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Abstract 

Background: Drug occupancy studies with positron emission tomography imaging 
are used routinely in early phase drug development trials. Recently, our group intro-
duced the Lassen Plot Filter, an extended version of the standard Lassen plot to esti-
mate voxel-level occupancy images. Occupancy images can be used to create an  EC50 
image by applying an Emax model at each voxel. Our goal was to apply functional 
clustering of occupancy images via a clustering algorithm and produce a more precise 
 EC50 image while maintaining accuracy.

Method: A digital brain phantom was used to create 10 occupancy images (corre-
sponding to 10 different plasma concentrations of drug) that correspond to a ground 
truth  EC50 image containing two bilateral local “hot spots” of high  EC50 (region-1: 
25; region-2: 50; background: 6–10 ng/mL). Maximum occupancy was specified 
as 0.85. An established noise model was applied to the simulated occupancy images 
and the images were smoothed. Simple Linear Iterative Clustering, an existing k-means 
clustering algorithm, was modified to segment a series of occupancy images into K 
clusters (which we call “SLIC-Occ”).  EC50 images were estimated by nonlinear estima-
tion at each cluster (post SLIC-Occ) and voxel (no clustering). Coefficient of variation 
images were estimated at each cluster and voxel, respectively. The same process 
was also applied to human occupancy data produced for a previously published study.

Results: Variability in  EC50 estimates was reduced by more than 80% in the phantom 
data after application of SLIC-Occ to occupancy images with only minimal loss of accu-
racy. A similar, but more modest improvement was achieved in variability when SLIC-
Occ was applied to human occupancy images.

Conclusions: Our results suggest that functional segmentation of occupancy images 
via SLIC-Occ could produce more precise  EC50 images and improve our ability to iden-
tify local “hot spots” of high effective affinity of a drug for its target(s).

Keywords: Drug occupancy, Brain imaging, PET simulation, EC50 images, Functional 
clustering, Accuracy and precision
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Introduction
Positron Emission Tomography (PET) is routinely being used to estimate the required 
dose for a specific drug through PET occupancy studies [1–9]. Typically, regional occu-
pancy values are used to produce one whole brain estimate of drug affinity  (EC50) value 
for a cohort of subjects by fitting the occupancy to an Emax model [10, 11]. Drug doses 
are selected to reach a minimum therapeutic level without causing any adverse effects 
[12]. However, this method cannot detect spatial variation in drug affinity in the brain.

Recently, our group introduced the Lassen Plot Filter (LPF), an extended version of the 
standard Lassen plot to estimate drug occupancy of the voxel-level [13]. Using baseline 
and post-drug images of volume of distribution (VT), one can generate an occupancy 
image for a given drug dose. Multiple drug doses and scan times generate drug occu-
pancy images at different plasma concentrations. Our group produced the first  EC50 
image using voxel-level occupancy images generated by LPF that confirmed the sus-
pected spatial variation in effective affinity of CVL-865 for  GABAA receptors in the brain 
[14, 15]. To maximize our confidence in the observed spatial variation of  EC50 images, 
we sought to minimize the variability in the  EC50 images.

The main goal of this study was to increase the precision of the  EC50 images while 
maintaining accuracy. We modified a k-means clustering algorithm, Simple Linear Itera-
tive Clustering (SLIC), to segment 4-dimensional occupancy images into clusters of sim-
ilar occupancy. Cluster-level occupancy values were then fitted to an Emax model as per 
normal and a cluster-level  EC50 image was generated. We refer to our modified SLIC 
as SLIC-Occ. To compare the precision of the SLIC-Occ output, we simulated 10 noisy 
occupancy images corresponding to 10 different plasma concentrations using known 
 EC50 values. Estimated  EC50 images, and coefficient of variation (CV  (EC50)) images 
were calculated to assess the value of SLIC-Occ clustering on the accuracy and precision 
of  EC50 images.

Material and methods
Simulated occupancy images

A digital human brain phantom (image size = 121 × 145 × 121, 1 mm isometric voxels) 
was used to create occupancy images with regional variation in occupancy, correspond-
ing to different plasma concentrations. The brain phantom data was released under the 
Creative Commons Attribution-NonCommercial license (CC BY-NC) with no end date. 
Original MRI scans are from OASIS (https:// www. oasis- brains. org/). Labelings were 
provided by Neuromorphometrics, Inc. (http:// Neuro morph ometr ics. com/) under aca-
demic subscription. Concentration–response curves were generated according to an 
Emax model to generate 10 ideal occupancy images for the 10 different plasma concentra-
tions of drug.

In Eq. 1, Occ is the occupancy in every voxel of the occupancy image;  EC50 is the pre-
defined  EC50 value at every voxel of  EC50 image;  Occmax is the maximum occupancy at 
every voxel; and C is the plasma concentration. The 10 different values of C were selected 

(1)Occ = Occmax ∗
C

C + EC50

https://www.oasis-brains.org/
http://Neuromorphometrics.com/
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between 3 – 279 ng/mL based on an existing human data set, and  Occmax was set to 0.85 
[16].

To generate regional variation in occupancy image, the ground truth  EC50 image 
(shown in Fig. 1) was created with an  EC50 = 25 ng/mL in caudate and  EC50 = 50 ng/mL 
in putamen. The rest of the brain was assigned an  EC50 value between 6 and 10 ng/mL 
consistent with a whole brain average value from human data shown in a previous study 
[16].

We have shown previously that noise in occupancy images is a function of occupancy 
as follows [14].

In Eq. 2, σOcc is the standard deviation in occupancy, and Occ is the occupancy [14]. 
This noise was applied based on a normal random distribution at every voxel to all ideal-
ized occupancy images to the generate noisy occupancy images.

To add correlation between the voxels to our noisy occupancy images, we applied a 
Gaussian filter with a kernel size of 3 × 3 × 3. Multiple phantoms with different amounts 
of voxel correlation were generated using different Gaussian standard deviations ( σGauss ) 
for the Gaussian filter. The occupancy images (shown in Fig.  2) generated with σGauss 
= 0.5 voxels best represented the smoothness observed in occupancy images produced 
from real human data [14].

Clustering

SLIC algorithm was used to combine multiple voxels of the occupancy images into 
super-voxels (clusters) [17]. SLIC is an adaptation of k-means for super-pixel generation. 
It uses a smaller search area in its distance calculation which is faster than other k-means 
algorithms. It also uses a weighted average of spatial and feature-space distances which 
can be used to emphasize one of the distances over the other.

Mathematical implementation

The SLIC algorithm was first introduced by Achanta et al. [17] for its faster speed, greater 
memory efficiency and better adherence to boundaries compared to other k-means clus-
tering algorithms. Later, a modified version of SLIC, ‘SLICR’, was introduced to incorpo-
rate temporal features from 2D dynamic computed tomography myocardial perfusion 
imaging [18]. In SLIC-Occ, we modified SLIC by introducing a distance in feature-space, 

(2)σOcc = −0.22 ∗Occ+ 0.25

Fig. 1 Ground truth  EC50 image showing “hot spots” of  EC50 in putamen and caudate regions in coronal, axial, 
and sagittal views
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feature-space refers to occupancy and spatial distances are calculated in 3D. The total dis-
tance measure to be minimized was calculated as:

In the Eq. 3, m controls the weighting of spatial distance over the feature distance.

where (xc, yc, zc) is the coordinate of the center of the cluster c and (xi, yi, zi) is the coor-
dinate of the voxel i which is to be assigned to a cluster. Feature-space is made up of 
V  occupancy images corresponding to different plasma concentrations. Distance in fea-
ture-space is:

where, f vc  is the occupancy value at the center of cluster c corresponding to plasma con-
centration value v and, f vi  is the occupancy value of the voxel i corresponding to plasma 
concentration value v. The search area for every voxel was defined as 2S x 2S x 2S, where 
S is defined as:

(3)D =

√

d2feature +

(

dspatial

S

)2

∗m2

(4)dspatial = (xc − xi)
2
+ yc − yi

2
+ (zc − zi)

2

(5)dfeature =

√

∑V

v=1

(

f vc − f vi
)2

(6)S =
3
√

N/K

Fig. 2 Simulated noisy smoothed occupancy images at different plasma concentrations. The occupancy 
noise model (Eq. 2) was applied to ideal  EC50 images (Fig. 1) and smoothed by a Gaussian filter. White text 
for each image shows the plasma concentration used to generate the occupancy image from the true  EC50 
phantom
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In Eq. 6, N is the total number voxels in each 3D occupancy image and the image is 
divided into K clusters.

Hyper‑parameter selection

There are two parameters (i.e., m and K) that need to be optimized for SLIC-Occ cluster-
ing algorithm. The number of initial clusters, K, will determine the approximate size of 
a cluster, N/K, in terms of voxels. While the shape of each cluster will be determined by 
the value of m; the larger the m the more regular the clusters.

We created multiple simulations with different combinations of m and K to investi-
gate their effects on accuracy and precision of  EC50 images in our clustering algorithm. 
The choice of m and K was made to reduce the CV(EC50) while maintaining accuracy of 
 EC50.

EC50 estimation

SLIC-Occ was used to segment 10 occupancy images, corresponding to 10 different 
plasma drug concentrations, into super-voxels (K clusters). Average occupancy of all the 
voxels within each cluster was used as the occupancy value for the corresponding clus-
ter. Two versions of the Emax model (Eq. 1), were used to fit the occupancy data. In ver-
sion 1,  Occmax was fixed (1-parameter model); in the 2-parameter version  Occmax and 
 EC50 were estimated simultaneously.

The corrected Akaike information criterion (AICc) was calculated for both (1-param-
eter and 2-parameter) Emax model fits at every concentration–response curve (i.e., every 
cluster) as [14, 19]:

where p is the number of estimated parameters in the model, n is the number of data 
points being fitted, and SSE is the sum of squared errors. The model with lower AICc 
was selected as the best model.

Parametric images were constructed with the parameter estimate of the best model for 
each cluster. In other words, the final parametric images generated are a combination of 
1- and 2-parameter fits depending on which model was selected based on AICc for each 
cluster. Using the cluster-level best-fit,  EC50 and CV(EC50) images were generated. The 
coefficient of variation for an estimated parameter was defined as:

where µ is the parameter estimate, and σfit is the standard deviation of the parameter 
estimate calculated by:

where J is the Jacobian matrix of Emax fit at the solution, R is the vector of residuals, n is 
the number of fitted data points, and p is the number of estimated parameters.

(7)AICc = 2p+ n ∗ ln

(

SSE

n

)

+
2p2 + 2p

n− p− 1

(8)CV =
σfit

µ

(9)σfit
2
= diag

(

(

J ′ ∗ J
)

−1
∗

(

R′
∗ R

n− p

))
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The distinct image regions in the ideal  EC50 image were used to select the same voxels 
in the estimated  EC50 image for bias calculation. Accuracy was calculated as percent bias 
as:

Voxel‑level fitting of occupancy data

The two versions of the Emax model (1-parameter and 2-parameter), were used to fit the 
noisy occupancy data at every voxel. As with cluster-level estimates, voxel-level para-
metric images were constructed with the parameter estimate of the best model at each 
voxel, using the AICc to determine the best model fit.  EC50, and CV(EC50) images for 
voxel-level estimation were generated to compare with the results from cluster-level 
images.

Human occupancy

SLIC-Occ algorithm was applied to human occupancy data (image 
size = 121 × 145 × 121, 1 mm isometric voxels) that were published in previous studies 
[14, 16]. A detailed description of the PET acquisition has been published [16]. In short, 
5 healthy subjects underwent 3 scans each at the Yale PET center for 2 h on a ECAT 
EXACT HR + scanner (Siemens Medical Systems, Knoxville, TN, USA) after injec-
tion with 570 ± 141 MBq (injected mass: 2.7 ± 1.3 µg) of 11C-flumazenil, a nonselective 
 GABAA tracer. One of the scans was performed at the baseline (no drug administration), 
and two were acquired after oral administration of a single acute dose of the α1 -, α2 -, α3
-selective GABA positive allosteric modulator, CVL-865 (also known as PF-06372865). 
The drug dose was either 10  mg (n = 3) or 65  mg (n = 2). The post-drug scans were 
acquired at approximately 1.5 h and 24 h after administration of the drug. The plasma 
concentration of CVL-865 was measured at three different time points during the scan 
and averaged [16]. The occupancy versus drug concentration curves were generated for 
each voxel in the previous study [13, 14]. Using SLIC-Occ, the occupancy images were 
segmented into clusters.  EC50, and CV(EC50) images were generated and compared with 
voxel-level  EC50 and CV(EC50) images.

Results
Hyper‑parameter selection

We fine-tuned the two hyper-parameters in SLIC-Occ (1. the number clusters: K, and 
2. the shape parameter: m) by analyzing the precision and accuracy of clustering results 
with different hyper-parameter combinations. Figure 3a shows the CV(EC50) of the cau-
date region for multiple m values between 0.1 and 2.5 in increments of 0.1, combined 
with multiple K values ranging between 1000  (103) to 8000  (203) clusters. The CV(EC50) 
decreases as m is increased from 0.1 – 0.7 and then plateaus at m > 0.8. The effect of 
choice of K parameter on CV(EC50) was minimal.

Figure 3b shows the accuracy of clustering results for the same m and K combinations 
and same region (i.e., caudate region with ground truth  EC50 = 25 ng/mL) as in Fig. 3a. 
Almost all the simulations with any m and K combinations showed a negative bias except 

(10)Accuracy =
Estimated EC50 −Ground truth EC50

Ground truth EC50
∗ 100
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for the simulation with K = 1000. The bias increased as m increased from 0.1 to 1.3 for 
all K values and at m > 1.4 the bias started to plateau in a range 40 – 60% depending on K. 
Based on Fig. 3, we chose an m = 0.5 and K = 8000 to cluster occupancy images for both 
digital phantom and human dataset.

Phantom data

We compared the accuracy, precision, and computational efficiency between voxel-
level and the SLIC-Occ parameter estimation using the digital phantom.  EC50 was 
underestimated by the cluster-level and was over-estimated by the voxel-level mainly 
in the hot spot regions (Figs. 4 and 5). However, the precision of  EC50 was improved 
using clustering compared to voxel-level (Fig.  6). The 2-parameter model was pre-
ferred everywhere when using clustering in occupancy-space, while the 1-param-
eter model was preferred for a region with high  EC50 values when using voxel level 

Fig. 3 a Precision and b accuracy (Eq. 10) of  EC50 for caudate region with true  EC50 = 25 ng/mL using 
different m and K combinations. K is the number of initial clusters, and m is weighting coefficient spatial 
distance over the temporal distance. Vertical dash line represents the selected value of m for the reported 
case. Note: m and K were selected for analysis of both phantom and human data based on similar calculations 
for multiple regions on the phantom data

Fig. 4 EC50 images (ng/mL) for both voxel-level (top row) and cluster-level (bottom row) best-fit (a 
combination of 1- and 2-parameter models based on AICc selection) shown in coronal, axial and sagittal 
views
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processing, alone (Additional file 1: Fig. S1). Similarly, the cluster-level analysis, pro-
duced  Occmax estimates closer to the true  Occmax (True  Occmax = 0.85) everywhere in 
the brain than did voxel-level processing. Voxel-level processing tended to overesti-
mate  Occmax  (Occmax = 1) in the region with the highest  EC50 (Additional file 1: Fig. 
S2).

The average  EC50 and CV(EC50) for the putamen, caudate and the whole brain are 
provided for the ground truth, voxel-level fitting, and cluster-level fitting in Table 1. 
The CV(EC50) in voxel-level was decreased > 5 times by clustering. Clustering 
decreased the CV(EC50) by > 7x, > 5x, and > 10 × in putamen, caudate and whole brain, 
respectively. Cluster-level computation time was decreased to ~ 6  min compared to 
120 min for voxel-by-voxel in voxel-level (Table 1).

Fig. 5 The bias (estimated  EC50 – true  EC50) for the voxel-level (top row) and the cluster-level (bottom row) in 
ng/mL shown in coronal, axial and sagittal views. The voxel-level generally overestimates, while cluster-level 
underestimates the  EC50 values in the hot spots

Fig. 6 The variability, CV(EC50), in voxel-level (top row) is reduced by clustering (bottom-row)
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Human data

Figure 7 shows  EC50 images for human occupancy data for voxel-level fitting and clus-
ter-level fitting using m = 0.5, and K = 8000. Regional hot spots can be observed in both 
methods, but cluster-level fitting produces lower values in the hot spots. This trend is 
similar to the phantom data, where cluster-level estimated lower  EC50 compared voxel-
level. A lower CV(EC50) (i.e., improved precision) is observed for the cluster-level com-
pared to voxel-level (Fig.  8). But the reduction in CV(EC50) is not as large as in the 
phantom data (Fig.  6 and Table  1). The choice of a 1- or 2-parameter model for both 

Table 1 EC50 (measured in ng/mL) and CV(EC50) are reported as mean ± standard deviation of all 
the voxels within the region for both phantom and human occupancy data

#Computation time for fitting all the voxels to Emax model

*Computation time for clustering and fitting all clusters to the Emax model. Note that, the time varies depending on the 
number of clusters (i.e., K)

EC50 (ng/mL) CV(EC50) Computation 
time (min)

Caudate Putamen Whole brain Caudate Putamen Whole brain

Phantom data

Ground truth 25.00
 ± 
0.00

50.00
 ± 
0.00

8.13
 ± 

3.83

– – –

Voxel-level 26.2
 ± 
10.47

55.25
 ± 
21.94

8.46
 ± 

5.27

0.23
 ± 
0.08

0.22
 ± 
0.10

0.20
 ± 
0.06

 ~  120#

Cluster-level 19.92
 ± 
5.57

41.28
 ± 
4.97

8.03
 ± 

3.08

0.03
 ± 
0.01

0.04
 ± 
0.01

0.02
 ± 
0.01

 ~ 4–8*

Human occupancy study data

Voxel-level – – 10.75
 ± 

8.48

– – 0.27
 ± 
0.27

Cluster-level – – 9.64
 ± 

6.03

– – 0.18
 ± 
0.12

Fig. 7 EC50 images (ng/mL) for voxel-level (top row) and cluster-level (bottom row) best-fit (a combination of 
1- and 2-parameter models based on AICc selection) based on the human occupancy data
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voxel-level and cluster-level was less consistent in the human data than in the phantom 
data (Additional file  1: Fig. S3). However, 2-parameter model was generally preferred 
over 1-parameter model in the cluster-level compared to voxel-level. Furthermore, the 
 Occmax image followed a similar trend to the AICc image (Additional file 1: Fig. S4).

Discussion
Study goal

In this study, we modified the SLIC clustering algorithm and introduced SLIC-Occ to 
perform functional segmentation of voxel-wise occupancy images into clusters and then 
to generate an  EC50 image. Our goal was to create a super-voxel that has the same coor-
dinates spatially, for all the occupancy images, so that we could assign the occupancy 
data for a cluster to a single binding curve. We expected that by doing so we would 
reduce the noise in each binding curve, and that would, in turn, reduce variance in the 
 EC50 estimates and the computation time.

Results and their implication

Applying the proposed methodology (clustering using SLIC-Occ) to simulated occu-
pancy images, we estimated the  EC50 image in the “hot spots” with higher precision 
compared to the voxel-level method (no clustering), with only a minimal loss of accuracy 
(Figs. 4, 5 and 6). (Note to reader: The use of “hot spots” refers to high  EC50, although 
it corresponds to low affinity in the brain). We observed a similar trend in the human 
occupancy data, although a smaller improvement in precision was found compared to 
simulated data (Figs. 7 and 8). The voxel-level method over-estimated the  EC50 values 
in the hot spots and the whole brain (compared to ground truth), while the cluster-level 
method under-estimated the  EC50 values in the same regions (Table  1). Computation 
time in the cluster-level method was reduced by orders of magnitude compared to voxel-
level (Table 1). This is because there are far fewer binding curves after the occupancy 
data have been clustered.

Fig. 8 CV(EC50) images for voxel-level (top row) and cluster-level (bottom row) based on human occupancy 
data
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Reducing variation in the  EC50 image was the key goal of our study. Reducing the vari-
ance increases the precision of the measurements and increases the power of an occu-
pancy study. This, in turn, can reduce the number of subjects needed to achieve a desired 
level of statistical power, and thus, can lead to cost savings. Reducing variation, even by 
a small factor, increases the signal-to-noise ratio of the data, making it easier to detect 
small differences between groups or treatments. In occupancy images, reduced variance 
might also aid in the detection of hot spots which differ slightly, but significantly, from 
the whole brain.

Reconciling findings in human data and simulations

The CV(EC50) in the simulation data was reduced by more than 5 times everywhere, 
while in the human occupancy data this reduction was less than 2 times. We believe this 
more modest improvement in the precision could be due to the nature of the variance 
in human occupancy data that we did not completely replicate in simulation. However, 
precision for both our simulation and human data were improved using clustering. Fur-
ther investigation with better models of within-subject and across-subject variations in 
human occupancy data may shed light on our findings.

SLIC‑Occ implementation

Clustering is becoming popular in many image processing areas. SLIC, a k-means clus-
tering algorithm, was first introduced by Achanta et al. [17] to generate super-pixels in 
2D color image more efficiently. Other researchers have modified the algorithm to clus-
ter medical images [18, 20–22]. In our study, we modified SLIC to SLIC-Occ to cluster 
4D data (3D occupancy images at different drug concentration levels). The two param-
eters that must be supplied to the algorithm are m and K.

We investigated the effects of m and K on precision and accuracy of the final  EC50 
results by running multiple simulations (Fig. 3, Additional file 1: Fig. S5 and S6). In their 
study, Wu et  al. [18] reported lower average standard deviation in flow (at the voxel-
level) with decreasing m values. We observed similar results in our simulations: increas-
ing m led to increased precision of  EC50 estimates until it plateaued. Increasing m also 
led to decreased accuracy of  EC50 estimates. The hyper-parameter, m (referred to as a 
“shape factor” by the Wu et al. [18]), produces more regular hexagonal clusters as it is 
increased. The effect of increasing K was opposite to that of increasing m.

In our simulation data, the average CV(EC50) using voxel-level fitting was 0.23 for the 
caudate region (Table 1), which is almost three times as large as the worst CV(EC50) pre-
dicted by any m and K combination (Fig. 3a). Selecting an initial large number of clusters 
(i.e., large K) resulted in a smaller bias for the same m. Selection of K > 4913  (173), and m  
ǫ [0.3 – 0.5] resulted in a bias between 15 – 20% (Fig. 3b). These combinations of m and 
K produced CV(EC50) < 0.04, which is smaller than one fifth of the CV(EC50) from the 
voxel-level best-fitting.

In choosing m and K, one must consider the regularity of the regions that are expected 
to follow similar behavior as well as the size of those regions. In other words, how small 
and how ‘regular’ a super-voxel (i.e., a cluster) is needed to capture a region of homog-
enous behavior, should dictate the choice of m and K. The larger the K, the smaller the 
super-voxel size and the larger the m, the more regular the cluster shapes.
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We also checked the reproducibility and directionality of the clustering algorithm by 
running the same phantom multiple times using different orientations and calculated 
the  EC50 at the end of each run. There were no differences between runs suggesting that 
our algorithm would identify the same clusters every time regardless of object orienta-
tion, provided the same m and K values are entered as inputs. We believe our implemen-
tation is not prone to operator bias.

Limitations

First, the results following clustering depend on selection of the hyper-parameters. In 
our study, we selected the m and K values based on multiple simulations and selecting 
the combination that estimated the lowest precision and the minimum bias. Unfor-
tunately, in real human data the truth is unknown, so the selection of m and K might 
require a general understanding of the data, i.e., size, shape and regularity of the clusters. 
These parameters could also potentially be optimized by further simulation studies.

Second, our simulations may not have perfectly modeled the variability in the human 
occupancy data throughout the brain. We added noise to our simulated occupancy 
images at the voxel based on a previously published noise model (Eq.  2). However, 
the published noise model in Eq. 2 was derived from occupancy in only select regions 
of the brain and the range of occupancies in these regions may not have spanned the 
range of occupancies in the whole brain. The simulation data also assumed that all the 
images were belonged to one ideal binding curve. In effect, we didn’t model inter-subject 
variability.

Third, the voxel-wise human occupancy data have two main sources of correlation 
among voxels; (1) the correlation that is generated during the PET scan due to spatial 
resolution of the scanner, the sensitivity of the detector, and the noise characteristics of 
the detector, and (2) the correlation that is produced by applying the LPF to  VT images. 
Although, we introduced correlation among voxels in our simulation data by smoothing 
noisy occupancy images using a Gaussian filter, we believe this filter may not perfectly 
represent the correlation that is found in the human data. Future studies could poten-
tially address each of the correlation sources separately.

Conclusion
We introduced a modified version of the SLIC algorithm (“SLIC-Occ”) to segment occu-
pancy images into clusters. Using SLIC-Occ we were able to reduce the CV in the  EC50 
images while introducing minimal bias. Our results suggest that functional segmenta-
tion of occupancy images could produce more precise  EC50 images, improve our ability 
to identify “hot spots” in  EC50, and improve power in drug occupancy studies.

Abbreviations
PET  Positron emission tomography
EC50  Drug affinity
LPF  Lassen Plot Filter
VT  Volume of distribution
SLIC  Simple Linear Iterative Clustering
CV  Coefficient of variation
AICc  Corrected Akaike information criterion



Page 13 of 14Ibrahimy et al. EJNMMI Physics           (2023) 10:80  

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s40658- 023- 00600-4.

Additional file 1. Figure S1. AICc images for phantom data showing 1- and 2-parameter selection for both voxel-
level and cluster-level in coronal, axial, and sagittal views. Figure S2.  Occmax images for phantom data showing the 
maximum occupancy estimated for both voxel-level and cluster-level in coronal, axial, and sagittal views. Figure S3. 
AICc images for human occupancy data showing 1- and 2-parameter selection for both voxel-level and cluster-level 
in coronal, axial, and sagittal views. Figure S4.  Occmax images for human occupancy data showing the maximum 
occupancy estimated for both voxel-level and cluster-level in coronal, axial, and sagittal views. Figure S5. a Precision 
and b accuracy (Eq. 10) of  EC50 for a background cluster region with true  EC50 = 10 ng/mL using different m and K 
combinations. K is the number of initial clusters, and m is weighting coefficient spatial distance over the temporal 
distance. Vertical dash line represents the selected value of m for the reported case. Note: m and K were selected for 
analysis of both phantom and human data based on similar calculations for multiple regions on the phantom data. 
Figure S6. a Precision and b accuracy (Eq. 10) of  EC50 for putamen region with true  EC50 = 50 ng/mL using different 
m and K combinations. K is the number of initial clusters, and m is weighting coefficient spatial distance over the 
temporal distance.Vertical dash line represents the selected value of m for the reported case. Note: m and K were 
selected for analysis of both phantom and human data based on similar calculations for multiple regions on the 
phantom data.
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