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Abstract 

Background: The aim was to investigate the feasibility of a shortened dynamic whole‑
body (dWB) FDG‑PET/CT protocol and Patlak imaging using a population‑based input 
function (PBIF), instead of an image‑derived input function (IDIF) across the 60‑min 
post‑injection period, and study its effect on the FDG influx rate (Ki) quantification 
in patients with metastatic melanoma (MM) undergoing immunotherapy.

Methods: Thirty‑seven patients were enrolled, including a PBIF modeling group 
(n = 17) and an independent validation cohort (n = 20) of MM from the ongoing 
prospective IMMUNOPET2 trial. All dWB‑PET data were acquired on Vision 600 PET/
CT systems. The PBIF was fitted using a Feng’s 4‑compartments model and scaled 
to the individual IDIF tail’s section within the shortened acquisition time. The area                         
under the curve (AUC) of PBIFs was compared to respective IDIFs AUC within 9 short‑
ened time windows (TW) in terms of linear correlation (R2) and Bland–Altman tests. Ki 
metrics calculated with PBIF vs IDIF on 8 organs with physiological tracer uptake, 44 
tumoral lesions of MM and 11 immune‑induced inflammatory sites of pseudo‑progres‑
sion disease were also compared (Mann–Whitney test).

Results: The mean ± SD relative AUC bias was calculated at 0.5 ± 3.8% (R2 = 0.961, AUC 

PBIF = 1.007 × AUC IDIF). In terms of optimal use in routine practice and statistical results, 
the 5th–7th pass (R2 = 0.999 for both Ki mean and Ki max) and 5th–8th pass (mean ± SD 
bias = − 4.9 ± 6.5% for Ki mean and − 4.8% ± 5.6% for Ki max) windows were selected. 
There was no significant difference in Ki values from  PBIF5_7 vs  IDIF5_7 for physiologi‑
cal uptakes (p > 0.05) as well as for tumor lesions (mean ± SD Ki  IDIF5_7 3.07 ± 3.27 vs Ki 
 PBIF5_7 2.86 ± 2.96 100ml/ml/min, p = 0.586) and for inflammatory sites (mean ± SD Ki 
 IDIF5_7 1.13 ± 0.59 vs Ki  PBIF5_7 1.13 ± 0.55 100ml/ml/min, p = 0.98).

Conclusion: Our study showed the feasibility of a shortened dWB‑PET imaging 
protocol with a PBIF approach, allowing to reduce acquisition duration from 70 to 20 

Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

ORIGINAL RESEARCH

Pavoine et al. EJNMMI Physics           (2023) 10:79  
https://doi.org/10.1186/s40658‑023‑00601‑3

EJNMMI Physics

*Correspondence:   
david.bourhis@chu‑brest.fr

1 Department of Nuclear 
Medicine, University Hospital, 2 
Avenue Foch, 29200 Brest, France
2 UMR INSERM 1304 GETBO, 
Brest, France
3 Department of Endocrinology, 
University Hospital, Brest, France
4 Department of Radiology, 
Weil Cornell Medical College 
of Cornell University, New York, 
NY, USA
5 Department of Dermatology, 
University Hospital, Brest, France
6 Department of Oncology, 
Regional Hospital, Morlaix, France

http://orcid.org/0009-0006-9972-3912
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40658-023-00601-3&domain=pdf


Page 2 of 16Pavoine et al. EJNMMI Physics           (2023) 10:79 

min with reasonable bias. These findings open perspectives for its clinical use in routine 
practice such as treatment response assessment in oncology.

Keywords: 18F‑FDG, Dynamic whole‑body PET, PBIF, Parametric imaging

Introduction
The major advance in cancer treatment over the past decade has undoubtedly been 
the introduction of immunotherapies with checkpoint inhibitor (ICIs). These treat-
ments are currently indicated in metastatic melanoma (MM) showing an efficacy of 
about 40% and improving the 5-year overall survival (OS) of patients by 10 to 50% 
[1, 2]. Nevertheless, assessing the response to ICIs remains problematic with medi-
cal imaging in some circumstances. Indeed, the concept of pseudo-progression (PP) 
defined as a decrease or a stability in lesion size and metabolism after initially simu-
lating a progression is now recognized [3]. Thus, this phenomenon of PP is the conse-
quence of a significant peri-tumor inflammatory reactivity following the initiation of 
treatment that can falsely simulate a morpho-metabolic progression disease (PD). It 
occurs in 4–12% of MM treated with ICIs depending on the series [4, 5].

18Fluoro-desoxyglucose positron emission (FDG-PET/CT) is a functional imaging 
technique that can be proposed for assessing response of MM to systemic treatments, 
according to standard guidelines [6, 7]. The usual PET interpretation criteria have 
originally been developed to assess therapeutic response to chemotherapy, in analyz-
ing variation of standardized uptake values (SUV) metrics between two scans [8, 9]. 
Therefore, in this area of ICIs, a new notion of unconfirmed progression (UP) had to 
be introduced instead of PD with the uncertainty related to PP. So, in case of UP, early 
re-assessment by FDG-PET/CT after 1 or 2 new cycles of treatment should be per-
formed to confirm or exclude progression disease [10, 11]. With such a background 
and with the known limitations of the SUV metric [12, 13], finding ways to diagnose 
pseudo-progression early and accurately is a real challenge in FDG-PET/CT.

Dynamic whole-body (dWB) PET acquisition [14, 15] is an innovative method to 
assess the spatio-temporal distribution of the administered radiotracer in the whole 
body (WB), allowing at each voxel the direct calculation of the macro-kinetic tracer 
parameters, such as the tracer uptake rate (Ki), using robust Patlak graphical analysis 
[16]. The resulting Ki parametric images have been reported to aid in lesion detec-
tion and characterization of oncologic diseases compared to the standard SUV met-
rics alone [17, 18]. Indeed, few studies have shown a significant difference between 
the mean Ki values of inflammatory cells and tumor processes, which could provide 
a solution to differentiate PP and PD with WB dyn FDG-PET/CT [19–21]. Never-
theless, dWB-PET acquisition remains a long (around 60  min) and complex proce-
dure requiring optimizations to facilitate its use in clinical routine [22, 23]. First, the 
use of an image-derived input function (IDIF) has been proposed as a less invasive 
method than arterial blood sampling to estimate blood IF, required input to model 
time–activity curves in physiological or tumor tissues [24–26]. Next, modeling a pop-
ulation-based input function (PBIF) was recently investigated to overcome the main 
time-consuming problem of this WB multi-passes PET procedure [27–29]. To date, 
few studies have already clinically validated a shortened duration WB FDG-PET/CT 
Patlak imaging using such PBIF [30–33].
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IMMUNO-PET2 (NTC 04272658) is an ongoing single-center prospective observational 
trial investigating the diagnostic value of Ki metrics in dWB FDG-PET/CT to differentiate 
PP to PD of metastatic melanoma under ICI.

The aims of this ancillary study were: (i) to develop a population-based FDG input func-
tion (PBIF) model using an independent control group of patients, (ii) to demonstrate the 
clinical feasibility of a shortened dWB FDG-PET/CT examination protocol using the above 
PBIF model in the first patients included in this trial and (iii) to validate the WB Ki images 
quantification, measured on voxelwise direct parametric reconstructions, as estimated with 
PBIF from a reduced number of WB-passes, against the more accurate estimation of Ki 
with IDIF where all passes acquired during the first 60min post-injection were utilized.

Material and methods
Population

This is an ancillary study of IMMUNO-PET2 trial, an ongoing single-center prospective 
observational cohort study (NTC 04272658) exploring dynamic whole-body (dWB) FDG-
PET/CT role in management of patients ≥ 18 years old, with stage IV metastatic melanoma 
(MM) treated with immunotherapies with checkpoint inhibitor (ICI).

The protocol was approved by the institutional medical ethics committee of Brest 
(29BRC19.0194). Informed consent was obtained from all the patients to participate in the 
study.

A total of 37 patients were recruited. The subjects were divided into two groups: a PBIF 
modeling group (n = 17) composed of healthy volunteers (training group G1) and an inde-
pendent cohort of patients (n = 20) with MM (validation group G2).

PET/CT system

All dynamic FDG-PET/CT acquisitions were performed on two digital Biograph Vision 600 
systems (Siemens©, Erlangen, Germany) with similar following settings:

• CT data were acquired after injection of intravenous iodine contrast agent (1.5 mL.kg-
1), unless contraindicated. The CT consisted of a 64-slice multidetector-row spiral scan-
ner with a transverse field of view of 500 mm. The CT parameters were: collimation 
of 16 × 1.2mm, pitch = 1, tube voltage and exposure automatically regulated (CarekV, 
CareDose 4D) with 120kV and 80 Qref mAs as basic parameters. The CT images were 
reconstructed with an iterative method (SAFIRE, strength 5).

• PET data were reconstructed using an iterative reconstruction algorithm (OSEM 3D, 
3 iterations and 5 subsets), with “time of flight” (ToF) and point-spread-function (PSF) 
correction (TrueX). PET images were corrected for random coincidence (DLYD), 
scatter (Model based) and attenuation using CT data. Gaussian filter (FWHM = 2 
mm) was applied. The size of the transaxial reconstruction was 440 × 440 (voxel 
size = 1.65 × 1.65 × 1.65 mm).
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Whole‑body PET protocol

PET images were acquired immediately after a manual injection of approximately 3 MBq/
kg of FDG. The dWB-PET acquisition was performed in two steps according to the meth-
odology previously described by Karakatsanis et al. [14, 17, 22].

A single-bed dynamic acquisition centered on the cardiac area (dCB) was followed by a 
whole-body (including lower limbs) dynamic acquisition in continuous bed motion, with 
a total duration of approximately 70 min: 6-min dCB (12 images × 5s, 6 images × 10s, 8 
images × 30s) + WBdyn acquisition (8 passes of approximately 8 min/pass, performed with 
a constant table speed of 4 mm.s−1). During each of these passes, the PET data acquired 
over the cardiac region were used to complete the input function.

Parametric Patlak imaging

Patlak reconstructions were performed using a direct 4D nested Patlak expectation–maxi-
mization reconstruction in the validation group, using both IDIFs and the scaled PBIFs to 
obtain parametric images [23, 34].

The Patlak method [16] is a graphical method to characterize the administered tracer’s 
macro-kinetic features based on the 3-compartment model. It consists in plotting the tracer 
concentration in a region of interest (ROI) as a function of post-injection mid-frame time 
points t, CT(t), divided by the concentration in the blood pool across the same time frames, 
CB(t), against the time integral of CB(t) between the injection time (t = 0) and the mid-frame 
times t, divided by CB(t). This model is described by Eq. 1:

The slope Ki (Ki) represents the net influx of the tracer in  min−1 and the intercept Vb (Vb) 
the total blood distribution volume ratio in the region of interest (ROI) or a voxel, in %. The 
Patlak graphical analysis involves the linear fit of the measured CT(t) and CB(t) PET data to 
Eq. (1) to estimate the slope Ki and intercept Vb parameters at each ROI or voxel.

Input function

Theoretically and as a gold standard, an arterial blood sample is required to obtain an IF. 
However, it remains a complicated invasive method to implement in clinical routine. As 
previously described to overcome this problem [24–26], our digital PET system allowed 
to quantify total radioactivity concentration in the whole blood for extracting an IDIF and 
later for building the PBIF model. A spherical 1-cm3 VOI was automatically generated in 
the left ventricle and away from the myocardium to mitigate any partial volume effects [35] 
on CT corresponding to dCB and dWB-PET acquisitions by using an ALPHA algorithm 
(Automated Landmarking and Parsing of Human Anatomy), Siemens-Healthineers, PET-
CT system VB80 [36]. During the first 25 min, a piece-wise linear fit was applied between 
every frame, and then, a decreasing exponential fit was applied (Eq. 2):

where A is the intercept and λ is the rate constant of the exponential.

(1)CT(t)

CB(t)
= Ki

t
0
CB(τ )dτ

CB(t)
+ Vb

(2)A = e−�.t
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PBIF creation and IDIF validation cohort

PBIF modeling and fitting (G1) The first step was to model a PBIF from the 17 IDIFs col-
lected in the training group G1. IFs were resampled using liner interpolation (Matlab), in 
order to match the time steps between each of them all along the dynWB PET datasets.

The second step was to synchronize each IF on the shortest time to peak (TtP) to 
obtain an average function as already described by Wu et al. [37]. Then, a Feng’s 4-com-
partment model [38], describing the time–activity curve of tracer in the plasma, was 
finally applied to this average curve as follows (Eq. 3):

where λ1, λ2, λ3 are the eigenvalues of the model; A1, A2, A3 the coefficient constants; τ 
the time delay constant (in min).

To obtain the Feng’s model parameter from discrete data, we used the software Sci-
DAVis©. The fitting is done by minimizing the least-square difference between the data 
points and the Y values of the function. To ensure that the calculation converged on a 
satisfactory solution, we manually entered the initial guesses and a constant time delay 
τ (min). A Levenberg–Marquardt algorithm is used to solve the nonlinear least-square 
problems.

Validation cohort (G2) The third step was to validate the modeling PBIF in the valida-
tion group G2, including 20 patients with metastatic melanoma. Due to software limita-
tion, the PBIF was scaled to all disposable points of the tail part of IDIF, generated from 
the late whole-body dynamic acquisition (from 1st to 8th passes, 11–70 min). This scaled 
PBIF was used to reconstruct different parametric images, using different time windows 
(TW) for the Patlak parameters calculation (Ki, VD) as follows: 2nd-4th or 2_4 (20–35 
min), 3rd-5th or 3_5 (28–45 min), 4th-6th or 4_6 (35–53 min), 5th-7th or 5_7 (45–61 
min), 2nd-5th or 2_5 (20–45 min), 3rd-6th or 3_6 (28–53 min), 4th-7th or 4_7 (35–61 
min), 5th-8th or 5_8 (45–70 min), 2nd-7th or 2_7 (20–61 min).

PET quantitative analysis

A spherical 2-cm-diameter ROI was drawn, by the same operator, on the gold-standard 
SUV images, over an uninvaded part of 8 different organs (brain, muscle, aorta, myocar-
dium, lung, liver, spleen, bone), and a spherical VOI was drawn over a maximum of 5 
melanoma metastasis per patient using an advanced gradient-based segmentation tool 
(PET-Edge + ®) [39]. These ROIs were finally fused to the different reconstructed para-
metric images, Ki and Vb, to generate mean and max physiological and tumoral values 
(in 100ml/ml/min and %).

Statistical analysis

The accuracy of scaled PBIFs was assessed by comparing their area under the curve 
(AUC) against that of the respective individual IDIFs. AUC comparisons were performed 
using both a linear correlation test (R2 and slope) and a Bland–Altman test (mean bias; 

(3)

SUV(t) =

{

0 if t < τ

[A1(t − τ)− A2 − A3]e
−�1(t−τ)

+ A2e
−�2(t−τ)

+ A3e
−�3(t−τ) if t ≥ τ
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confidence interval 95%). The physiological and pathological Ki values calculated using 
the scaled PBIFs were also compared against those estimated with the respective IDIF 
using a Mann–Whitney test.

All statistical analyses were performed using XLStat 2022 (Addinsoft©, Paris, France) 
and Excel (Microsoft©, Redmond, Washington, USA) softwares.

Results
Characteristics of the cohort

Demographic data of both training and validation groups are listed in Table 1.

PBIF creation

The final parameters describing the PBIF by Feng’s model that best-fitted the average 
IDIFs curve are summarized in Table 2.

The average curve of the IDIFs from the training group G1 and the associated PBIF 
Feng’s model is shown in Fig. 1.

The correlation coefficient between the model and the average training points was cal-
culated at R2 = 0.998, and the root-mean-square error (rmse) was 0.30. The most sig-
nificant differences were found before the FDG absorption peak during the first 20 s 
without impact on the overall deviation estimated at 0.8%. 

Comparison of AUC PBIF and AUC IDIF

Figure 2 shows a Bland–Altman plot of mean difference between AUC PBIF and AUC IDIF 
using 1_8 passes scaling time in the validation group G2.

The mean ± SD relative bias was calculated at 0.5 ± 3.8%. The correlation coefficient 
(R2) between the two series was 0.961 (AUC PBIF = 1.007 × AUC IDIF).

Table 1 Patient characteristics

Parameters Training group G1 (n = 17) Validation 
group G2 
(n = 20)

Gender (M/F) 7/10 13/7

Age (years old; mean ± SD) 62 ± 13 68 ± 14

BMI (kg/m2; mean ± SD) 25 ± 5 27 ± 5

Activity (MBq; mean ± SD) 207 ± 40 221 ± 37

Table 2 PBIF parameter estimates (Feng’s model)

Parameters Values

A1 166.95 ± 1.33

A2 4.18 ± 0.01

A3 3.33 ± 0,01

λ1  (min−1) 4.66 ± 0,02

λ2  (min−1) 0.16 ± 1E‑3

λ3  (min−1) 0.008 ± 5E‑5

τ (min) 0.3
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Table 3 shows errors on PBIF AUC depending on the time window used for normal-
ization in our study and the literature. Due to the limitation of the soft, addressed in 
the discussion, our PBIF is normalized to the total number of points acquired (11–70 
min). Naganawa et al. compared the AUC errors between PBIF normalized over two 
different time windows relative to AIF. Dias et al. also showed the influence of other 
pathologies, such as the diabetes, on the results.

Fig. 1 Comparison of the average IDIFs curve from each patient of the training group G1 (n = 17) and the 
corresponding PBIF (Feng’s model). Zoom on the first 90 s

Fig. 2 Bland–Altman plot of mean relative difference between AUC PBIF and AUC IDIF (scaling time 1_8) in each 
patient of the validation group G2 (n = 20). Blue solid line = mean bias; red dashed lines = IC95%
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Parametric analysis

Optimal time window selection

A total of 44 lesions of metastatic melanoma (MM) were identified in the validation 
group 2. Results of statistical correlation (R2, mean bias ± SD) between both Ki mean 
and Ki max values obtained with PBIF and IDIF on MM lesions depending on each stud-
ied time windows are shown in Tables 4 and 5. The corresponding intercept values (Vb) 
are given in Additional file 2: Tables S1 and S2.

All  R2 were higher than 0.995 with mean bias lower than 10%. Mean bias ± SD tended 
to decrease within post-injection time. Results were comparable using both Ki mean and 
Ki max.

In combining statistical results and proximity to usual static PET acquisition of routine 
practice, optimal 3 passes and 4 passes time windows were, respectively, 5_7 (R2 = 0.999 
for both Ki mean and Ki max) and 5_8 (mean ± SD bias = − 4.9 ± 6.5% for Ki mean and 
− 4.8% ± 5.6% for Ki max), most relevant results are in bold.

Figures 3 and 4 show a Bland–Altman plot of error on Ki generated by PBIF compared 
to IDIF using 5_7 and 5_8 time window. Variations are less important using 3 passes 
against 4, as shown as the comparison of the two Bland–Altman plot with the increase 
of the limit of agreement passing from 5_7 to 5_8 passes.

Validation on pathological and physiological uptakes

The difference between Ki values of pathological (tumor, inflammation) and physi-
ological uptakes using both PBIF and IDIF with the 5_7 time window is presented in 

Table 3 Comparison with literature on errors of PBIF AUC regarding on scaling times

Scaling times Our study 
(relative to IDIF)

Naganawa et al. [28] (relative 
to AIF)

Dias et al. [32] (relative to AIF)

Diabetes no Diabetes yes

11–70 min 15–45 min 30–60 min 50–70 min 50–70 min

R2 0.96 0.93 0.94 0.93 0.83

Bias 0.5% ‑1% 3% 2% 7%

SD 4% 6% 6% 4% 6%

Table 4 Results of statistical correlation (R2, bias and SD) between mean Ki values of 44 MM lesions 
using PBIF and IDIF depending on different time windows

N = 44 2_4 2_5 2_7 3_5 3_6 4_6 4_7 5_7 5_8

R2 0.998 0.998 0.996 0.999 0.997 0.998 0.998 0.999 0.995

Bias − 8.1% − 9.3% − 9.3% ‑5.4% − 6.0% − 4.9% − 6.2% − 5.2% − 4.9%
SD 7.4% 8.7% 6.8% 5.2% 8.1% 6.8% 7.4% 4.1% 6.5%

Table 5 Results of statistical correlation (R2, bias and SD) between maximal Ki values of 44 MM 
lesions using PBIF and IDIF depending on different time windows

N = 44 2_4 2_5 2_7 3_5 3_6 4_6 4_7 5_7 5_8

R2 0.998 0.999 0.998 0.999 0.997 0.999 0.998 0.999 0.997

Bias − 8.2% − 8.3% − 7.1% − 5.2% − 5.4% − 5.8% − 6.4% − 5.7% − 4.8%
SD 6.3% 6.4% 4.6% 5.4% 6.8% 4.6% 5.3% 3.6% 5.6%
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Table 6 and shown on the boxplot Fig. 5. The corresponding values for the intercept 
(Vb) are given in Additional file 3: Table S3. There was no significant difference in Ki 
values using both PBIF and IDIF (p > 0.05).

On tumor lesions analysis (44 melanoma metastasis), there was no significant dif-
ference in mean ± SD  Ki  (IDIF5_7) and  Ki  (PBIF5_7) (3.07 ± 3.27 and 2.86 ± 2.96 100ml/
ml/min, p = 0.586). Additional file  1: Figure S1 shows the comparison of a Ki axial 
slice reconstructed from an IDIF and a PBIF over the 5_7 time window, and the cor-
responding SUV image.

Fig. 3 Bland–Altman plot of mean  Ki values (100*ml/ml/min) of 44 tumoral lesions obtained with  PBIF5_7 and 
 IDIF5_7. Blue solid line = mean bias; red dashed lines = IC95%

Fig. 4 Bland–Altman plot of mean Ki values (100*ml/ml/min) of 44 tumoral lesions obtained with  PBIF5_8 
and  IDIF5_8. Blue solid line = mean bias; red dashed lines = IC95%
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On inflammatory disease analysis (11 pseudo-progressive lesions), there was no 
significant difference in mean ± SD  Ki  (IDIF5_7) and  Ki  (PBIF5_7) (1.13 ± 0.59 and 
1.13 ± 0.55 100ml/ml/min, p = 0.98).

On physiological uptake analysis, there was no significant difference in  Ki  (IDIF5_7) 
and  Ki  (PBIF5_7) values whatever the considered organ (p > 0.05). The highest 

Table 6 Comparison between mean [range] Ki mean values (100ml/ml/min) obtained with  IDIF5_7 
and  PBIF5_7 for pathological (tumor, inflammation) and physiological uptakes

Ki  (IDIF5_7) Ki  (PBIF5_7) p value

Tumor (n = 44) 3.07 [0.84; 14.69] 2.87 [0.83; 13.33] 0.586

Immune induced inflammation 
(n = 11)

1.13 [0.35; 2.30] 1.13 [0.37; 2.04] 0.748

Brain (n = 20) 2.04 [1.21; 3.26] 1.90 [1.15; 2.99] 0.49

Lung (n = 20) 0.11 [0.03; 0.29] 0.10 [0.02; 0.26] 0.81

Aorta (n = 20) 0.38 [0.23; 0.55] 0.36 [0.26; 0.52] 0.59

Heart (n = 20) 2.15 [0.27; 6.39] 2.05 [0.25; 6.34] 0.72

Liver (n = 20) 0.64 [0.49; 1.00] 0.61 [0.41; 0.94] 0.22

Spleen (n = 20) 0.58 [0.37; 1.03] 0.54 [0.35; 0.97] 0.59

Bone (n = 20) 0.63 [0.28; 1.23] 0.61 [0.25; 1.20] 0.54

Muscle (n = 20) 0.17 [0.09; 0.32] 0.17 [0.09; 0.31] 0.51

Fig. 5 Box plots of Ki mean values obtained with  IDIF5_7 and  PBIF5_7 for pathological (tumor (Tum), 
inflammation (Infla)) and physiological uptakes
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dispersion in Ki values was found for the myocardium (range of 0.61 to 8.88 and of 
0.54 to 8.55 for  Ki  (IDIF5_7) and  Ki  (PBIF5_7), respectively).

Discussion
Dynamic whole-body PET (dWB-PET) imaging provides additional information to usual 
static SUV metrics, particularly on the tracer influx rate (Ki) through pathological or 
physiological tissues [13]. Knowledge of spatio-temporal distribution of radiotracer 
could allow to better differentiate tumor lesions from inflammation and thus influence 
the response assessment to therapy in oncology. Although the principle of multipara-
metric PET imaging has been described for several decades, its use in clinical routine has 
only become feasible in rare nuclear medicine departments, equipped with specific PET 
systems integrating automated workflows. Indeed, such workflows are simpler and less 
invasive than arterial blood sampling, in using an image-derived input function (IDIF) 
to quantify blood activity concentration through acquisition time but are still time-con-
suming. Nevertheless, optimizations are still needed to make dWB-PET imaging accept-
able in daily practice. The recent proposal for population-based IF (PBIF) modeling is 
an area of research allowing to significantly reduce imaging time and improve patient 
comfort [31–33].

Our study shows the clinical feasibility of a short duration WB dynamic 18FDG-PET 
imaging using a PBIF without significant differences in Ki quantification, in a cohort of 
patients with metastatic melanoma treated by immunotherapy.

PBIF creation process

In our study, the PBIF model was created from a cohort of 17 controlled patients, a suf-
ficient sample size according to published data (varying from 11 to 23) [28, 40]. The low 
mean relative bias (0.5%) between the AUCs of the scaled PBIF and the IDIFs of the MM 
cohort shows that a model created from healthy patients can be applied to a specific 
pathology.

We choose to collect for each case an IDIF using an automatically defined volume 
of interest (VOI) in the left ventricle. In a previous study of 24 patients, Sari et al. [41] 
found a good agreement between the amplitudes of the peaks and tails of IDIFs derived 
from ascending aorta, descending aorta, left ventricle, and left atrium. Most importantly, 
they emphasized that an IDIF measured from the carotid arteries underestimated the 
AUC due to uncorrected partial volume effects.

After resampling of different TACs, we synchronize IDIF on the shortest time-to-
peaks, unlike Sari et al. [33] who used the mean time-to-peak. The use of the shortest 
time to peak could be one of the causes of the negative bias observed when using PBIF. 
Indeed, when using the model, the real time-to-peak information cannot be taken into 
account. The impact of such difference on our overall results will be assessed in a further 
comparative study.

We fitted the average IDIF according to the Feng model. This mathematical function 
was the most used in the recent literature, as example by Naganawa et al., Dias et al. and 
Sari et al. [28, 33, 42]. Like their results, we found an excellent correlation between the 
measurements and the model (R2 = 0.998). Our maximum shape deviation was observed 
only in the first 20 s post-injection and was quantified at an insignificant fraction of 0.5% 
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of the total AUC. This result was comparable to those reported in the respective series 
of Naganawa et al. [28] (− 1 ± 6% for a 15–45-min scaling time window, and 3 ± 6% for 
a 30–60 scaling time window) and Dias et  al. [32] (− 3 ± 6% for a 30–50 scaling time 
window; − 2 ± 7% for a 40–60 scaling time window; both with Feng model but compared 
to arterial IF). The fit of the input function is an important factor in the quality of the 
results. Overfitting or underfitting can lead to over- or underestimation of Ki. Studies 
have shown that an error of 20% on the AUC of the IF leads to a deviation of around 4% 
on the Ki [29, 43]. Other models can be used to describe IF. We used a sum of a gamma 
variate function with three-exponential method, while Dias et  al. [32] also compared 
with a four-exponential model with good results (2% to 0% bias, respectively, for a 40–60 
scaling time window) but comparing PBIF to AIF.

PBIF and Ki comparisons

One of the parameters that will influence parametric reconstruction is the time window 
used to scale the PBIF, especially when using the latest points [28]. In our study, PBIF 
was scaled using the whole late dynamic acquisition (i.e., 11–70 min). It would have been 
of interest to try multiple scaling windows as already assessed in the literature [31, 41]. 
Nevertheless, this was not possible in our study due to the software limitations of our 
PET system. However, this concern does not appear to be crucial for the PBIF scaling. 
Indeed, Sari et al. [33] evaluated different scaling windows and concluded that the use 
of a late window (i.e., 55–65 min) would provide the lowest bias in their study. Thus, our 
results remain valid because the use of a late scaling window, concomitant with the win-
dow used for the Patlak analysis, will provide a similar accuracy.

Once the IF has been reconstructed, our method of testing 9 different time windows 
(TWs) of dWB-PET data (3 or 4 passes at 15- to 70-min post-injection time) to compare 
scaled PBIF and measured IDIF on the respective Patlak reconstructions is consistent 
with the literature [28, 31, 32]. In our results, the TW used to perform the direct 4D 
nested Patlak reconstruction affected the Ki measurements, even if the bias was over-
all acceptable (less than 10% regardless of the time window). Indeed, the Ki bias was 
lower in late time windows (around 5% for 35–53 min, 45–61 min, 45–70 min time win-
dows) than in early time windows (8% to 9% for 20–35 min, 20–45 min, 20–61 min time 
windows).

Our best selected reconstructions in terms of optimal use in routine practice and sta-
tistical results were 45–61 min and 45–70 min TWs. Indeed, we showed a very good 
correlation between IDIF and PBIF reconstructions (bias − 5.2% and − 4.9%, SD 4.1% 
and 6.5%, R2 0.999 and 0.997, respectively). We observed a slight underestimating of 
Ki metrics, especially in case of high value as already described [44]. Effectively the 5 
highest Ki mean values showing higher differences between  IDIF5_7 and  PBIF5_7 (− 0.8 
to − 1.4 absolute difference, − 7 to − 15%) were measured on the same patient showing 
very high tumor uptake on standard PET images (SUV values around 100).

Surprisingly, we found a negative bias, although it has been described between + 1.5 
[33] to + 7.4% [31] and even up to + 23% [31] but with a very short 10-min acquisition. 
It can also be a PET system effect. Indeed, the positive bias occurs on large FOV PET 
system, while on standard FOV the bias remains negative [28, 32]. In any cases, the bias 
generated by our model remained lower than the difference between pathological and 
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physiological Ki values. These results are promising, as a 20 min of WBdyn PET acquisi-
tion time in daily practice remains largely acceptable for both the patient’s compliance 
and the department’s organization.

Validation on pathological and physiological uptakes

We chose to use a VOI predefined on the gold-standard 3D SUV image for Ki metrics 
extraction of each pathological lesion or physiological organ in the IDIF and PBIF para-
metric images. Although parametric PET images are known to show a better contrast 
and attain superior quantification, they are also typically more sensitive to noise [37] and 
may suffer from kinetic artifacts compared to static SUV images. Indeed, SUV images 
use projection acquired 1h post-injection (PI), while 2_4 Patlak reconstruction use pro-
jection acquired during the 20–35 min PI for example. Consequently, we decided to 
measure both mean and maximum Ki metrics in VOIs because mean values are less sen-
sitive to noise, while maximum values are less sensitive to kinetic blur. Ultimately, both 
measurements showed similar bias (difference lower than 1%) and correlations when 
comparing IDIF and PBIF-based reconstructions, regardless of the chosen time window.

We found no significant difference in Ki values of both tumoral lesion, inflammatory 
disease, and physiological uptakes in comparing  IDIF5_7 and  PBIF5_7. Regarding phys-
iological Ki values, our results were comparable with literature data [42, 45]. As Dias 
et al., we found widest variation was found on myocardial Ki values (range from 0.54 to 
8.55 100ml/ml/min with  PBIF5_7), probably explained by the absence of specific cardiac 
free fatty-acid consumption diet to suppress physiological myocardial uptake. Regard-
ing tumoral lesions, no specific published data on melanoma are available for compari-
son. Sari et al. [45] only described 2 lesions of melanoma with mean Ki of 1.3 and 3.9 
100ml/ml/min (average of 2.87 100ml/ml/min [0.83; 13.33] in our results). These find-
ings were globally concordant, regarding Vd values, in terms of bias, less than 5%, for 
each time window. However, the dispersion is higher than for Ki, with SD ranging from 
6.4 to 22.1%.

To the best of our knowledge, this is the first study applying PBIF approach trying 
to resolve a clinical issue in routine practice, in applying our model to a cohort of 20 
patients with metastatic melanoma (MM) treated by immunotherapy (ICI). In these pre-
liminary results of the IMMUNOPET2 study, we found that 4D whole-body dynamic 
PET images might be capable to differentiate progression disease (PD) to pseudo-pro-
gression (PP) (mean Ki values 2.87 [0.83–13.33] versus 1.13 [0.37–2.04]). This capability 
of Ki values to differentiate malignant to inflammatory lesions has recently been sug-
gested by Shawran et al. [21], but in a large selection of tumor type and inflammations 
etiologies.

Perspectives

As a perspective, another axis of optimization would be to assess the impact of recon-
struction parameters on Ki measurements. Indeed, Patlak imaging is sensitive to noise, 
though the impact is relatively less for direct 4D nested Patlak reconstructions. This 
would allow us to evaluate the reproducibility of the Ki measurements and to establish 
the best ratio between detectability and image quality. Wu et al. [37] have already pub-
lished a study with this approach by applying a denoising filter during reconstructions. 
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In a cohort of 65 patients, they proved a similar detectability of lesions by reducing 
acquisition time by two. Finally, a more efficient and less complex approach to manage 
image noise in dynamic WB PET data would be to exploit high sensitivity scanners, such 
as large axial FOV or total-body PET systems [31, 33, 37]. Although this type of device is 
not yet widely available from manufacturers, is currently expensive and thus not widely 
adoptable in clinic [46, 47], it will definitely open a new era in parametric PET imaging.

Conclusion
This article highlights the methodology for obtaining direct voxelwise parametric imag-
ing. We showed the feasibility of shortened whole-body dynamic 18FDG-PET protocols 
and respective whole-body Patlak Ki imaging using a population-based input function 
on a Vision 600 PET/CT system. We demonstrated that using such PBIF allows reducing 
dWB-PET acquisition duration from 70 to 20 min with reasonable bias. These findings 
open perspectives for the adoption of dWB-PET in clinical routine for a wide range of 
indications, including treatment response in oncology.
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