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Background
When positron emission tomography (PET) was first proposed, it showed good con-
trast for performing target area imaging with high quality [1]. As research into fluoro-
deoxyglucose (FDG) has deepened, the innocuous nature of FDG and its high tumor 
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Background:  Dynamic positron emission tomography (PET) images are useful in clini-
cal practice because they can be used to calculate the metabolic parameters (Ki) of tis-
sues using graphical methods (such as Patlak plots). Ki is more stable than the standard 
uptake value and has a good reference value for clinical diagnosis. However, the long 
scanning time required for obtaining dynamic PET images, usually an hour, makes 
this method less useful in some ways. There is a tradeoff between the scan durations 
and the signal-to-noise ratios (SNRs) of Ki images. The purpose of our study is to obtain 
approximately the same image as that produced by scanning for one hour in just half 
an hour, improving the SNRs of images obtained by scanning for 30 min and reducing 
the necessary 1-h scanning time for acquiring dynamic PET images.

Methods:  In this paper, we use U-Net as a feature extractor to obtain feature vectors 
with a priori knowledge about the image structure of interest and then utilize a param-
eter generator to obtain five parameters for a two-tissue, three-compartment model 
and generate a time activity curve (TAC), which will become close to the original 1-h 
TAC through training. The above-generated dynamic PET image finally obtains the Ki 
parameter image.

Results:  A quantitative analysis showed that the network-generated Ki parameter 
maps improved the structural similarity index measure and peak SNR by averages 
of 2.27% and 7.04%, respectively, and decreased the root mean square error (RMSE) 
by 16.3% compared to those generated with a scan time of 30 min.

Conclusions:  The proposed method is feasible, and satisfactory PET quantification 
accuracy can be achieved using the proposed deep learning method. Further clinical 
validation is needed before implementing this approach in routine clinical applications.
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uptake percentage compared to that of other tissues have allowed PET imaging to show 
strong tumor diagnosis potential [2]. Chemotherapy and chemoradiotherapy patients 
are increasingly monitored using PET with 18F-FDG [3]. In routine clinical practice, the 
standard uptake value (SUV) is highly applied because the glucose metabolic rate and 
SUV have a good relationship, and this index is easy to obtain [4]. However, the SUVs 
of static PET images are affected by many different factors, such as the variable uptake 
period (the time between injection and imaging) and reconstruction parameters (filters, 
number of iterations, and decay correction) of different scanning instruments, making 
it problematic to compare SUVs acquired in different places. For this reason, graphical 
methods such as the Patlak plot are more promising due to their robustness and simplic-
ity in clinical use case [5]. When rigorous and reliable, quantitative analyses can offer 
more valuable information for clinical practice [6].

Dynamic PET images form a better imaging modality for calculating quantitative 
values. The first few frames of a dynamic PET image are very short, resulting in con-
siderable noise and a low signal-to-noise ratio (SNR) [7]. Therefore, in most cases, the 
scanning time required for each time frame of dynamic PET images gradually increases, 
and the whole process takes at least an hour so that the time activity curve (TAC) is 
highly accurate. Many parameters can be computed once the TAC is obtained. With the 
Patlak plot method, the Ki parameter, which is the net uptake rate constant, is used most 
often. PET Patlak parametric images have been generated based on direct reconstruc-
tion using different methods (e.g., the kernel method [8–10], deep image prior with the 
alternating direction of multipliers method (ADMM) [11–14], the hybrid approach [15], 
and a method with only a deep network [16]). These methods make the reconstruction 
process much longer when obtaining parametric images, and some methods do not work 
well for real patient data due to the fact that they conduct training with simulated data. 
Therefore, none of these methods can be used in clinical practice. Parametric imaging is 
time-consuming, and the resulting noisy images require interpretation by skilled users 
[17]. By reducing the image noise and generation time, parametric images can be made 
available for clinical use much more quickly. In our study, we made the first attempt to 
solve this problem. We used only the first 30 min of dynamic PET images. After applying 
our algorithm, we obtained higher-quality parametric images than those acquired after 
scanning for 30 min, thus reducing the original 1-h scanning time to half an hour.

Methods
Feature extraction network

In computer vision, an increasing amount of research points to the importance of convo-
lutional neural networks. Properly trained convolutional neural networks have superior 
effects in image generation, image segmentation, and other aspects that surpass those 
of traditional computer vision-based processing methods. At the same time, convolu-
tional neural networks can automatically extract the features of images through training. 
Based on these studies, we build a fully convolutional neural network with a network 
architecture that looks like the U-Net architecture that is often used in medical image 
segmentation. An encoder first downsamples the original 1-channel SUV images. Then, 
the high-level semantic information of the image is encoded through a series of con-
volutional or pooling operations to obtain an image feature vector. This feature vector 
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is then sent to a decoder, which returns the information the encoder takes out. This 
process eliminates noise, which is harder to learn or fit into the network than a useful 
signal. We change the batch normalization operation in the network to a group normali-
zation operation and add skip connections, similar to those in the residual network, to 
speed up the training process and improve the quality of the generated images. To be 
more specific, a basic block called a DoubleConv block makes up many other blocks. 
The GroupNorm layer and the activation layer come after the two convolutional layers 
in the DoubleConv block. The rectified linear unit (ReLU) function is chosen as the acti-
vation function. The number of channels per group is set to 16 for GroupNorm. The 
encoder comprises one DoubleConv block and four DownConv blocks that are made up 
of one maximum pooling layer and one DoubleConv block. The Maxpool layer’s func-
tion is to perform downsampling by a factor of 2. The first DoubleConv block maps the 
channel size of the input image to the target channel size for the subsequent calcula-
tions. The target channel sizes of the blocks are set to 64, 128, 256, 512, and 1024, which 
means that the output feature image size is 1/16 of the original image size. The decoder 
then takes the last feature image to perform upsampling 4 times using UpConv blocks. 
Each UpConv block comprises one transposed convolutional layer and one DoubleConv 
block. For each block at the same level, skip connections are made between the encoder 
and decoder. The architecture of the feature extraction network is shown in Fig. 1. The 
dimensionality of the input is described in the “Training Setup” section, and the flow of 
data from one network to the other is shown in Fig. 2. In Fig. 2, we refer to the following 
kinetic model network as a pointwise neural network (Fig. 3).

Kinetic model network

The physiological system of dynamic processes in the tissue of interest is decomposed 
into several compartments, which interact with each other. In PET, tracer kinetic mod-
eling is based on compartmental analysis. Ordinary differential equations (ODEs) con-
tinuously and deterministically represent the compartmental system. Each equation 

Fig. 1  The architecture of the feature extraction network. To demonstrate the effectiveness of our approach, 
we did not make many structural improvements to U-Net
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describes the temporal rate of change exhibited by the material in a compartment. 
These rates of change are controlled by the physical and chemical rules that govern how 
materials move from one compartment to another. These rules include diffusion, tem-
perature, and chemical reactions [18]. The vast majority of articles use the 2-tissue com-
partment model (2TCM) with the Patlak method to analyze dynamic PET images. Since 
most researchers have looked into the 2TCM and found that it works [7], our method 
also builds the network on the 2TCM. The ODEs of the 2TCM are described as follows:

Fig. 2  The relation between the feature extraction network and the kinetic model network (pointwise 
neural network). We obtained each frame’s feature maps using U-Net. All 220 feature maps were then input 
into a pointwise neural network, which was implemented by a stack of convolutions with a kernel size of 1. 
Therefore, each voxel was a 220-dim vector that was fed into the kinetic model network

Fig. 3  The architecture of the kinetic model network. Each rectangle with different colors surrounding a 
group of neurons represents a hidden layer with different numbers of neurons, and layers with the same 
color possess the same number of neurons
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where K1 is a constant that represents the rate of influx from plasma to tissue, k2 is a con-
stant that represents the rate of efflux from the first compartment in the 2TCM, k3 is the 
rate of transfer from a nonspecific compartment to a specific compartment in a revers-
ible or irreversible 2TCM, and k4 is the rate of transfer from a specific compartment to a 
nonspecific compartment in the reversible 2TCM. To increase the complexity and diver-
sity of the TACs generated by the network, we do not fix k4 as 0. However, the network is 
capable of generating TACs when k4 is equal to 0. C0(t) is the input blood function, C1(t) 
is the concentration of the nondisplaceable compartment, and C2(t) is the concentration 
of the binding radiotracer in the specific compartment; the tissue concentration CT(t) is 
the sum of the nondisplaceable and specific compartment concentrations. [19].

The solution of these ODEs is the convolution of an exponential function with the 
input function. The equations are as follows:

The total activity concentration (e.g., in nCi/ml) for a voxel at a given time is denoted 
by

where ϕs represents the parameters of the kinetic model. The volume fraction of a voxel 
that is made up of blood is denoted by the constant fv . CWB(nCi/ml) is the concentration 
of tracer activity in whole blood (i.e., plasma plus blood cells plus other particulate mat-
ter) [20].

Our method uses the blood input function C0(t) as the whole blood function 
CWB(t) . We form the kinetic model network, a convolutional neural network with 
1 × 1 convolutional layers that let each voxel be computed separately while reduc-
ing the number of parameters and increasing the training speed of the network. We 
applied the feature extraction network to each individual time frame image of the 
dynamic PET data, extracting 10 feature maps for each time frame. With a total of 
22 time frames, there are 220 feature maps in total. This means that each voxel is 
represented by a 220-dimensional vector, as shown in Fig.  2. The feature extraction 
network’s output feature vectors are fed into the kinetic model network. Moreover, 
the kinetic model network predicts the five parameters ( fv ,K1, k2, k3, k4) of the 2TCM 

(1)
dC1(t)

dt
= K1C0(t)− (k2 + k3)C1(t)+ k4C2(t)

(2)
dC2(t)

dt
= k3C1(t)− k4C2(t)

(3)CT(t) = aC0(t)⊗ e−α1t + bC0(t)⊗ e−α2t

(4)

α1 = k2 + k3 + k4 − (k2 + k3 + k4)
2 − 4k2k4 /2

α2 = k2 + k3 + k4 + (k2 + k3 + k4)
2 − 4k2k4 /2

a =K1(k3 + k4 − α1)/(α2 − α1)

b =K1(α2 − k3 − k4)/(α2 − α1)

(5)CPET(ϕs, t) =
(

1− fv
)

CT(t)+ fvCWB(t)
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for each voxel based on the inputs. After obtaining the parameters generated by the 
network, we can use these parameters to obtain the whole TAC through the 2TCM. 
Once we have obtained the time activity curves for each voxel, we can calculate the 
dynamic PET image at any desired time frame. To be more specific, the intensity of 
the image at pixel j in time frame m, xm(θj) , is determined by

where tm,s represents the starting time of frame m, tm,e represents the ending time of 
frame m, and � represents the decay constant of the radiotracer. CPET

(

t; θj
)

 denotes the 
tracer concentration in pixel j at time t, which is determined using the aforementioned 
kinetic model with the parameter vector θj ∈ Rnk×1.

Then, we can estimate Ki using the Patlak plot method:

where Ki is the constant rate of irreversible binding. V0 is the distribution volume of the 
nonspecifically bounded tracer in the tissue. x(t) is the integrated activity of the tissue 
up to time t. Cp(t) is the plasma concentration of the tracer at time t.

Training setup

Only the dynamic images obtained during the first thirty minutes were fed into the 
whole neural network. All the inputs were normalized to SUV images. The input 
matrix had a shape of Ti ×1 × H × W, where Ti corresponds to the total number of 
time frames within the initial thirty minutes. H and W denote the height and width of 
the image, respectively. The number of input channels was specified as 1. The size of 
the output matrix, representing the whole network’s output, was T ×H ×W  , where 
T represents the number of time frames in the dynamic PET images. Furthermore, 
the loss function was the Huber loss [21], which is very resistant to outliers.

To train the kinetic model network, we calculated the loss between the generated 
images and the ground truth as the loss function.

where predtSUV(x, y) is the pixel value of the generated image at position (x,y) for the 
t-th frame. gttSUV(x, y) is the pixel value of the ground truth at position (x,y) for the t-th 
frame. T is the total number of frames. M and N are the height and width of the images, 
respectively. Due to the fact that the first 30 min of dynamic PET images (the first 22 
frames) were already used as network inputs, we only utilized the images from the sub-
sequent 30 min (last 6 frames) as the training targets.

Additionally, we added a time difference loss function for the linear part of the Pat-
lak model.

(6)xm
(

θj
)

=
tm,e

∫
tm,s

CPET

(

τ ; θj
)

e−�τdτ

x(t)

Cp(t)
= Ki

∫ t
0Cp(τ )dτ

Cp(t)
+ V0

(7)lossSUV =
1

TMN

∑

t

∑

x,y

huber_loss(predtSUV(x, y), gt
t
SUV(x, y))
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where Cp(t) is the blood input function. K (x, y) is the Ki parameter of the Patlak plot at 
position (x,y). x(t), y(t), and diff k(·) are defined according to the definitions provided in 
Eq. (8). Tlinear is the total number of frames that represent the linear portion in the Patlak 
plot model. tk represents the kth time frame.

Thus, the total loss is as follows:

where � is a hyperparameter that adjusts the weight between fitting Ki and the SUV.
We did not train the feature extraction network and the kinetic model network sepa-

rately; instead, we treated them as one end-to-end network and trained them together. 
The optimizer was chosen as adaptive moment estimation (Adam) [22], and the learning 
rate was set to 1e-4. We used a strategy that adjusted the learning rate to one-tenth of 
the original value every 10,000 iterations, with a lower bound of 1e-7. We trained our 
network on an NVIDIA GeForce RTX 3090 GPU for a total of 10 epochs. Each epoch 
included 7171 iterations. To validate the effectiveness of our proposed method that 
incorporates a kinetic model, we compared it to a method with the exact same net-
work structure but without the kinetic model. In other words, we directly predicted the 
SUV images for the last 30-min time frames without the need to perform the steps of 
the kinetic model. Additionally, while maintaining the rest of the network architecture 
unchanged, we removed the sigmoid activation function from the final layer. We are still 
employing a point-wise neural network approach. We refer to this method as "without 
model" in the figure. The method without incorporating the kinetic model adopted the 
same hyperparameter settings and loss function as the full model. This was done to min-
imize the influence of other factors and ensure the accuracy of the conclusions.

Patient PET data

The network’s training dataset was obtained from the Cancer Hospital of the Chinese 
Academy of Medical Sciences Shenzhen Center, which included 7313 slices of data 
from 103 patients acquired with the GE Healthcare Discovery MI Dr PET/CT Scan-
ner. All patients had space-occupying lung lesions, which can also be called pulmo-
nary nodules. Both benign and malignant lesions were present. We randomly selected 
10 patients as the test set and 93 patients as the training set. The patient’s height range 
was 1.641 m ± 0.089 m, and the weight range was 63.0 kg ± 10.36 kg. Information on the 
patient’s gender and age were unavailable because the patient’s data were anonymized 
and desensitized. The dynamic PET data were divided into 28 frames: 6 × 10 s, 4 × 30 s, 
4 × 60 s, 4 × 120 s, and 10 × 300 s with total radionuclide doses of F18-FDG ranging from 

(8)

y(t, x, y) �
predSUV(t, x, y)

Cp(t)

x(t) �

∫ t
0 Cp(τ )dτ

Cp(t)

diffk(f (t, x, y)) �f (tk+1, x, y)− f (tk , x, y)

lossdiff =
1

TlinearMN

∑

k

∑

x,y

huber_loss(diffk(y(t, x, y)), diffk(K (x, y)x(t)))

(9)loss = lossSUV + �× lossdiff
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201.83 Mbq to 406.46 Mbq for different patients. Each time frame of the dynamic PET 
data was an image array of 256 × 256 × 71 voxels with a voxel size of 1.95 × 1.95 × 2.79 
mm3. The blood input function was manually extracted from the image region of the 
descending aorta.

Results
Qualitative image quality assessment

Figure 4 shows that the overall visual effect of the generated images was close to that 
of the reference images and presented most of the anatomical structure details, which 
was based on the observations of the three views in the coronal, sagittal, and transverse 
planes. In addition, some high-uptake regions could still be effectively represented in the 
generated images. A better SNR could be obtained using our proposed method, which 
also had a positive effect in terms of noise reduction for improving the image quality. 
Figure 5 shows that a noisy Ki image would have been obtained if we applied the Patlak 
plot method on the first 30  min of dynamic PET data. However, we can see that the 
noise level was reduced through our method, and we could generate a more reasonable 
Ki image. Our method could show more anatomical details of tissues and organs than 
the no-kinetic-model network. Both our network and the no-kinetic-model network 
exhibit artifacts in the cardiac region in Figs. 4 and 5. This phenomenon is likely attrib-
uted to the fact that the network’s input consists of various time frames from the initial 
30 min. Due to cardiac motion between time frames, the lack of consistency in features 
extracted by the feature extraction network introduces significant noise, resulting in 
the appearance of artifacts. Figure  6 shows that our method gave more accurate SUV 
results in most tissue regions, but it provided SUVs that were lower than the real values 
in some metabolically active areas that did not fit the kinetic model. However, if we did 
not have kinetic models, our networks may have produced very inaccurate predictions 
about some tissues and organs. This would make the images less useful for diagnosis. 

Fig. 4  Examples of generated dynamic PET images obtained from different planes (the transverse plane, 
coronal plane and sagittal plane). The ground truths are the last frames of the dynamic PET images, which 
were obtained 1 h after injection with a 5-min scanning time. The images in the upper-right corner were 
obtained by our proposed network with the kinetic model, and the images on the bottom were generated 
by the same network without the kinetic model
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Concerning the Ki image, the original Ki image generated in the first 30 min was pre-
dicted accurately for the hypermetabolic region because the TAC of the hypermetabolic 
region showed an upward trend in the early stage and quickly entered the linear stage on 
the Patlak plot. The Ki image acquired by our method presents the same conclusions as 
the SUV forecast.

Quantitative image quality assessment

We compared the image evaluation metrics computed by various deep learning meth-
ods, such as the attention-based hybrid image quality (AHIQ) method [23], the deep 
image structure and texture similarity (DISTS) approach [24], and the learned percep-
tual image patch similarity (LPIPS) technique [25], and some metrics without deep 
learning, such as gradient magnitude similarity deviation (GMSD) [26], most appar-
ent distortion (MAD) [27], the normalized Laplacian pyramid distance (NLPD) [28], 

Fig. 5  Example of generated parametric Ki images obtained from different planes (the transverse plane, 
coronal plane and sagittal plane). The Ki images of both the ground truth and our proposed method 
were obtained by fitting the last 13 frames of the Patlak plot’s data points with linear regression. The main 
differences between both methods are that the data points from the last 30 min were generated by the 
proposed network rather than being real. The Ki images of the method without the kinetic model in the 
lower right were generated directly rather than by fitting a Patlak plot. The images in the upper right were 
obtained by fitting only the first 30 min of frames

Fig. 6  An example of a slice of an SUV image and a slice of a Ki image rendered in pseudocolor
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and the visual saliency-induced index (VSI) [29]. We also included traditional metrics 
such as the structural similarity index measure (SSIM), the peak SNR (PSNR), the 
normalized mutual information (NMI), and their improved versions such as the mul-
tiscale SSIM (MS-SSIM) [30], information content-weighted SSIM (IW-SSIM) [31], 
feature similarity index measure (FSIM) [32], spectral residual-based similarity index 
measure (SR-SIM) [33], discrete cosine transform (DCT) subband similarity (DSS) 
[34], and Haar perceptual similarity index (HaarPSI) [35] (Figs. 7, 8). These measure-
ment methods showed that, on average, our method worked better than the Ki images 
made from 30 min of dynamic PET images.

Figure 9 shows that our method produced consistently better NMI metrics for all 10 
patients’ data when the ground truth was used as the reference image. This goes some 
way toward explaining the usability of our approach. Figure 10 shows that, except for 
the eighth patient, our method yielded better PSNR measurements than the origi-
nal method. Figure 11 shows that the SSIM decreased significantly if the parameter 
image was made directly without using a kinetic model. However, this problem did 

Fig. 7  A comparison of the image quality of the SUV images produced with and without a kinetic model, 
where a real 1-h static PET image was used as a reference. The suffix “_h” means that the higher this metric 
is, the better the image quality. In contrast, the suffix “_l” means that this metric is a distortion index, so the 
lower this metric is, the better the image quality. The assessment of the radar image on the right shows that 
the larger the footprint is, the better the image quality

Fig. 8  Image quality assessment of the Ki images generated by different methods with the same input. The 
explanations and descriptions of the pictures are the same as those in Fig. 7
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not occur with our proposed method, and it can be seen that our method obtained 
better SSIMs for all patients except for patient 8.

To determine how close the synthetic Ki images were to the real images, a test sub-
ject with a malignant lung tumor was chosen from the test data. The region of interest 
(10 × 10 × 10) of the subject’s tumor was delineated and analyzed in a Bland‒Alt-
man plot. The Bland‒Altman plots showed that the 95% limits of agreement between 
the ground truths and the Ki images synthesized by the algorithm in this paper were 
between -0.029 ~ 0.03 (mean: 0.00), and the 95% limits of agreement between the 
ground truths and this Ki images synthesized by the method without incorporating 
the kinetic model were between − 0.027 and 0.034 (mean: 0.003), which were slightly 
larger than those of our proposed network. The 95% limits of agreement between the 

Fig. 9  Comparison of the NMI distributions obtained with different patients and different methods

Fig. 10  Comparison of the PSNR distribution obtained with different patients and different methods
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Ki images generated only with the original data acquired in the first 30 min and the 
ground truths were between − 0.029 and 0.039 (mean: 0.005), presenting the largest 
error.

Discussion
We developed a new way to quickly and effectively combine deep learning with kinetic 
models to form dynamic PET images for the next 30 min from the dynamic PET images 
of the first 30  min. This method is the first time that SUV and Ki parametric images 
have been made at the same time, and it works well. Real patient data were used to show 
that the proposed method can make parametric images that match the reference images 
derived from Patlak plots. By using different metrics, such as evaluation criteria involv-
ing deep learning and metrics using the traditional computational method of extracting 
texture features for evaluating image quality, we showed that the image quality gener-
ated by our deep learning method combined with a kinetic model is better for Ki param-
eter images. This development may significantly reduce the required scanning time and 
improve patient comfort.

According to our observations, the SUV images generated by our method contained a 
certain amount of dynamic PET trend information for the first 30 min while bound by 
the curve of the kinetic model. If the target tissue’s TAC does not fit the current kinetic 
model, it will not be suitable for constructing highly accurate parametric and SUV 
images. Additionally, because the generated images are learned from the input of the 
dynamic PET SUV source, if the input source does not contain the trend of the next 
30 min, then the images will not be generated well either.

The Ki images generated by directly using a deep learning approach cannot guarantee 
consistency with the real situation, which can be seen in the SSIM metric comparison 
(Fig. 10), and the interpretability of deep learning is very low, which limits the applica-
tion of deep learning in the medical field. Our method uses a kinetic model to make 
deep learning more interpretable to a certain degree.

Fig. 11  Comparison of the SSIM distributions obtained with different patients and different methods



Page 13 of 15Liang et al. EJNMMI Physics           (2023) 10:67 	

The deep learning framework we proposed is also scalable. In future, as the level of 
pharmacokinetic modeling of human tissues and our understanding of how human tis-
sues work metabolically improve, the TACs made with our method will become more 
accurate.

Conclusion
In this work, we looked at an approach that combines kinetic models with deep learning 
using only the first 30 min of dynamic PET images to obtain the next 30 min of dynamic 
PET images and parametric Ki images. On data acquired from 103 patients, deep learn-
ing techniques combined with kinetic models were evaluated in terms of subjective and 
objective measures. The results showed that accurate parametric Ki image estimation 
is valid, can reduce the required scanning time and can make patients more comfort-
able. Although the proposed method performed well in quantitative evaluations, further 
validation is needed in clinical applications. In future, more research should be done on 
the kinetic modeling process to improve the performance of the existing models. For 
example, pharmacokinetic models that work for both tumors and normal tissues could 
be studied to make neural network models much more accurate.
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