ml [1].

The production of T3 and T4 hormones in the thyroid gland depends on the oxidation 
and binding of iodine to tyrosine. T4, the hormone produced exclusively in the thyroid 
gland, can be considered a prohormone to T3, as the latter, being the more potent and 
metabolically active hormone, can be synthesised from T4. Some T3 is secreted directly 
into the bloodstream, but the largest amount of hormone secreted from the thyroid 
gland is in the form of T4. The synthesis of T4 to T3 is then carried out by the liver, 
pituitary gland, and other endocrine organs. Enlargement of the thyroid gland, hyper-
thyroidism (also known as a goitre), can be caused by various factors including autoim-
mune diseases (such as Graves’ disease), toxic nodular goitre, cancer, hereditary factors, 
medication, and diets lacking sufficient amounts of iodine [2].

Hyperthyroidism manifests itself physically as a moderate to severe increase in thy-
roid volume; a large goitre - 80 g (80 ml) and above - is a contraindication for radioio-
dine therapy [3, 4]. Thyroid volumes of 40–60  ml may also be considered for surgical 
procedures, depending on other clinically relevant parameters [5, 6]. Radioiodine treat-
ment has been shown to be effective even within this volume range [7]. Patients with 
small goitres, which are slightly larger than a normal-sized thyroid gland, are most often 
treated with antithyroid drugs (ATD), but may later be considered for radioiodine ther-
apy, if 12–18 months of ATD treatment proves ineffective [3, 5, 8].

Different methods are available for assessing the volume of the thyroid gland, includ-
ing palpation (physical examination), 2D and 3D ultrasound (US), computed tomogra-
phy (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), 
and planar scintigraphy (PS). A study by Viduetsky et al. [9] shows that MRI has the best 
precision with an error of less than 4 %. This volume measurement is useful for surgi-
cal planning and monitoring the effectiveness of medication changes. For the individual-
ised planning of radioactive treatment of thyrotoxicosis by Iodine-131 ( 131 I) (radioiodine 
therapy), single-photon emission computed tomography (SPECT) can be utilised as the 
imaging modality to determine the active volume of the thyroid gland. SPECT imaging 
is preferably performed with Technetium-99  m ( 99mTc) pertechnetate: the uptake lev-
els of 99m Tc pertechnetate and 131 I are highly correlated, whereas 99m Tc SPECT imaging 



Page 3 of 18Högberg et al. EJNMMI Physics            (2024) 11:6  

offers better quality, due to lower gamma photon energies, resulting in a lower patient 
absorbed radiation dose than from 131 I SPECT imaging [10]. Despite the critical impor-
tance of accurate volume determination for the effective prescription of radioactive 
iodine, there is a lack of consensus among hospitals in Sweden on the preferred method 
for calculating thyroid volume and 99m Tc uptake levels from SPECT or PS images [11]. 
For the planning of radioiodine therapy of the thyroid, both functional volume, as well 
as pertechnetate uptake need to be quantified, and SPECT is considered the best way of 
achieving this [12–15] - neither can 3D shape of active volume be easily described by PS, 
nor can activity inside the thyroid be distinguished from activity in front of or behind 
the gland. Thus, thyroid pertechnetate uptake is often overestimated by PS imaging [11, 
16].

SPECT images are challenging to segment compared to other tomographic images, 
such as CT or MRI, due to their low resolution and inherent blurry characteristics. On 
the other hand, SPECT provides valuable physiological information that is not available 
from CT or MRI.

A common segmentation approach when SPECT is used is intensity thresholding 
of the images. This is an arbitrary approach as every patient case is unique, while the 
threshold values are either fixed or operator-dependent. Apart from being accurate, 
robust, and operator-independent, a segmentation method for clinical implementation 
should be easy to use [17].

Two methods that have been successful in determining the volume of other organs are 
the Otsu method [18] and the Chan–Vese (C–V) model [19–21]. As the volume of the 
thyroid gland plays a crucial role in radioiodine treatment planning, it is important to 
assess the accuracy of these methods for segmenting the thyroid gland. The aim of this 
study is to compare the performance of the Otsu method and the C–V model in calcu-
lating the active volume of thyroid glands, taking into account variations in size, activity 
concentration (AC), heterogeneity, and background AC. The study seeks to determine 
which method is more accurate and robust in calculating the active volume of thyroid 
glands, and therefore most suitable for clinical implementation: the Otsu method or the 
Chan–Vese model.

As radioiodine therapy is considered mainly for moderately sized goitres, typically 
with a total thyroid gland volume of 20–40 ml and, only in rare cases, 60 - 80 ml, this 
study focuses on the most relevant thyroid volume range, i.e. 20 - 50 ml [3–6].

Methods
Image generation

To generate images, a computed tomography (CT) was performed of the three play-
dough thyroid phantoms described in [22], with volumes 20, 35 and 50 ml, using a pixel 
size of 0.98 by 0.98 mm and slice thickness of 2.5 mm. The formula for the playdough 
was 38% common salt (NaCl), 36% water, 21% wheat flour and 5% rapeseed oil [22]. The 
thyroid phantoms were fixed on an air-filled tube (trachea), wrapped in a plastic film, 
and immersed in water to simulate surrounding tissues (see Fig. 1). The CT images were 
resampled to 4.42 mm cubic voxels and annotated playdough, water and air, based on 
thresholding of hounsfield values (600, 0 and -1000, respectively). The threshold values 
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were set to match the true volumes as accurately as possible. The volumes of the anno-
tated playdough phantoms were 20.03, 34.97 and 50.00 ml.

Sixty single photon emission computed tomography (SPECT) projections were gener-
ated using the Monte Carlo (MC) method with the 99m Tc isotope [23]. The MC algo-
rithm is GPU-based and uses delta scattering, forced interaction, scattering orders (0 
to 2) and forced detection for variance reduction. A pre-generated angular response 
function (ARF), for all angles and energies, was used to model collimator response. For 
each phantom, primary and scattered radiation were simulated separately for both the 
background and phantom. The different segments (water, thyroid and air) were assigned 
attenuation values. The same values as for water were also used for the thyroid voxels. 
Linear combinations of these SPECT images were created to generate 12 different com-
binations of volumes and backgrounds, with homogeneous thyroid AC and a hotspot of 
three different relative ACs, resulting in a total of 48 SPECT images.

The relative background levels were set at 5 %, 10 %, 15 %, and 20 % of the phantom 
AC, while the hotspot activities were set at 100 % (homogeneous case), 150 %, 200 %, 
and 250 %. Because variance reduction was used in the simulations, Poisson noise, sam-
pled from a Poisson distribution based on the pixel value, was added before reconstruc-
tion [24], resulting in a coefficient of variation of 0.8 in the image background of the 
reconstructed image, in the case of the 20 % background (with the scattering excluded).

A Low energy high-resolution (LEHR) collimator was used, with thickness 35  mm, 
hole diameter 1,5 mm, septal thickness 0.2 mm, crystal thickness 15.875 mm and intrin-
sic resolution, full width at half maximum (FWHM), 4.5 mm. The maximum thyroid-
detector distance was 100  mm and the system resolution (FWHM) was calculated, 
according to [25], to be 7.5 mm.

An average of 100,000 counts were recorded in each projection. The matrix size was 128 
x 128, with 4.42 mm cubic voxels. The MC-based SPECT reconstruction algorithm Sahl-
grenska Academy reconstruction code (SARec) [23] was used for reconstruction, with 
six subsets and twelve iterations, and no post-filters were applied. SARec is a GPU-based 

Fig. 1 Playdough phantom A playdough fantom fixed on an air-filled plastic tube, mounted inside a water 
tank. The water level in the tank will reach just above the playdough
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maximum-likelihood expectation-maximisation (MLEM) algorithm that uses the above 
MC-algorithm to simulate SPECT projections from an estimated activity distribution. For 
each iteration, the activity estimates are updated through back-projection of the ratio of 
simulated to measured projection (which in this study is MC-simulated).

Image pre‑processing

For efficient segmentation, it is desirable to have a homogeneous and low background. To 
achieve this, a background region of interest (ROI) was selected and its mean value was 
subtracted from the entire image to equate background tissue AC to the surrounding air, 
which is not radioactive. To prevent potential hotspots from being segmented separately 
and misclassifying the remaining thyroid tissue as background, a representative ROI of thy-
roid tissue was outlined, and its mean value was used as an upper limit for values in the 
image. Although wavelet-based denoising [26] was initially applied, it was found to be irrel-
evant to the segmentation result and was therefore omitted.

Image segmentation

The images were imported into Matlab [27] as 8-bit unsigned integer matrices (values 
between 0 and 255). Two different segmentation algorithms were applied: 1) Otsu’s thresh-
old selection method and 2) the iterative convolution-thresholding method (ICTM) for 
active contours without edges, developed from the C–V model, by Wang et al. [28]. The 
results were evaluated based on the relative volume, mean absolute error (MAE), calculated 
using Eq. 1, standard deviation (SD) (Eq. 2), and dice similarity coefficient (DSC) of the seg-
mented objects (Eq. 3) per thyroid volume. The DSC measures the similarity between the 
calculated segmentation and the ground truth segmentation, with a score of 1 indicating 
perfect agreement and a score of 0 indicating no agreement. A paired t-test was conducted 
to see if there was a significant difference ( α = 0.05 ) between the DSC for the two methods. 
To investigate the impact of background on segmentation performance, DSC was calcu-
lated for background levels between 0 % and 70 % for a 50 ml phantom without hotspot.

V̂i and Vi are the estimated and true volumes, respectively, of each of the N objects.

S is the sample standard deviation and V  is the mean relative volume (MRV).

V is the volume from the CT images and V̂  are the estimates by Otsu or Chan–Vese.
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Otsu’s method for image thresholding

Otsu’s method is a well-established segmentation algorithm that was developed in the 
1970s [18], and is still in use today. This global thresholding algorithm selects the opti-
mum threshold by minimising the weighted within-class variance (or maximising the 
between-class variance) of the thresholded background and foreground voxels in the 
image (Eq. 4).

ωb and ωf  are the weights of the background and foreground classes, separated by a 
threshold t,and σ 2

b  and σ 2
f  are variances of the classes. The class weight ωb,f (t) is com-

puted from the 256 bins of the histogram (Eq. 5).

L is the total number of greyscale levels and p(i) are the normalised counts of each 
bin (greyscale level). The threshold level (t) corresponding to the minimum σ 2

w(t) was 
selected.

Chan–Vese model for active contours

The C–V model for active contours without edges is an effective segmentation algorithm 
suitable for objects without distinct borders, as it does not rely on gradients in image 
intensity [29]. Additionally, it is tolerant to blurring and noise [29], making it appropri-
ate for medical imaging applications. The algorithm is based on the Mumford and Shah 
functional for image segmentation, which was first introduced in 1985 [30–32].

This paper will not provide a complete mathematical explanation of the C–V model, 
but the principle of it is to minimise the weighted sum of the total sums of squares for 
the object and the background, which corresponds to the total voxel-by-voxel difference 
from the mean within the object and background, respectively. The weights that are set 
by the user for the algorithm to converge depend on the heterogeneity of the current 
image, and the user needs to define an arbitrary initial contour. To encourage a smoother 
surface, regularisation terms are added to penalise large object volume and surface area. 
The energy functional to minimise, denoted as F(c1, c2,C) (Eq. 6),

where C is the surface enclosing the object, µ , ν , �1 and �2 are constants, u0(x, y, z) are 
individual voxel values, c1 and c2 are the mean values inside and outside C, respectively.

(4)σ 2
w(t) = ωb(t)σ

2
b (t)+ ωf (t)σ

2
f (t)

(5)

ωb(t) =

t−1
∑

i=0

p(i)

ωf (t) =

L−1
∑

i=t

p(i)

(6)

F(c1, c2,C) =µ · area(C)+ ν · volume(inside(C))

+ �1

∫

inside(C)
| u0(x, y, z)− c1 |

2 dx dy dz

+ �2

∫

outside(C)
| u0(x, y, z)− c2 |

2 dx dy dz,
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For a three-dimensional problem, it can be solved through various methods. One of 
these methods, developed by Wang et al., is an efficient, iterative convolution-threshold-
ing method (ICTM) for image segmentation. For this study, a 3D extension of the ICTM 
was applied to the images. This method utilises a number of approximations to establish 
a framework for minimising energy functionals. A description and mathematical deriva-
tion of this approach is beyond the scope of this paper and can be found in the original 
papers by Wang et al. [28, 33, 34]. It requires only two parameters to be set by the user, 
a step length ( τ ) and �1 , which, in this setting is a function �1(k , τ ) . Hence, in practice, �1 
is determined by selecting k and τ . The value of τ affects the calculation duration, which 
is not considered in this study, but not whether the calculations converge, as proved by 
Wang et al. [34]. A value of τ = 0.3 , within the range used by Wang et el. was used in 

Fig. 2 Parameter selection Relative phantom volumes as a function of k for phantom volumes 20, 35 and 
50 ml and 5 % relative background concentration

Table 1 Values of k used in the Chan–Vese segmentations, per phantom volume and background 
AC

Background AC (%) 20 ml 35 ml 50 ml

5 3 · 10−4
3 · 10−4

3 · 10−4

10 3 · 10−4
3 · 10−2 3 · 10−4

15 1 · 10−2
6 · 10−2 3 · 10−4

20 2 · 10−2
5 · 10−2 3 · 10−4
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all calculations. The value of �1(k , τ ) , expressed as �1(k , τ ) = k · (π · τ−1)0.5 , does deter-
mine whether or not the algorithm converges at a reasonable value. In these calcula-
tions, the parameter k was selected iteratively for each combination of tunour volume 
and background AC. Figure 2 shows the relative volume as a function of k for a few of 
the phantoms. The selected values are shown in table 1.

Results
Figure 3 illustrates segmentation results using the two methods for each of the vol-
umes of the phantoms, using a relative background AC of 10 % and a relative hotspot 
AC of 200 %. This provides a visual demonstration of how well the segmentation algo-
rithm identifies the thyroid region and separates it from the surrounding background. 
Both methods describe similar segmentation volumes although slightly different in 
shape, in this example most prominent for the mid-sized (35  ml) active gland vol-
ume. Figure  4 shows the corresponding spatial distribution of misclassified voxels. 
There does not appear to be any particularly weak areas for either of the methods; 
the misclassified voxels are distributed across the phantom with no obvious spatial 
preference.

Fig. 3 Segmentation example with 200 % hotspot and 10 % background The middle column shows 
maximum intensity projections of the simulated images for 20 ml (upper), 35 ml(middle) and 50 ml 
(lower). All images have relative hotspot activity concentration of 200 % and relative background activity 
concentration of 10 %. The left column shows the corresponding segmentation results from Chan–Vese and 
the right column shows the results from Otsu
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Quantitative results are presented in Figs.  5 ,  6, 7, 8, 9 and 10, which show the 
deviation of size estimates for three different phantoms (20 ml, 35 ml, and 50 ml), cal-
culated using the C–V model and Otsu method. The deviation in estimations of size 
is presented relative to the true size per relative background AC (rows) and relative 
hotspot AC (columns). The deviation from the true size is presented as a percentage. 
Both algorithms seem to have a slight tendency to overestimate small volumes and 
underestimate large ones and the only visually notable difference between the two 
models is shown for the mid-size (35 ml) phantom whith low (5 % and 10 %) back-
grounds: for this phantom and within this background range the C–V model slightly 
underestimates, whereas the Otsu method slightly overestimates the active volumes 
while for small gland with high background the situation is the opposite.

The DSC for the two methods, for the same three phantoms, are shown in Figs. 8, 9 
and 10. The DSC is presented per relative background AC (rows) and relative hotspot 
AC (columns).

Fig. 4 Misclassification example with 200 % hotspot and 10 % background Spatial distribution of 
misclassified voxels displayed as a sum of voxels in the anterior-posterior direction. The middle column 
shows the true objects in greyscale, where the greyscale level illustrated the number of superimposed 
object voxels, for 20 ml (upper), 35 ml(middle) and 50 ml (lower). All images have relative hotspot activity 
concentration of 200 % and relative background activity concentration of 10 %. The left column shows the 
sum of segmentation errors from Chan–Vese, with missed object voxels in red and misclassified background 
voxels in blue, and the right column shows the corresponding results from Otsu. These colour brightnesses 
describe the number of superimposed erroneous voxels. The misclassifications are displayed on a solid gray 
background of the true object, for orientation purposes
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Fig. 5 Deviation of size estimates for 20 ml phantom. The calculated volumes for the 20 ml phantom, of 
Chan–Vese and Otsu method, relative to true size per relative background activity cencentration (rows from 
bottom to top show 5, 10, 15 and 20 %) and relative hotspot activity concentration (columns from left to 
right show 100, 150, 200 and 250 %). The figures below each panel show the deviation (in percentages) from 
true size

Fig. 6 Deviation of size estimation for 35 ml phantom. The calculated volumes for the 35 ml phantom, of 
Chan–Vese and Otsu method, relative to true size per relative background activity concentration (rows from 
bottom to top show 5, 10, 15 and 20 %) and relative hotspot activity concentration (columns from left to 
right show 100, 150, 200 and 250 %). The figures below each panel show the deviation (in percentages) from 
true size
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Fig. 7 Deviation of size estimates for 50 ml phantom. The calculated volumes for the 50 ml phantom, of 
Chan–Vese and Otsu method, relative to true size per relative background concentration (rows from bottom 
to top show 5 %, 10 %, 15 % and 20 %) and relative hotspot activity concentration (columns from left to right 
show 100 %, 150 %, 200 % and 250 %). The figures below each panel show the deviation (in percentages) 
from true size

Fig. 8 DSC for 20 ml phantom. DSC of Chan–Vese and Otsu method, per relative background activity 
concentration (rows from bottom to top show 5 %, 10 %, 15 % and 20 %) and relative hotspot activity 
concentration (columns from left to right show 100 %, 150 %, 200 % and 250 %)
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Fig. 9 DSC for 35 ml phantom. DSC of Chan–Vese and Otsu method, per relative background activity 
concentration (rows from bottom to top show 5 %, 10 %, 15 % and 20 %) and relative hotspot activity 
concentration (columns from left to right show 100 %, 150 %, 200 % and 250 %)

Fig. 10 DSC for 50 ml phantom. DSC of Chan–Vese and Otsu method, per relative background activity 
concentration (rows from bottom to top show 5 %, 10 %, 15 % and 20 %) and relative hotspot activity 
concentration (columns from left to right show 100 %, 150 %, 200 % and 250 %)
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Overall, these figures provide a clear visual representation of the performance of 
the C–V model and Otsu method in terms of size estimates and segmentation accu-
racy, under different conditions of relative background AC and relative hotspot AC.

Fig. 11 DSC distribution total distribution of DSC of Chan–Vese and Otsu method

Fig. 12 Background impact DSC as a function of background level for a homogeneous 50 ml phantom
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The total DSC distributions are shown in Fig. 11. A paired t-test showed that the 
difference between the distributions is significant (p-value < 0.01 ), with Chan–Vese 
being the more accurate algorithm. The variation of DSC between different back-
ground levels is shown in Fig. 12.

Tables 2 and 3 present the mean absolute errors, mean relative volumes, and standard 
deviations of the estimations. In total, the C–V model has slightly lower values for both 
MAE and MRV than the Otsu method.

Table 2 Mean absolute errors, mean relative volumes and standard deviations for the Chan–Vese 
segmentations, per phantom volume

Volume (ml) MAE (%) MRV SD

20 7.6 1.07 0.048

35 4.9 1.01 0.060

50 9.2 0.91 0.070

20-50 7.2 1.00 0.091

Table 3 Mean absolute errors, mean relative volumes and standard deviations for the Otsu 
segmentations, per phantom volume

Volume (ml) MAE (%) MRV SD

20 11.1 1.07 0.073

35 11.3 1.11 0.021

50 11.1 0.89 0.069

20-50 11.2 1.03 0.059

Table 4 Otsu threshold values for each case

Volume Background AC 
(%)

Hotspot 0 Hotspot +50 Hotspot +100 Hotspot +150

20 5 80 80 87 92

10 82 97 97 97

15 91 91 91 91

20 107 107 107 107

35 5 103 103 103 103

10 98 110 110 110

15 97 97 97 97

20 89 107 89 107

50 5 80 80 80 80

10 77 71 77 77

15 73 73 73 73

20 80 70 70 70
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Discussion
C–V model and Otsu method were selected because they are well-tried [19–21] and 
highly efficient segmentation methods that are not dependent on gradients (sharp edges) 
[35], which are prone to segmentation image noise and artefacts when input data con-
tain diffuse volume boundaries [36, 37], as is the case in SPECT imaging. (Table 4)

Both methods (Otsu and C–V) manage to segment the images well, and they also tend 
to deviate in a somewhat similar way from the true volumes. Although not statistically 
proven, both algorithms seem to have a slight tendency to overestimate small volumes 
and underestimate large ones.

Although there are some differences in the results, the overall behaviour of the models 
does not differ substantially. Nevertheless, the, by Wang et al. [28], adapted C–V model 
performed slightly better and is the more complex of the two, but it requires k to be 
chosen with care, while Otsu requires no other information than what may be extracted 
from the image itself. As shown in Fig. 2, the choice of correct parameter value could 
be a complicated task; this is true in particular for smaller thyroid volumes, as different 
background activity concentrations are shown to cause different segmentation volume 
outputs for the same choice of k. Albeit low in complexity, the Otsu method has proved 
to be a robust segmentation tool [21, 38].Given the similar performance, the simplicity 
and straightforwardness of the Otsu method make it a powerful competitor.

Limitations

A major limitation of this study was the relatively low number of simulated cases. In 
addition to this, the lack of heterogeneity of the thyroid phantoms (in addition to the 
hotspots) and background AC, as well as the lack of variation in thyroid shape and 
the shape and composition of the background phantom, as this affects the attenuation 
properties. Although the physical thyroid phantom contains substantial ammounts of 
the relatively high-Z components Chlorine ( 17Cl) and Sodium ( 11Na), this did not affect 
the results, as the attenuating properties of the digitised thyroid phantom were set to 
be water equivalent. Due to the limited resolution of the SPECT images, some voxels 
will contain image information from playdough (thyroid gland) and water (background). 
This kind of partial volume effect limits the accuracy of the volume determination. For 
a thresholding method, such as the Otsu method, the partial volume effect is expected 
to cause the relative volume overestimation as well as the underestimation of maximum 
AC being most prominent for the small active volumes [39]. Furthermore, the actual 
study showed the lowest Otsu segmentation performance, resulting in a volume overes-
timation as high as 27 %, for the smallest (20 ml) thyroid volume, the highest hotspot AC 
(250 %) and the lowest background (5 %), i.e. for the highest AC contrast. The explana-
tion for the largest volume overestimation at the highest and not at the lowest contrast 
is probably the mentioned partial volume effect, prominent for small volumes, com-
bined with the fact that the Otsu method biases towards the image component (either 
background or foreground) with the largest within-class variance [40, 41]; a lower back-
ground in a noisy context, i.e. in SPECT imaging, will have a larger within-class variance 
than a higher background with the same absolute noise level, as the spectrum will have 
a lower weight at the lower end for the higher background. This means that the bias will 
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be the strongest and thus the threshold be lowered the most for the lowest background, 
resulting in the largest relative volume overestimation for this particular case, in line 
with the result of the actual study. In conclusion, smaller volumes are harder to segment 
and the thresholding nature of the Otsu method makes the task of segmenting small vol-
umes more challenging for Otsu compared to the C–V model, the latter not relying on 
thresholding and thus expected to be less sensitive to partial volume effects.

Since simulated patients do not move at all, these images are free from artefacts, 
caused by movements or physiological dynamics, which always occur to some extent 
in vivo. These effects are difficult to quantify but should be of little importance.

Future work

A more thorough investigation of noise level and phantom heterogeneity might be 
desirable but was considered beyond the scope of this study, as it would be neces-
sary to take methods for homogenisation and noise reduction into consideration to 
provide optimal conditions for the algorithms. This would be interesting future work, 
as would a study on the impact of irregularity of phantom shapes, as well as vari-
ous reconstruction and post-filtration settings. With sufficient access to clinical data, 
a comparison with AI-based segmentation would also be interesting. With the final 
objective being the delivery of a correct radiation dose, a dosimetric evaluation of the 
different methods would be a highly relevant continuation of this work.

Conclusions
There is a lack and a need for consistency in the determination of thyroid active vol-
ume in nuclear medicine images. Even though the, by Wang et al. [28], adapted C–V 
model drew the longest straw when it comes to accuracy, this study shows a good 
performance of both methods investigated, under the given circumstances. In terms 
of autonomy, simplicity and robustness, Otsu is the preferred method. Ultimately it 
becomes a trade-off between performance and user-friendliness.
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