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Abstract 

Objective:  To improve the PET image quality by a deep progressive learning (DPL) 
reconstruction algorithm and evaluate the DPL performance in lesion quantification.

Methods:  We reconstructed PET images from 48 oncological patients using ordered 
subset expectation maximization (OSEM) and deep progressive learning (DPL) meth-
ods. The patients were enrolled into three overlapped studies: 11 patients for image 
quality assessment (study 1), 34 patients for sub-centimeter lesion quantification (study 
2), and 28 patients for imaging of overweight or obese individuals (study 3). In study 
1, we evaluated the image quality visually based on four criteria: overall score, image 
sharpness, image noise, and diagnostic confidence. We also measured the image qual-
ity quantitatively using the signal-to-background ratio (SBR), signal-to-noise ratio (SNR), 
contrast-to-background ratio (CBR), and contrast-to-noise ratio (CNR). To evaluate 
the performance of the DPL algorithm in quantifying lesions, we compared the maxi-
mum standardized uptake values (SUVmax), SBR, CBR, SNR and CNR of 63 sub-centime-
ter lesions in study 2 and 44 lesions in study 3.

Results:  DPL produced better PET image quality than OSEM did based on the visual 
evaluation methods when the acquisition time was 0.5, 1.0 and 1.5 min/bed. However, 
no discernible differences were found between the two methods when the acquisi-
tion time was 2.0, 2.5 and 3.0 min/bed. Quantitative results showed that DPL had 
significantly higher values of SBR, CBR, SNR, and CNR than OSEM did for each acquisi-
tion time. For sub-centimeter lesion quantification, the SUVmax, SBR, CBR, SNR, and CNR 
of DPL were significantly enhanced, compared with OSEM. Similarly, for lesion quantifi-
cation in overweight and obese patients, DPL significantly increased these parameters 
compared with OSEM.

Conclusion:  The DPL algorithm dramatically enhanced the quality of PET images 
and enabled more accurate quantification of sub-centimeters lesions in patients 
and lesions in overweight or obese patients. This is particularly beneficial for over-
weight or obese patients who usually have lower image quality due to the increased 
attenuation.
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Introduction
Positron emission tomography/computed tomography (PET/CT) is widely used in 
oncology for tumor detection, staging and therapy response assessment. The quality of 
PET/CT images is crucial for the quantitative analysis of tumor metabolism, which is 
one of the advantages of PET/CT over conventional diagnostic modalities [1–3]. The 
PET reconstruction algorithm plays a key role in the accuracy of standardized uptake 
value (SUV) measurement [4–6], which reflects the tumor uptake of radiotracers. The 
most commonly used PET reconstruction algorithm is the ordered subset expectation 
maximization (OSEM) algorithm, which was proposed by Hudson in 1994 [7]. However, 
OSEM has some limitations, such as noise amplification and partial convergence, which 
affect the image quality and SUV accuracy. To overcome these drawbacks, post-smooth-
ing methods are often applied to reduce noise, but they also lead to a loss of resolution 
and an underestimation of SUVs [8, 9].

In recent years, deep learning-based approaches have shown great potential in improv-
ing PET image quality and reducing noise [10–12]. Hu et al. [13] found that generative 
adversarial network (GAN) and convolutional neural network (CNN) could suppress 
image noise to varying degrees and improve image quality. Lu et al. [14] demonstrated 
that fully 3D U-net could effectively reduce image noise and control bias even for sub-
centimeter small lung nodules when generating standard dose PET using 10% low count 
down-sampled data. Wang et al. [15] proposed a method of 3D conditional GANs which 
could achieve better performance than the state-of-the-art methods in both qualitative 
and quantitative aspects.

Deep progressive learning (DPL) is a novel CNN-based method that has been reported 
to have the ability to reduce noise and enhance the contrast of PET images [16, 17]. DPL 
algorithm employs two networks: a denoising network (CNN-DE) and an enhance-
ment network (CNN-EH). CNN-DE can suppress the noise from the input image, while 
CNN-EH can map from a low convergent image to a high convergent image. The train-
ing images of DPL came from uEXPLORER [18], the world’s first clinical total-body PET 
scanner, in which the PET images showed high contrast and very low image noise.

In this study, we studied the quality of PET images versus acquisition time/bed through 
visual and quantitative analyses. Furthermore, we examined the performance of the DPL 
algorithm in the quantification of lesions in overweight and obese patients and sub-cen-
timeter lesions in patients. Our results showed that the DPL algorithm can enhance the 
quality and accuracy of PET images significantly, especially for the quantification of sub-
centimeter lesions in patients and lesions in overweight and obese patients.

Methods
The details of DPL design, network training and testing have been reported in Ref. [16]. 
In this study, we are intended to assess the image quality and explore the potential clini-
cal applications of the DPL algorithm. We evaluated the DPL algorithm in two aspects: 
visual and quantitative image analyses. For visual analysis, two physicians with more 
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than 5 years of experience reviewed the maximum intensity projection (MIP) and trans-
verse images of the PET series, which were sorted in a random order, using a dedicated 
reporting system. They were blind to the reconstruction method and the patient infor-
mation. And then, they rated the overall image quality (overall score, image sharpness 
and diagnostic confidence) using a 5-point Likert scale (1. poor; 2. reasonable; 3. good; 
4. very good; and 5. excellent quality) [9, 19]. The rating scale was reversed for image 
noise, where 5 meant poor and 1 meant excellent. For quantitative analysis, two physi-
cians, who confirmed the data with each other, measured the SUVs of each lesion and 
the right lobe of the liver (parenchymal organ background). Three physicians delineated 
the volumes of interest (VOIs) with a 3.0 cm diameter sphere on different PET image 
slices of the liver. Only liver parenchyma with a normal appearance on both PET and CT 
was invoked as a reference. The mean SUV (SUVmean), the standard deviation of SUV 
(SUVSD) and the maximum SUV (SUVmax) of the liver and the lesions within the VOIs 
were recorded for both OSEM and DPL reconstructions. The liver SUVSD was utilized as 
a measure of noise. Based on these measurements, we calculated signal-to-background 
ratio (SBR), signal-to-noise ratio (SNR), contrast-to-background ratio (CBR) and con-
trast-to-noise ratio (CNR) as follows:

Patients
We enrolled 48 oncological patients (male/female: 21/15, age 37–77  years) who 
underwent clinical 18F-FDG PET/CT examinations at the Fudan University Shanghai 
Cancer Center (FUSCC) from July 2021to March 2023. Among them, 11 were used 
to evaluate the quality of reconstructed images using visual evaluation methods and 
quantitative numerical methods (study1), 34 were used to study the ability to quantify 
sub-centimeter lesions (study 2) and 28 were used to explore the ability to image over-
weight patients or obese patients (study3). For study 1, the main condition is the long 
acquiring time. The patients enrolled in study 1 should move free and have good abil-
ity to control themselves. For study 2, the main condition is sub-centimeter lesions. 
To make our results convincing, we have enrolled the 71% patients of the whole into 
study 2. For study 3, the main condition is BMI ≥ 24 kg/m2. Their clinical information 
is listed in Table 1. All patients had fasted for at least 6 h before the 18F-FDG injec-
tion, and their blood glucose levels were confirmed to be ≤ 10 mmol/L. The injection 
dose of 18F-FDG was based on the patient’s weight (3.7 MBq/kg). During an uptake 

SBR =

SUVmax

SUVmean

,

SNR =

SUVmax

SUVSD

,

CBR =

SUVmax − SUVmean

SUVmean

,

CNR =

SUVmax − SUVmean

SUVSD

.



Page 4 of 15Yang et al. EJNMMI Physics            (2024) 11:7 

period of about 60 min, the patients drank 500 mL of water. This study was approved 
by the FUSCC ethics committee and followed the FUSCC ethical standards, and all 
patients signed a written informed consent before the injection. In clinical practices, 
we defined a sub-centimeter lesion as having a maximum diameter ≤ 1 cm. According 
to the World Health Organization criteria, we classified the patients as overweight if 
their body mass index (BMI) was between 24 and 28 kg/m2, and as obese if their BMI 
was ≥ 28 kg/m2.

Table 1  Patient clinical characteristic

Study 1 stands for the study of PET image quality, study 2 for the study of sub-centimeter lesions quantification and study 3 
for the study of lesions quantification in overweight and obese patient.

*a/b: a is the patient number enrolled in the group; b is the total patient

Parameters Study 1 Study 2 Study 3

Age (years) 59 ± 7 59 ± 11 58 ± 11

[41, 68] [37, 77] [36, 74]

Gender

Male 7 20 15

Female 4 14 13

Weight (kg) 68.4 ± 13.5 72.0 ± 12.9 72.4 ± 10.3

[45, 98] [45, 110] [60, 110]

Height (cm) 164 ± 6 165 ± 7 163 ± 7

[156, 175] [150, 176] [150, 178]

BMI (kg/m2) 25.5 ± 4.8 26.5 ± 4.1 27.1 ± 3.4

[15.6, 34.7] [15.6, 40.4] [24.0, 40.4]

Blood glucose (mmol/L) 6.2 ± 1.1 5.7 ± 1.1 5.4 ± 0.9

[4.8, 8.8] [3.9, 8.8] [3.9, 7.2]

Injected activity (MBq) 259.4 ± 54.2 270.1 ± 48.3 268.7 ± 34.8

[162.8, 376.3] [162.8, 405.9] [223.8, 405.9]

Injected activity/weight (MBq/kg) 3.8 ± 0.2 3.8 ± 0.2 3.7 ± 0.2

[3.5, 4.0] [3.5, 4.6] [3.4, 4.6]

Uptake time (min) 72 ± 12 72 ± 15 72 ± 17

[53, 101] [50, 107] [50, 114]

Primary cancer type*

Bone cancer 0/1 0/1 1/1

Breast cancer 2/3 2/3 2/3

Colorectal cancer 1/6 5/6 2/6

Esophagus cancer 0/3 0/3 3/3

Gallbladder carcinoma 0/1 1/1 0/1

Liver cancer 0/2 1/2 1/2

Lung cancer 4/10 9/10 8/10

Lung granulomatous inflammation 0/1 1/1 0/1

Lymphoma 2/12 8/12 6/12

Malignant melanoma 0/1 1/1 1/1

Nasopharynx cancer 0/3 2/3 2/3

Neck cancer 1/1 0/1 0/1

Endometrial 0/1 1/1 1/1

Thyroid cancer 1/1 1/1 0/1

Urothelial carcinoma 0/1 1/1 0/1

Uterine cancer 0/1 1/1 1/1

Total 11/48 34/48 28/48
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PET/CT acquisition and reconstruction

All patients were scanned with a digital PET/CT scanner (uMI 780, United Imag-
ing Healthcare, Shanghai China). The PET scanner sensitivity was 16 kcps/MBq and 
the spatial resolution was 2.9  mm with a time-of-flight (TOF) resolution of 450  ps. 
First, the patients underwent a CT scan with a fixed tube voltage of 120 kV and an 
auto-mAs technique for dose modulation (range 15–100  mA), which provided ana-
tomical information and attenuation correction for the PET images. The PET acqui-
sition range was 5–7 bed positions per patient, according to height, with an overlap 
of 35%. Then, a PET scan was conducted in step-and-shoot mode. For the visual and 
quantitative imaging analyses, the PET data were acquired for 3 min/bed and recon-
structed with different acquisition times ranging from 0 to 3 min/bed with an inter-
val of 0.5  min/bed. In the studies of sub-centimeter lesion quantification and PET 
imaging for overweight and obese patients, we performed PET scans for 2.0 min/bed, 
which was based on the image quantity study below. PET images were reconstructed 
using two algorithms: OSEM and DPL, respectively. The OSEM algorithm was imple-
mented in 2 iterations, 20 subsets, a Gaussian filter with full width at half maximum 
of 3 mm, 150 × 150 matrix, 600 mm field of view (FOV), 2.68 mm slice thickness, as 
well as TOF and resolution modeling. The DPL algorithm was implemented in the 
same FOV, matrix, and slice thickness as the OSEM algorithm. We also applied stand-
ard corrections (scatter, random, dead time, decay, attenuation, and normalization) to 
both OSEM and DPL reconstructions.

Training and test of DPL network

DPL network has been established in the previous paper [16], thus, we describe it here 
briefly. DPL network, which was trained in 2D, was composed of two networks: CNN-
DE and CNN-EH. The training dataset was constructed with 161,040 image slice pairs 
(including 53,680 and 107,360 slice pairs for the 2.4 mm and 1.2 mm, respectively). 
The test dataset was constructed with 40,260 image slice pairs (including 13,420 and 
26,840 slice pairs for the 2.4 mm and 1.2 mm, respectively) from 20 patients were used 
to construct the test dataset. For CNN-DE neural network, PET images with 10% uni-
formly down-sampled counts were used as training input. For CNN-EH neural net-
work, PET images with insufficient iterations were used as training input. PET images 
with full counts and sufficient iterations were used as training targets. The training 
image size was 249 × 249 × 671 with a voxel size of 2.4 × 2.4 × 2.68 mm3. The param-
eters of DPL network were initialized with Kaiming initialization. We took the loss 
function as the objective function and used the backpropagation algorithm to update 
the parameters based on the adaptive moment estimation optimization algorithm 
and cyclical learning rate. The minimum and maximum values for the cyclical learn-
ing rate were 1e–5 and 1e–4, respectively. All the training was performed by using 
Pytorch 1.5.0 on a computer cluster of 4 × NVIDIA Quadro RTX 6000 GPU. The DPL 
network is trained on uExploror total-body scanner, and applied to other scanners.
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Statistical analysis
Continuous parameters were presented as the mean ± SD and range. PET images 
reconstructed by OSEM were used as a reference. All the quantitative parameters 
were tested for normality using the Kolmogorov–Smirnov test and the two-tailed 
paired-samples t-test was subsequently performed. Inter-rater reliability was evalu-
ated by using Cohen’s weighted kappa (linear) coefficient. The scores of the qualitative 
image quality were subsequently compared using the Mann–Whitney U test (Matlab 
2020a). Statistical significance was considered when the paired p value < 0.05.

Results
Visual imaging analysis

We compared the image quality and noise levels of OSEM and DPL groups by visual 
method (Figs.  1, 2) for different acquisition times. Figure  1 shows the MIP images 
reconstructed from a representative patient at different acquisition times (from 0.5 to 
3.0 min/bed). When the acquisition time was less than or equal to 2.0 min/bed, DPL 
had better image quality than OSEM. However, when the acquisition time exceeded 
2.0 min/bed, there was no visual difference between the two algorithms in terms of 
image quality and noise levels. In addition, when the acquisition time was 0.5, 1.0 
and 1.5 min/bed, OSEM resulted in a relatively higher noise level, while DPL main-
tained a low noise level even at 0.5  min/bed. Figure  2 shows the changes in visual 
image quality scores (overall score, image sharpness, image noise and diagnostic con-
fidence) with acquisition time for both algorithms. The overall score, image sharp-
ness and diagnostic confidence increased with the acquisition time up to 2.0 min/bed. 
When the acquisition time exceeded 2.0  min/bed, these scores gradually reached a 
plateau. The image noise of OSEM reduced as the acquisition time increased from 0 
to 3.0 min/bed while the image noise of DPL decreased to a minimum level when the 
acquisition time was 2.0 min/bed.

Fig. 1  MIP images reconstructed by OSEM and DPL for a patient
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Quantitative imaging analysis

The values of the SBR, CBR, SNR and CNR of OSEM with DPL for different acquisition 
times were compared in Fig. 3. On one hand, the SBR and CBR of OSEM were about 
5.0 and 4.0, respectively, and did not vary significantly with the acquisition time. On the 
other hand, the SBR and CBR of DPL were about 6.0 and 5.0, respectively, and increased 
with the acquisition time up to 2.5 min/bed, after which they remained constant. The 
SNR and CNR of DPL were significantly higher than those of OSEM for all acquisition 
times (all the paired p < 0 0.001). In addition, the SNR and CNR of DPL also increased 
with the acquisition time up to 2.5 min/bed, and then stabilized. These results indicated 
that DPL had better image quality and contrast than OSEM in terms of these quantita-
tive measures.

Sub‑centimeter lesion quantification

Our study included 63 sub-centimeter lesions with a mean diameter of (0.76 ± 0.15) cm 
from 34 patients to evaluate the lesion SUV quantification performance of DPL and 
OSEM. These sub-centimeter lesions encompass four distinct types: lymph nodes 
(38/63), pulmonary nodules (22/63), liver metastatic lesions (2/63), and rib metastatic 
lesions (1/63). Figure  4 shows that DPL had significantly higher values of SBR, CBR, 
SNR, CNR and SUVmax than OSEM for these lesions (p < 0.001). The SUVmax of DPL was 
11.46, which was about 30% higher than that of OSEM (8.90). The SBR, CBR, SNR and 

Fig. 2  Visual PET image quality of OSEM and DPL varied with acquisition time. a–d are overall score, image 
sharpness, image noise and diagnostic confidence, respectively, which are four criteria used to assess the PET 
image quality. Each criterion is rated on a 5-point scale, where 1 means poor and 5 means excellent, except 
for image noise, where 5 means maximum noise and 1 means minimum noise
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Fig. 3  Quantitative analysis of PET image reconstructed by OSEM and DPL algorithms. a–d are SBR, CBR, SNR 
and CNR, respectively, which change with acquisition time. DPL shows a significantly elevated in SBR, CBR, 
SNR and CNR compared to OSEM (all the paired p < 0.001), indicating the improvement of image quality

Fig. 4  Performances of OSEM and DPL for sub-centimeter lesions quantification. a–e are the values of SBR, 
CBR, SNR, CNR and SUVmax, respectively. *** means p < 0.001
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CNR of DPL increased about 30%, 40%, 130% and 140%, respectively, compared with 
those of OSEM. These results demonstrate that DPL had better lesion SUV quantifica-
tion ability than OSEM for sub-centimeter lesions.

PET imaging for overweight and obese patients

To evaluate the performance of DPL and OSEM for overweight and obese patients, we 
enrolled 28 patients with BMIs ranging from 24 to 37.8  kg/m2 and 44 lesions (over-
weight: 20, obesity: 24) in our study. The mean lesion diameter was (1.23 ± 0.42)  cm. 
And, the SUVmax of DPL increased by 23% and 24% for overweight and obese patients, 
respectively, compared with OSEM. The SNR and CNR of DPL were 1.42 and 1.48 
times as large as those of OSEM for overweight patients, and more than twice for obese 
patients (2.07 and 2.23). As shown in Fig. 5, the values of SUVmax, SBR, CBR, SNR and 
CNR of DPL were significantly higher than those of OSEM for both overweight and 
obese patients (p < 0.001 for SUVmax, SNR and CNR; p < 0.05 for SBR and CBR). These 
results indicated that DPL had better lesion SUV quantification ability than OSEM for 
overweight and obese patients.

Typical clinical cases

Figure  6 shows a typical PET/CT image of an obese patient (female, 58  years old, 
endometrial cancer, chemotherapy and radiotherapy, height: 165 cm, weight: 110 kg, 
blood glucose level: 7.2  mmol/L) who underwent a PET/CT scan 67  min after the 
injection of 405.89 MBq 18F-FDG. The SUVmean and SUVSD of the VOI in Fig. 6 were 
3.5 and 0.6 for OSEM, and 3.6 and 0.3 for DPL, respectively. Moreover, a metastatic 

Fig. 5  Performances of OSEM and DPL for PET imaging of overweight and obese patients. a–e are SBR, CBR, 
SNR, CNR and SUVmax, respectively. ** means p < 0.05 and *** means p < 0.001
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para-aortic lymph node (seen the arrow in Fig. 6) of 0.86 cm maximum diameter was 
detected by both methods. The SUVmax of this lymph node was 7.8 for OSEM and 9.0 
for DPL.

Figure 7 is the PET/CT image of the second case (female, 50 years old, breast cancer, 
chemotherapy and radiotherapy after surgery, height: 155 cm, weight: 54 kg, blood glu-
cose level: 5.2 mmol/L). The patient underwent a PET/CT scan 69 min after the injection 
of 222 MBq 18F-FDG. A high-uptake lesion (seen the arrow in Fig. 7) with a maximal 
diameter of 0.87 cm was found in the left breast, which was proved to be a recurrence 
lesion by the pathology finally. The SUVmax of this lesion was 5.4 for OSEM, and 6.5 for 
DPL.

Figure 8 is the PET/CT image of a patient (female, 48 years old, lung cancer, targeted 
therapy, height: 158 cm, weight: 67 kg, blood glucose level: 5.4 mmol/L) who was diag-
nosed with the adenocarcinoma of lung. The patient underwent a PET/CT scan 64 min 
after the injection of 246 MBq 18F-FDG. Many tumor metastasis lesions were found on 
the PET/CT images. The SUVmax of a mediastinal lymph node (seen the arrow in Fig. 8) 
with a maximal diameter of 0.67 cm was 6.5 for OSEM, and 8.8 for DPL.

Fig. 6  PET/CT image of an obese patient. a and c are PET/CT fusion images reconstructed by OSEM and 
DPL, respectively; b and d are MIPs reconstructed by OSEM and DPL, respectively. The circle on the liver was 
the VOI used to measure the data with a diameter of 3.0 cm. A metastatic para-aortic lymph node (seen the 
arrow) of 0.86 cm maximum diameter was detected by both methods. The SUVmax of this lymph node was 7.8 
for OSEM and 9.0 for DPL
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All PET images of three cases reconstructed by DPL had less noises and higher con-
trasts than those by OSEM.

Discussion
In this study, we investigated the performance of DPL, a novel deep learning-based PET 
reconstruction algorithm, on clinical PET/CT images acquired with different acquisition 
times. We found that DPL improved the image quality and lesion SUV quantification 
ability compared to OSEM, especially for sub-centimeter lesions in patients and lesions 
in overweight and obese patients.

In recent years, deep learning methods have demonstrated improved performance in 
denoting PET images [10, 11]. In this study, we compared PET images reconstructed 
by OSEM and DPL through visual and quantitative analyses. We found that DPL could 
improve the image quality and reduce the noise level of PET images when the acquisi-
tion time was less than 2.0  min/bed (as shown in Figs.  1, 2). This may lead to higher 
diagnostic accuracy of DPL-reconstructed images compared to OSEM-reconstructed 
images. When the acquisition time was equal to or greater than 2.0 min/bed, the visual 

Fig. 7  PET/CT image of a breast cancer patient. a and c are PET/CT fusion images reconstructed by OSEM 
and DPL, respectively; b and d are MIPs reconstructed by OSEM and DPL, respectively. A recurrence lesion 
(seen the arrow) after surgery with a maximal diameter of 0.87 cm was found in the left breast. The SUVmax of 
this lesion was 5.4 for OSEM, and 6.5 for DPL
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difference between OSEM and DPL-reconstructed images was not significant (Fig.  1). 
However, the quantitative analysis of PET images in Fig. 3 showed that DPL still had bet-
ter quality than OSEM when the acquisition time was between 2.0 and 3.0 min/bed. The 
reasons for this observation were as follows: First, the SUVs of lesions in DPL-recon-
structed images were higher than those in OSEM-reconstructed images, as verified in 
Figs. 4e and 5e. Second, the SUVSD (representing noise level) measured in OSEM-recon-
structed PET images was higher than that in DPL-reconstructed PET images, as evident 
from a typical PET/CT image of an obese patient, shown in Fig. 6. Third, the fundamen-
tal cause of these differences lies in the fact that noise increases with each iteration in 
OSEM, preventing it from achieving complete convergence. Thus, there was a trade-off 
between iteration and noise, resulting in partial convergence.

It is worth pointing out that a longer acquisition time does not necessarily translate to 
better images with high quality. When the acquisition time exceeded or equaled 2.0 min/
bed, the SBR, CBR, SNR, and CNR remained stable, as illustrated in Fig. 3. Therefore, 
based on the visual and quantitative imaging analyses, we recommend an optimal acqui-
sition time of 1.5 to 2.0 min/bed in clinical practice.

Fig. 8  PET/CT image of a patient who was diagnosed with the adenocarcinoma of lung. a and c are PET/CT 
fusion images reconstructed by OSEM and DPL, respectively; b and d are MIPs reconstructed by OSEM and 
DPL, respectively. The SUVmax of the mediastinal lymph node (seen the arrow) with a maximal diameter of 
0.67 cm was 6.5 for OSEM, and 8.8 for DPL
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Moreover, the quantification of sub-centimeter lesions was crucial for tumor stag-
ing, treatment planning, and response monitoring. Some studies have suggested that 
diagnostic sensitivity decreases when determining the malignancy of small nodules 
compared to larger ones, and false-negative findings may even occur [20, 21]. How-
ever, we observed a significant 29% increase in the SUVmax of sub-centimeter lesions 
when PET/CT images were reconstructed by using DPL, as shown in Fig. 4e. We also 
found that the SUVmax of the sub-centimeter lymph node from an obese patient was 
enhanced by 15% (7.8 for OSEM and 9.0 for DPL, seen in Fig. 6). The partial volume 
effect (PVE) is a major factor affecting the SUV accuracy of the sub-centimeter lesion. 
We selected the lesion SUVmax instead of SUVmean because SUVmax could be defined 
maximal uptake of 18F-FDG of a voxel. As for the SUVmean and SUVSD of the liver, the 
average SUVmean and SUVSD are very small. So, the errors of liver SUVmean and SUVSD 
from PVE can be ignored. In addition, our study suggests that DPL may partially cor-
rect the SUV underestimation from PVE and enhance lesion detectability.

Besides, to improve the accuracy of SUV measurements and correct the underesti-
mation of the true SUV, various reconstruction algorithms have been proposed. Wu 
Z et al. compared the SUVmax and SUVmean of 75 small pulmonary nodules that were 
obtained from different reconstruction methods, including OSEM, OSEM with TOF 
(OSEM-TOF), OSEM with TOF and point spread function (OSEM-TOF-PSF), and 
Q.Clear [22]. They found that Q.Clear yielded the highest SUV values for both sub-
centimeter and larger nodules, while OSEM-TOF-PSF, OSEM-TOF, and OSEM fol-
lowed in descending order. However, the PET image quality of Q.Clear was affected 
by the factors in the penalty function [23], which needed to be carefully adjusted by 
experience. On the contrary, DPL is a data-driven method which did not require any 
manual tuning. DPL used two convolutional neural networks (CNN-DE and CNN-
EH) to suppress image noise and enhance image contrast respectively. In fact, the 
TOF resolution of both OSEM and DPL was 450 ps in this study. Since we could not 
compare DPL and Q.Clear on the same patients due to ethical issues, we only focused 
on the comparison between DPL and OSEM.

DPL can significantly improve the lesion SUV quantification ability of PET imag-
ing for overweight and obese patients, who usually need a longer acquisition time or 
a higher injection dose of 18F-FDG to obtain satisfactory PET images. As shown in 
Fig.  6, the PET image reconstructed by DPL had much better noise reduction and 
lesion contrast enhancement than that reconstructed by OSEM. Furthermore, DPL 
could also reduce the injection dose of 18F-FDG for normal-weight patients while pre-
serving image quality. Wang et al. [17] estimated that DPL could reduce the admin-
istered activity of 18F-FDG by up to 2/3 in a real-world deployment. Therefore, DPL 
could play a significant role in reducing radiation exposure, especially for pediatric 
populations.

However, the proposed DPL method is restricted to tracer-specific. The network 
must be re-trained using a new dataset or re-tuned via transfer learning for tracers 
other than 18F-FDG. Moreover, more and more novel molecular imaging probes have 
been developed, which have great potential for precision diagnosis and treatment. In 
addition, the current implementation of DPL has only two networks (CNN-DE and 
CNN-EH), which are intended to suppress image noise and enhance image contrast, 
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respectively. We hope that DPL can solve more challenging learning tasks by incorpo-
rating more networks in the future.

Conclusions
The DPL algorithm can achieve significant improvements in PET/CT imaging by reduc-
ing the image noise and increasing the lesion SUVmax. Moreover, DPL is expected to 
enhance diagnostic confidence with PET/CT imaging, especially for the quantification 
of sub-centimeter lesions and lesions in overweight and obese patients. These advan-
tages of DPL could lead to better clinical outcomes and patient care.
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