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Abstract 

Despite being thirteen years since the installation of the first PET-MR system, the scan-
ners constitute a very small proportion of the total hybrid PET systems installed. This 
is in stark contrast to the rapid expansion of the PET-CT scanner, which quickly estab-
lished its importance in patient diagnosis within a similar timeframe. One of the main 
hurdles is the development of an accurate, reproducible and easy-to-use method 
for attenuation correction. Quantitative discrepancies in PET images between the man-
ufacturer-provided MR methods and the more established CT- or transmission-based 
attenuation correction methods have led the scientific community in a continuous 
effort to develop a robust and accurate alternative. These can be divided into four 
broad categories: (i) MR-based, (ii) emission-based, (iii) atlas-based and the (iv) machine 
learning-based attenuation correction, which is rapidly gaining momentum. The first 
is based on segmenting the MR images in various tissues and allocating a predefined 
attenuation coefficient for each tissue. Emission-based attenuation correction methods 
aim in utilising the PET emission data by simultaneously reconstructing the radioactiv-
ity distribution and the attenuation image. Atlas-based attenuation correction meth-
ods aim to predict a CT or transmission image given an MR image of a new patient, 
by using databases containing CT or transmission images from the general popula-
tion. Finally, in machine learning methods, a model that could predict the required 
image given the acquired MR or non-attenuation-corrected PET image is developed 
by exploiting the underlying features of the images. Deep learning methods are 
the dominant approach in this category. Compared to the more traditional machine 
learning, which uses structured data for building a model, deep learning makes direct 
use of the acquired images to identify underlying features. This up-to-date review goes 
through the literature of attenuation correction approaches in PET-MR after catego-
rising them. The various approaches in each category are described and discussed. 
After exploring each category separately, a general overview is given of the current 
status and potential future approaches along with a comparison of the four outlined 
categories.
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Introduction
The combination of two of the most established methods in patient care such as 
positron emission tomography (PET) and magnetic resonance imaging (MRI) could 
potentially provide invaluable complementary functional and anatomical information. 
Lower radiation delivered to the patient, improvements in image quality mainly due to 
advancement in motion correction techniques and benefits in radiotherapy planning 
due to more accurate target delineation are just some of the benefits already provided 
[1, 2]. The first commercially available PET-MRI systems though were introduced more 
than a decade ago, and despite the initial excitement in terms of how the systems could 
revolutionise molecular imaging, they are still not widely used in routine clinical practice. 
One of the main reasons is the reported discrepancies in tracer uptake, prompted by 
the vendor-provided attenuation correction (AC) methods, when compared with more 
established techniques such as computed tomography (CT) or a transmission scan, 
which may hamper accurate quantification. CT and transmission scans are based on the 
attenuation of photons in the medium, which can be directly exploited for correcting the 
PET images. If the CT-based AC values are appropriately converted to 511-keV linear 
attenuation coefficients, the method provides highly accurate results for reconstructing 
PET data [3]. The signal intensity in MRI, however, is not representative of tissue density 
or the atomic number of the imaged material, which makes the definition of an AC map 
more complicated. Tissues that do not provide an MRI signal such as bone and air will 
lead to errors in bony structures or lesions near bone in the reconstructed PET images. 
Moreover, involuntary motion has always been, and remains, a challenging issue in the 
concept of attenuation correction, and PET in general, while subject specific differences 
in densities for certain organs such as the lung, may constitute the use of global 
attenuation correction factors as an ill-advised technique.

As a result, ongoing attempts from the scientific community to address the problem 
as accurately as possible have led to an extensive number of publications describing a 
very wide range of proposed AC techniques [4–11]. In Fig. 1, the increasing number of 
proposed techniques over the years can be appreciated along with how machine learning 
methods have within a few years outnumbered all other methods.

Fig. 1 Number of publications from 1985 to 2023 (June) introducing a new technique for attenuation 
correction for PET-MR data. The pie chart indicates the proportion each group of methods (MR-based, 
emission-based, Atlas-based and machine learning-based AC) occupies in all literature included in the left 
plot. For the generation of this figure, the keywords “PET-MR” and “attenuation correction” were used in 
Google Scholar and PubMed. All results were then filtered to identify studies introducing a new method
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The existing literature can be broadly partitioned into the following categories:

1. MR-based AC (MRAC): The direct use of MR sequences which aim to extract 
information regarding the attenuation properties of the tissues.

2. Emission-based AC: The direct use of emission PET data to predict the AC map.
3. Atlas-based AC: The generation of a pseudo-CT using databases of PET, CT, MRI 

and transmission images.
4. Machine learning-based AC: A collection of machine and deep learning techniques 

which exploit databases of mainly MR, CT and PET data to identify underlying 
correlated features.

This review will describe each one of the above categories, along with all recent 
advancements, while the benefits and disadvantages of those methods will be discussed. 
Rather than focusing on a specific organ or method, an overall view of all proposed 
techniques will be given. A handful of methods not falling under one of the pre-
described categories will be separately discussed. At the end, a general discussion of the 
current status and the potential future direction of attenuation correction in PET-MR 
will be presented.

Motion artefacts
Motion is inextricably intertwined with attenuation correction. However, since 
motion correction is a large and active field of research, we will not include the details 
of the various motion correction methods. Instead, we advise the reader to refer to 
comprehensive reviews covered in [12–14]. We do, however, need to briefly comment 
on some of the specific issues that motion causes on PET-MR acquisitions. In general, 
motion during MR data acquisition results in corrupted k-space data leading to artefacts 
such as ghosting, blurring and others [14], which can subsequently have a direct effect 
on the attenuation correction of the associated PET images. In most vendor-provided 
MRAC techniques, in order to minimise motion due to respiration which is the main 
contributor to motion artefacts, the patient needs to hold their breath during the 
acquisition [15], which, despite the difficulties it poses for certain clinical conditions, 
can still result in misaligned PET and MR or CT images and, conversely, in artefacts on 
the final PET images [16]. In practice, it is also quite common that the patients might 
hold their breath at end-inspiration rather than end-expiration or vice versa leading to 
considerable biases on the PET images [17]. Moreover, involuntary motion of abdominal 
organs, although more subtle, is difficult to address and can also lead to misregistration 
errors [14]. In clinical PET-CT examinations, some of the challenges in cardiac and lung 
imaging can be overcome by allowing free breathing and averaging the dynamic CT 
images [18] or even a static CT image during free-breathing seems to be quite insensitive 
to misalignment errors [19]. As mentioned, such approaches in MR imaging could 
create a phase difference (and therefore, ghosting artefacts) while populating the k-space 
rather than just simply producing an averaged image. Various other methods have 
been proposed in order to make MR acquisitions less prone to motion artefacts such as 
radial sampling of the k-space [20], gating of the MR signal [21], the use of MRI-derived 
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motion fields to perform motion correction [22, 23] in combination with anatomically 
guided PET image reconstruction [22], accelerated techniques to avoid breath-hold 
[24, 25] and more. Specifically for this review, most studies attempt to validate the 
proposed method on the PET-MR using a separately acquired CT, which is brought in 
the MR space. In the atlas and machine learning methods, pairs of CT and MR data are 
employed for predicting the final image used for attenuation correction (more details 
in the corresponding sections). Involuntary motion in non-rigid organs though such as 
the lungs, heart and bowels, renders coregistration between the two images challenging. 
Although most studies tend to apply rigid followed by non-rigid registration, small levels 
of misalignment may still be observed at the edges of organs, which might be mistaken 
as a “disagreement” between the two methods in the attenuation-corrected PET image 
[26, 27].

MR‑based attenuation correction
Vendor‑provided techniques

The majority of vendor-provided techniques for AC are based on the 2-point Dixon 
method [28], which uses two different echo times, taking advantage of the slightly 
different precession rates of fat and water molecules to create an image. This image 
can then be classified into soft tissue and fat, and along with the background and lung, 
pre-defined attenuation coefficients (μ) are assigned. The first obvious problem with 
this method is that bone and lung tissue do not produce an MR signal and therefore 
cannot be distinguished in the images due to both having extremely short T2*. This 
causes a bias in corrected PET images in terms of standardised uptake values (SUVs), 
which has been quoted to range between 10 and 30% in soft tissue and even more in 
bone lesions, compared to “gold standard” methods such as CT attenuation correction 
(CTAC) or transmission scans [29–45], even though it can still be useful for bone lesion 
identification if quantification is not of interest [46]. In a whole-body study, Izquierdo-
Garcia et  al. [47] reported differences of more than 10% in the spine, lung and heart 
with the MRAC method being also susceptible to metallic artefacts and artefacts due to 
the limited MR field of view (FOV), which truncates parts of the body located outside 
of it, also known as truncation artefacts. To tackle truncation artefacts in the body, the 
“B0 homogenisation using gradient enhancement" (HUGE) method was proposed and 
implemented on the Siemens mMR scanners, a sequence technique which results in an 
extended FOV [48, 49].

In order to incorporate information about bone tissue in the μ-maps, a method 
that superimposes bone tissue on the Dixon-generated μ-maps was introduced, using 
intensity- and landmark-based deformable registration between an atlas consisting of 
MR images and bone mask pairs and the patients’ Dixon image (SEGBONE method) 
[30]. This significantly decreased bias in brain even though a considerable number of 
outliers were still present [36]. Even though the SEGBONE method shifted SUV values 
in the body in the correct direction [50], significant bias is still reported in lung and 
spine [30]. However, minimal effects were reported in prostate [51].

An alternative but popular approach is the use of the ultra-short time echo (UTE) 
sequence, which is acquired at approximately 100 times shorter echo times compared 
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to most anatomical T1-weighted MR images (will be referred to as T1w for the rest 
of this review) and could capture the signal from regions with very short T2* such 
as bone [52]. In short, this is achieved by using data from two very short (or half ) 
pulse excitations with inversed polarity and spiral mapping of the k-space. A number 
of methods to make acquisition faster by either under-sampling k-space, switching 
the readout gradient earlier, and modifying the dual to a single echo acquisition have 
also been proposed, which provide results comparable to the original UTE [53–58]. 
Despite its popularity for attenuation correction in PET, a number of studies have 
reported significant underestimation in PET SUV values in the brain, ranging 
between 4 and 17% when compared to CTAC, especially in the cortical regions [29, 
36, 59–61], and misclassification of voxels belongs to the ventricles, which were 
classified as air [62], and bone, which was classified as tissue [59, 61, 63, 64]. In the 
lung, UTE performs well in terms of tissue detectability [65, 66], but the sequence 
has not been extensively applied in the body due its long acquisition time [67]. It 
has also been demonstrated that the change in the magnetic field during the UTE 
sequence induces eddy currents that lead to degradation of the reconstructed images 
and misclassification to tissue boundaries [68].

The zero time echo (ZTE) sequence provided on the GE SIGNA is based on the 
same principle as UTE with the difference that the readout gradients are turned on 
before the radiofrequency excitation and encoding starts at the same time as sig-
nal excitation making it possible to acquire an image with almost zero TE [69]. The 
bone regions from this method were found to have a high degree of overlap when 
compared to the regions from the corresponding CT images although misclassifica-
tion of dense bone tissue as air was also reported [70]. When directly applied for 
attenuation correction of PET data though, the results in the literature range from 
marginal SUV differences when compared to CTAC [71, 72] to overestimations of 
up to 10% [73–77], especially in the cerebellum. In the lung, ZTE has shown promis-
ing results in terms of contrast and lesion detectability [78, 79]. However, no studies 
performing a quantitative evaluation of the method in the body were found. More 
recently, Engström et al. [80] provided some insight on the fat–water chemical shift 
artefact, which is often apparent in ZTE images (a non-uniformity artefact mainly 
prominent in tissue edges) and leads to tissue misclassification. All manufacturer-
provided methods for a single patient are presented in Fig. 2 along with a CT image 
for comparison.

Fig. 2 Various vendor-provided MR attenuation correction methods along with a low-dose CT used for CT 
attenuation correction
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Adaptations of vendor‑provided techniques

Tissue segmentation

Even though the MRAC methods outlined above were reported to have discrepancies 
with the more established CTAC and transmission scans, their ability to identify 
certain tissue classes and their ease of use motivated a number of studies to further 
improve them.

An obvious approach would be to combine either the readily available [81, 82] or 
modified versions of the UTE and Dixon sequences [57, 83–85] to improve classification 
accuracy to the various tissue classes. For example, Su et  al. [83] used the UTE to 
discriminate air and bone along with the modified DIXON sequence, which includes a 
flexible choice of echo time pairs rather than fixed values, for better differentiation of 
fat and water tissue while Han et  al. [85] combined UTE with 6 multi-echo DIXON 
sequences to enhance tissue differentiation.

Although the implementation details differ between the various studies, an improved 
tissue class identification is reported when compared to either the Dixon, UTE or the 
ZTE alone in the brain [81, 85] the thorax [83] or the pelvis [82]. Alternatively, a few 
studies suggest an improvement of tissue classification by extracting information 
regarding the tissue properties from conventional anatomical sequences such as 
T1 images [39, 86], T1 and T2 maps [87], combinations of multiple turbo field-echo 
sequences [88] or a 31P-MRI image to utilise the signal from the phosphorus atoms 
present in the bone crystals [89]. A rigorous assessment on clinical PET data still needs 
to be performed for those methods, while the main limitation is the long acquisition 
time needed for all required sequences to be acquired.

The use of intermediate UTE images for a more accurate segmentation of air, bone 
and soft tissue has been proposed by a number of studies [61, 90, 91], which reported 
a significant decrease in SUV bias compared to the original UTE and an approximate 
5% bias in the majority of the brain when compared to CTAC. Most notably, Ladefoged 
et al. [92] extracted the air, bone and whole brain volume using UTE images, while CSF 
and brain tissue were identified by registering the images to the structural template 
provided by the Montreal Neurological Institute, space (MNI) in what is known as the 
RESOLUTE method.

To explore possible limitations in using uniform μ values in bone tissue, Khalife et al. 
[73] suggested segmenting the bone region and applying continuous CT-derived values 
by using a linear relationship between normalised ZTE and CT signal intensity. However, 
the increase in accuracy was relatively marginal when compared to using uniform values 
in the bone. A number of other methods have also focused on the accurate classification 
of the bone region [93–95] and the correct assignment of the μ values within the 
classified bone region [93].

Metallic artefacts

Besides tissue segmentation accuracy, the other great challenge in MRAC techniques 
is to address artefacts caused by metallic implants and properly accounting for any 
hardware in the FOV. In an attempt to mitigate susceptibility artefacts caused by metallic 
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implants, Burger et  al. [96], combined the Dixon images with the multi-acquisition 
variable-resonance image combination and slice encoding for metal artefact correction. 
Although their study showed promising results, the sequences are still quite long to be 
easily incorporated in a clinical PET-MR examination. Alternatively, Ladefoged et al. [97, 
98] and Schramm et  al. [99] used the PET along with the MR images to identify and 
segment the implants before incorporating them into the μ-map, which resulted in the 
mitigation of gross artefacts in the final images.

Currently, the μ-map of most of the scanners’ hardware is already incorporated 
in the latest MRAC methods [100] even though additional components such as the 
headphones, radiotherapy beds or body-coils could still lead to considerable bias [101] 
and any additional hardware needs to be accounted for [102]. Additionally, it has been 
shown that discrepancies of up to 3  cm between the actual position of the coils over 
the patient’s scanned area with the scanner-defined one could also lead to 10% bias in 
the mean SUV value [103, 104]. Manually adding any additional hardware on the default 
vendor-provided μ-map after scanning it on CT [104] or by using computer-aided design 
models rather than a CT scan [105] could lead to substantially improved accuracy in the 
PET images.

Alternative MR‑based attenuation correction methods

As mentioned earlier, one of the main challenges with attenuation correction in PET-
MRI is that there is no direct relationship between CT and MR signal [6]. There have 
been several attempts trying to correlate the information from the two modalities in 
an effort to confidently create a μ-map by exploiting the various imaging techniques 
provided by the MRI. Delso et  al. [106] reported that a one-to-one relation between 
CT and the transverse relaxation rate (R2

*) MR images was difficult to establish but the 
latter did contain a certain level of anatomical information of the bone, which could 
potentially be utilised. Moreover, good correlation was reported between CT HUs and 
an anatomical T1 [107] or a combination of T1 and T2 images [108] for bone and tissue 
even though organs susceptible to involuntary movement such as the bowel and bladder 
and bony-tissue interfaces were still not accurately defined [108].

Alternatively, rather than trying to establish a correlation in the signal intensities 
with CT, a few studies tried to directly employ MR sequences (other than the vendor-
provided MRAC methods) for tissue segmentation. A popular approach is the use of 
fuzzy C-means clustering either on T1 [109, 110], on UTE [57, 111], on time resolved-
angiography [112] or a combination of anatomical and UTE images [113], which 
led to promising results with good agreement between the reconstructed images 
of the proposed methodology and the reference method. However, the systematic 
overestimation of SUVs in soft tissue and underestimation in bone was still an issue 
[109, 112].

All studies that introduced a new method and were evaluated on clinical PET data 
against a reference method for attenuation corrections are listed in Table 1. For better 
clarity, only studies with a reported relative error are outlined and a selection of 
anatomical regions on which they were evaluated, if multiple, are mentioned.
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Table 1 List of original MR-based methods evaluated on clinical PET data

Study Method Validation data† 
(Tracer)

Region Reported error (%)

Proposed 
method

Vendor method

Zaidi et al. [109]* Segmentation 
of T1 images by 
means of fuzzy 
clustering into air, 
skull, brain tissue 
and nasal sinuses

10 (2-[18F]FDG) Brain  ~ 4.2 
(cerebellum)

N/A

Keereman et al. 
[90]

R2 maps 
derived from 
UTE sequence 
to perform 
three tissue 
classification 
(bone, soft tissue 
and air)

5 (2-[18F]FDG) Brain 5 □ N/A

Cabello et al. [61] R2 maps derived 
from Dual-echo 
ultra-short time 
(dUTE) sequence 
to estimate 
μ-map

9 (2-[18F]FDG) Brain −0.87 ± 2.1 Dixon: −14.8
UTE: −13.5

Juttukonda et al. 
[81]

Use of dUTE and 
2-point Dixon to 
segment air, bone 
with continuous 
μ values, fat and 
soft tissue (CAR-
RiDR)

98  ([18F]
Florbetapir)

Brain 2.55 ± 0.86  ̂ □ N/A

An et al. [116] Two-phase level-
set segmentation 
applied on the 
intermediate 
dUTE images to 
identify air, bone 
and soft tissue

10 (2-[18F]FDG),
20  ([18F]FP-CIT)

Brain 9 for 2-[18F]FDG,
4 for 18F[FP-CIT] 
(cerebellum)

UTE: −35
UTE: 14

Ladefoged et al. 
[92]

UTE sequence to 
segment air, bone 
and brain volume 
and MNI template 
to segment 
CSF regions 
(RESOLUTE)

164 (2-[18F]FDG) Brain −1.2 Dixon: ~ −12.5
UTE: ~ −7.5

Hu et al. [117] Segmentation of 
a 3D multi-station 
spoiled gradient 
echo sequence 
into air, lungs, 
soft tissue, and 
bone regions 
using intensity 
and a-priori 
knowledge of the 
organ anatomy

15 (N.A) Whole body −7.6 ± 7.5 (bone 
lesions)
−4.4 ± 3.8 (lung 
lesions)
−6.4 ± 10.2 
(heart)^

N/A

Schulz et al. [86] Segmentation 
of T1 images to 
air, lung and soft 
tissue

15 (2-[18F]FDG) Whole body 6.9 ± 9.5 
(Soft tissue 
lesions),3.0 ± 3.9 
(bone lesions), 
1.9 ± 5.8 (lung 
lesions) ▪

N/A
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Discussion

Brain

Despite the popularity of the vendor-provided MRAC techniques, various evaluation 
studies have demonstrated that they might lead to high biases when compared to a 
CTAC, mainly due to the lack of bone information in the Dixon sequence and voxel 
misclassification in both. The majority of the available studies focus on brain as most of 
the proposed sequences are too long for whole-body applications [86, 114]. Moreover, 
the head is not hampered by additional sources of error such as truncation artefacts, 
while patient motion can be more easily regulated [115]. Consequently, a rich literature 
of various methods, which can outperform the ones supplied by the manufacturers, is 
already available [30, 37, 61, 81, 82, 86, 90, 92, 109, 116, 117]. The addition of bone in 
the Dixon and the ZTE sequence seems to provide much more promising results in the 
brain, although careful assessment of the cerebellum and cortical regions is still needed 
[36, 90]. Current studies have also indicated that no substantial difference is noticed in 
the PET-reconstructed images when using fixed or continuous μ values for bone tissue 
[73]. A more synergistic technique between the vendor-provided methods could be the 
most straightforward approach to increase accuracy, but an evaluation in whole-body 
PET is still required [81, 82].

The regional mean relative error along with the standard deviation (where available) in radiotracer uptake across subjects is 
reported unless otherwise specified. The corresponding error for the vendor provided method is quoted where available. CT 
was used for reconstruction of the reference images unless otherwise specified
† Number of patients on which the method is evaluated, *transmission data used for reconstructing the reference PET 
images, ^ relative absolute error is reported, ▪relative difference in  SUVmax is reported, □ voxel-wise error is reported

Table 1 (continued)

Study Method Validation data† 
(Tracer)

Region Reported error (%)

Proposed 
method

Vendor method

Marshall et al. [37] Segmentation of 
a Turbo-FLASH 
sequence to air, 
lung, fat and 
soft tissue and 
addition of bone 
from information 
from a CT atlas

12 (2-[18F]FDG) Whole body 1.3 ± 0.9 (bone)
8.0 ± 2.9 (lung)
2.6 ± 0.4 (soft 
tissue) ^

N/A

Paulus et al. [30] Addition of bone 
in Dixon images 
using a bone atlas 
(SEGBONE)

20 (N.A) Whole body −4.9 ± 6.7 (bone)
2.9 ± 5.8 (bone 
lesions)^

Dixon: −46.5 ± 6.7
Dixon: 7.3 ± 5.1^

Leynes et al. [82] Combination 
of 2-point 
Dixon and ZTE 
sequence to 
segment air, bone 
with continuous 
μ values, fat and 
soft tissue

6 (2-[18F]FDG) Whole body −3.2 ± 0.8 (bone)
−3.5 ± 1.7 (bone 
lesions)^

Dixon: −10.8 ± 2.2
Dixon: −7.7 ± 0.8^
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Whole‑body

The areas that seem to provide the least accuracy in the reconstructed PET images are 
the lung, bone, bone lesions and the heart, even after the introduction of SEGBONE in 
the Dixon μ-map. In the lung, where high discrepancies are reported, the problem seems 
to be more convoluted. Various studies have reported that the density is quite variable 
and volume, age, sex and smoking status dependant, while density difference due to the 
respiratory stage could induce errors as high as 30% [118, 119]. The reported true linear 
attenuation coefficient values range between 0.018 and 0.027   cm−1, which can have a 
considerable impact in the PET SUV [6]. Beyer et  al. [120] also quoted differences of 
up to 20% just by comparing the linear attenuation coefficients between vendors, 
indicating that some level of standardisation is required. In addition, when applied to 
simulated PET data, underestimations of up to 50% were reported, significant errors 
when truncation artefacts are present while imperfect registration between PET and 
MRAC or CTAC (see motion correction section) could lead to 20% bias in SUV [26]. 
Moreover, it has been reported that iron overload in certain patients could also lead to 
misidentification of liver tissue as lung [121].

Ideally, a simple and fast MRI-only method that is applicable in whole-body scans for 
accurate attenuation correction would be provided. Alternative methods using multiple 
MR sequences might be of interest but still need to be validated. However, the long 
acquisition times render them impractical for clinical PET-MRI applications.

Emission‑based attenuation correction
The maximum‑likelihood reconstruction of attenuation and activity algorithm (MLAA)

A rather appealing approach is to try and generate the μ-map during the reconstruction 
process based on the PET emission data without additional acquisition of a μ-map. 
Some of the earliest approaches included the use of the emission data for finding the 
various head regions on which a uniform μ value [122] was applied, and then combine 
with the information from the emission and transmission scans using a joint objective 
function during the reconstruction [123, 124], or the application of discrete consistency 
conditions on the data [125–128]. The most popular method currently is the maximum-
likelihood reconstruction of attenuation and activity algorithm (MLAA) [129]. The basic 
concept is to incorporate the reconstruction of the μ-map in the process of iterative 
reconstruction of the PET data. The radioactivity concentration is estimated in each 
iteration for the reconstruction of the PET image while keeping the μ values constant as 
it would be normally done in iterative image reconstruction. Each iteration for the PET 
image is followed by an update (iteration) of the μ-map during which the radioactivity 
concentration remains constant in this intertwined iterative procedure. As the emission 
data need to provide a level of information of the attenuating medium, this method is 
mainly used in conjunction with time-of-flight (TOF) as non-TOF systems result in 
crosstalk artefacts (between activity and μ-maps leading to reduced μ values in regions 
of high activity) and high noise [130, 131]. Initial studies provided encouraging results 
in terms of image quality, while the method was able to compensate to some extent for 
truncation artefacts [129, 130, 132]. However, it has been shown that the μ value can only 
be estimated up to an additive constant, which can be problematic when quantification 
is of interest [132]. Moreover, the low count bias present in the MLEM/OSEM algorithm 
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seems to be further exacerbated when the MLAA algorithm was applied [133] rendering 
the method inappropriate for dynamic studies with low count frames. The combination 
of multiple attenuation maps from dynamic data generated with the MLAA algorithm 
was shown to moderately improve the estimation of a single map in terms of accuracy 
but did not address the limitations described above [134].

Tackling the additive constant in MLAA

A number of methods have been proposed in order to address the limitations of the 
additive constant and noise in the early MLAA approaches. Salomon et  al. [135] 
suggested the use of MRI images with organ segmentation to update the μ values in the 
image in a regional rather than a pixel-wise basis. Boellaard et al. [136] demonstrated 
that this method reduces bias in bone regions from approximately 50–15% when 
compared to Dixon MRAC methods and better addressed the truncation artefacts. 
The average bias in lesion SUV values in clinical data was also reduced, but a high 
variance was observed. Moreover, since T1 anatomical images cannot distinguish 
bone from air, many voxels in air cavities were misclassified and the μ values for bone 
were underestimated [137]. To further increase the accuracy of segmentation and 
reconstructed PET images, a few similar methods have been proposed using a tissue 
prior atlas [138], an MR-based AC image instead [139–142], combination of T1 and UTE 
images [143] or anatomical T1 images along with penalisation functions in the MLAA 
for estimating the PET attenuation-corrected image and μ-map [133] and more [142, 
144]. Most of those methods report an error of < 7% in the brain which is more than a 
twofold lower compared to UTE, two-point Dixon and Salomon’s method.

Another attractive advantage of the MLAA technique was the potentially accurate 
reconstruction of the lungs since misregistration artefacts due to breathing motion 
could be avoided as there would not be a need for an anatomical image. Most of the 
aforementioned techniques that attempt to address the additive constant introduce an 
anatomical image, while most methods performed poorly in air cavities due to voxel 
misclassification. Attempts to reconstruct the lung while tackling the additive constant 
issue include lung segmentation within the MLAA reconstruction process [141], the 
use of non-attenuation-corrected images (NAC) [145] or CT images [137] to segment 
the lung prior to the final reconstruction. However, high biases in lung edges probably 
caused by imperfect segmentation [145] and the need for CT scans [137] indicate the 
requirement for these methods to be further developed to be of practical use in a clinical 
PET-MR facility.

Alternative emission‑based methods

The two main alternatives to the MLAA method are the maximum likelihood activity 
reconstruction and attenuation correction registration (MLRR) [130, 131, 146], and the 
maximum-likelihood activity and attenuation correction factors estimation (MLACF) 
[147]. In the MLRR, proposed by Rezaei et  al. [130, 131, 146], a CT image from a 
previous scan of the patient is included in the reconstruction process and instead of 
updating the μ values, those are considered known and the deformation field between 
PET and CT is updated. Although this method seems to provide promising results, it is 
more meaningful in the non-rigid regions of the body and it requires the existence of a 
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CT scan of the patient. Moreover, the change in density between respiration phases in 
the lung is not taken into account [6]. The MLACF method on the other hand simplifies 
the MLAA method by only updating the radioactivity concentration during iterative 
reconstruction, while the μ values are calculated by a closed-form solution [147, 148]. 
The simpler reconstruction process makes this method faster than the MLAA but since 
no anatomical reference is incorporated, and an overall non-negativity constraint of the 
attenuation correction factors is applied instead, the images are noisier especially in 
low count regimes [148]. Moreover, prior information regarding the tracer distribution, 
such as known amount of activity in the FOV, needs to be provided, which might be 
impractical in clinical practice. However, promising results were provided when applied 
on brain data with errors lower than 4% [149] and good performance even in systems 
with limited FOV [150].

Finally, although not strictly falling under this category, it is worth mentioning that 
a small number of studies attempted to generate the attenuation map using scatter 
[151–153]. Those studies have drawn limited attention so far probably because they have 
mainly been evaluated on simulated data [154].

All emission-based AC methods that have been applied on clinical PET data and 
report relative agreement with a reference method are listed in Table 2.

Discussion

The emission-based methods seem very efficient, as in principle no information 
regarding tissue density is required. Moreover, these methods address the misregistration 
problems between PET data and attenuation maps which are of particular issue in the 
lungs and heart. By far, the most popular method is the MLAA. However, in order to 
avoid crosstalk artefacts and excessive noise in the images, it could only be implemented 
on systems with TOF capability. Variations that claim that this method could be 
confidently applied in non-TOF systems have mainly been evaluated in the brain where 
TOF does not have as big an impact as in the rest of the body especially in the thorax 
where the crosstalk artefact could lead to excessive biases [155, 156].

Another issue that needs to be tackled with this method is that of the additive constant. 
Most techniques employed to address the problem use anatomical priors from MR 
images. Nevertheless, a few studies indicate that it is still not fully addressed in whole-
body regions [131, 142]. A more in-depth look at the inherent problems of the MLAA 
reconstruction algorithm, including the additive constant issue and problems related to 
convergence and dealing with voxels of zero value, is given by Salvo and Defrise [157]. 
MLAA seems to be able to overcome the truncation artefacts present at the edge of the 
FOV and is currently provided in the Siemens mMR scanner in combination with the 
Dixon-MRAC to fill the missing information. However, the more recent MR-only HUGE 
method seems to be outperforming MLAA for that purpose [158].

Most emission-based methods are also dependent on the timing resolution of the 
scanners [130, 132, 159, 160]. Therefore, even though currently they might still be 
considered as methods in development, it may be the case that in the near future, with 
continuous advancements in the PET system electronics [159], their performance will 
improve.
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Atlas‑based attenuation correction methods
The main concept of the atlas-based methods is to predict the required image for 
attenuation correction (e.g. CT) from the available image acquired from the PET-MR 
scan (e.g. an anatomical MR). This is done by generating a database of one or more of 
the required images from the general population and employing registration techniques 
between the available image from a new subject and the images in the database. The 
concept of constructing an atlas of anatomical images is not novel but has been around 
for more than 35  years [161, 162]. Therefore, one of the potential advantages of this 
method is that it is not a revived method such as the Dixon sequence or the emission-
based reconstruction but has been used routinely in different contexts to attenuation 
correction, and as a result, it has been evolved and optimised over the years. In its earlier 
applications, this method would only use a single or an averaged image (reference) rather 
than a whole dataset. The accuracy of the method would then be highly dependent on 
the accuracy of the registration of the reference image to the corresponding image of 
the new patient (target). These were evolved to the more widely used multi-atlas method 
in which multiple images from a population are available for application on the target 
image which improves registration accuracy by accounting for inter-subject variability 
[163]. A popular sub-category of the latter is the registration of database images to the 
same stereotaxic space (template), to generate a probabilistic map. The target image is 
then registered to the template and the probability that an area or voxel belongs to that 
particular class is estimated. Finally, to further improve registration between different 
modalities, the dual and triple multi-atlas methods were introduced with a database of 
pre-aligned images, e.g. CT and MR pairs with each pair acquired from the same subject. 
The MR images in the previous example would act as “intermediary” images to perform 
registration between the reference in the database and the target to eventually identify 
the corresponding CT image [5].

In the context of this review, the task is to estimate an accurate image that can be used 
for attenuation correction (such as a CT image) by registering the atlas to an anatomical 
MR image of the subject before applying it on the PET data. The main differences 
between methods are the type of images constituting the atlas (transmission data, CT 
images, MR images, etc.) or the type of atlas (single-atlas, multi-atlas, dual, etc.). Studies 
using pairs of transmission data with AC PET images have had limited attention as 
different radiotracers result in different biodistribution and therefore AC PET images, 
leading to the requirement for tracer-specific databases. Moreover, the methods did not 
perform better than when anatomical images were used instead [164–168].

Even though many studies trying to add bone information in the images using an 
atlas can be considered part of this category, those have been already mentioned in the 
other sections and we will only describe studies where the whole attenuation map is 
constructed using an atlas method.

Anatomy‑based atlases

In the most straightforward approach, an averaged CT can be created by selecting a rep-
resentative subject and registering the rest of the CT images in the database before aver-
aging all images. The averaged image is registered to the target to create the pseudo-CT 
in this single-atlas method [169]. Such an example is readily available on the GE SIGNA 
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scanners, with the CT atlas applied on the patients’ T1 image and has exhibited bias of 
less than 8% in reconstructed 2-[18F]FDG brain images [71, 170]. Since in PET-MR scans 
an MR anatomical image is usually available, most studies employ dual multi-atlas tech-
niques with coregistered CT and MR images [171] an example of which can be seen in 
Fig. 3. Alternatively, statistical parametric mapping (SPM, https:// www. fil. ion. ucl. ac. uk/ 
spm) can be used to create a CT- and MR-template of tissue classes with the latter now 
being the “intermediary”. The target’s intensity-normalised T1 image is segmented into a 
tissue map and registered to the MR-template before the inverse transformation matrix 
is applied to the corresponding CT-template [172]. The use of dual-echo UTE as target 
images to coregister with the T1 atlas [173] or the direct use of the T1 template to classify 
tissues and assign uniform μ values [174] have been proposed. More recently, in order 
to also make the method applicable to PET only scanners, Jehl et al. suggested the use 
of PET- and CT-templates with the PET template being registered to the target’s non-
attenuation-corrected PET data and the transformation matrix applied on the CT tem-
plate [175].

Fig. 3 Examples of the general principle of the anatomy- and patch-based dual multi-atlases

https://www.fil.ion.ucl.ac.uk/spm
https://www.fil.ion.ucl.ac.uk/spm
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Patch‑based atlases

Brain

Rather than finding the best candidate from the CT-atlas, the most commonly used 
methods attempt to create a completely new pseudo-CT image by selecting sections of 
the brain called patches (which can be as small as a voxel) and trying to find the best 
candidate for that particular section. This is repeated for all sections of the image and 
the methods differ on the identification of the optimum patch and on the calculation of 
the HUs from the atlas database.

In such an example, Burgos et  al. made use of a dual-atlas with voxel-level patches 
being used to assess the similarity of the target’s MRI with the MRIs from the MR-atlas. 
Weight-based averaging was then applied to the images of the CT-atlas to estimate the 
HUs on the final pseudo-CT [60, 176]. The proposed method performed better than 
the UTE, especially in the cortex, and provided good correlation with PET images 
reconstructed using patient-specific CT [177]. Another notable study by Merida et  al. 
[178] employed majority voting to determine the tissue class and the pseudo-CT voxels 
were generated by averaging the HUs of the voxels belonging to the same class from all 
CTs in the database in a method known as MaxProb. The method exhibited biases of less 
than 5% in tissue of reconstructed brain PET images with various tracers [179, 180].

A few more sophisticated methods have also been proposed which include sparse 
regression to match the target patch with the MR-template patches after segmenting the 
air [181], a Bayesian framework to combine patches between CT-UTE atlas pairs [182] 
and more [183–185]. Nonetheless, even though the added complexity for many of those 
methods resulted in reconstructed images with relatively low bias, they were still not 
more accurate when compared to more straightforward methods, which were previously 
described [176, 178, 185]

Whole‑body

Atlas-based methods are limited in whole body. For the thorax, Arabi and Zaidi 
proposed to use a reference patient and precomputed the transformation matrices after 
coregistering the rest of the MR-CT pairs on that patient. The target MR image would 
need to be coregistered to the reference MR and the saved transformation matrices 
would subsequently be applied to bring all MR-CT pairs to the target’s coordinate 
system before applying voxel-wise weighting to estimate the pseudo-CT’s HUs [186]. 
This method reduces the computation time, which was mainly due to the multiple 
registrations. It outperformed the Dixon sequence and led to errors of up to 8% for 
all tissues in the reconstructed PET images when compared to reconstruction using 
a CTAC. In pelvis, Wallsten et al. [187] performed a similar method to the “template” 
approach described above [172, 173] but used machine learning to determine the weights 
applied on each voxel of CT images comprising the atlas. Alternatively, Hofmann et al. 
used pattern recognition to find the patches from the MR-CT pair database that better 
correlate with the investigated patch from the target image [188, 189]. Although this 
approach performed very well in most organs with errors of up to 8% in SUV values, the 
corresponding error in lung was up to 30% high with subsequent attempts to improve 
the method having moderate effects on the overall decrease on the SUV biases [190].
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Table 3 List of original atlas methods evaluated on clinical PET data

Study Method Validation data† 
(tracer)

Region Reported error (%)

Proposed 
method

Vendor method

Kops et al. [166]* Generation 
of pseudo-
transmission 
images by 
bringing the 
averaged 
database images 
to the patients’ 
space

4 (2-[18F]FDG) Brain 9 N/A

Hofmann et al. 
[188]

Generation of 
pseudo-CTs 
using pattern 
recognition 
to find similar 
patches between 
a brain MR-CT 
pair database and 
target MRI

3 (N/A) Brain 3.2 ± 2.5 (VOIs in 
brain)

N/A

Malone et al. 
[167]*

Generation 
of pseudo-
transmission 
images by 
registering a brain 
MR-transmission 
maps database to 
the patients’ T1

10 (2-[18F]FDG) Brain −1.2 ± 1.2 N/A

Wollenweber 
et al. [170]

Pseudo-CT 
generation by 
registration of 
patient’s T1 image 
to a CT database

13  ([18F]FDG) Brain 0.2 ± 2.6 (VOIs in 
brain)

N/A

Arabi et al. [190] Adaptation 
of [188] using 
voxel-wise local 
normalised cross-
correlation

14 (2-[18F]FDG) Whole Body  ~ 5 ± 4 
(cerebellum),
 ~ 4 ± 10 (lung)

N/A

Burgos et al. [60] Generation of 
pseudo-CTs 
by registering 
a MR-CT pair 
database to 
patients’ T1 image 
a using local 
image similarity 
measure

41 (2-[18F]FDG) Brain 0.2 ± 2.1 UTE: −11.8 ± 2.1

Izquierdo-Garcia 
et al. [172]

Generation 
of 6-class 
probability maps 
from patients’ 
T1 image and 
coregistration to 
a similarly created 
probability map 
database with 
paired CT images. 
Averaged CT is 
brought back to 
patients’ space

15 (2-[18F]FDG or 
 [18F]FET)

Brain −1.0 ± 2.5 Dixon: 13.0 ± 10.2
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Table 3 (continued)

Study Method Validation data† 
(tracer)

Region Reported error (%)

Proposed 
method

Vendor method

Poynton et al. 
[173]

Registration of 
3-class probability 
maps from CT 
data-dUTE-T1 
database 
to patients’ 
corresponding 
MR images to 
generate a tissue 
probability map

13
(N.A.)

Brain 1.8 ± 2.4^ N/A

Chen et al. [181] Generation of 
pseudo-CTs 
by registering 
a MR-CT pair 
database to 
patients’ T1 image. 
Air segmentation 
is performed 
using an air 
probabilistic map 
and sparse 
regression to 
identify similar 
patches between 
atlas and patients’ 
MR

20  ([18F]
Florbetapir)

Brain 2.4 ± 1^ Dixon: 12.7 ± 2.2^

Burgos et al. [177] Use of 
convolution-
based local 
normalised 
correlation 
coefficient to 
irregular regions 
to account for 
mismatches in 
the FOV between 
CT and MRI and 
extension of 
the database to 
include both T1 
and T2 images

15 (2-[18F]FDG or 
 [18F]Florbetapir)

Brain 1.6 ± 0.6
(2-[18F]FDG),
1.9 ± 0.6  ([18F]
Florbetapir) □

N/A

Arabi et al. [186] Pseudo-CT 
generation 
by registering 
an averaged 
atlas image to 
the patients’ 
T1 and use the 
precomputed 
transformation 
matrices to bring 
all atlas images to 
the patients’ space

41 (2-[18F]FDG) Whole body 3.5 ± 6.1 
(cerebellum),
3.2 ± 9.8 (lung),
−4.9 ± 5.9 (bone)

N/A

Teuho et al. [174] Assignment of μ 
values on a tissue 
probability map 
generated from T1 
images in SPM

7 (2-[18F]FDG) Brain −0.3 ± 2.7 □ UTE: −7 ± 2.3□
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All atlas-based AC methods that have been applied on clinical PET data and report 
relative agreement with a reference method are listed in Table 3.

Discussion

As was the case with previous sections, the atlas-based methods literature is mainly 
focused in developing a method which outperforms the vendor-provided Dixon and 
UTE sequences. Nonetheless, a handful of studies provide a bit more insight into 
how the different techniques compare. As expected, the relatively “outdated” single-
atlas method, which collapses to a simple coregistration problem without taking into 
account the intra-subject variability, was easily outperformed by the dual-atlas method 
approaches [179]. On the other hand, to take full advantage of the multi-atlas methods, 
a large diverse database is required to achieve an accurate registration between the atlas 
and the target’s images. This makes the method more applicable in the head as its size 
and shape is less variable when compared to the organs in the thorax for example. Even 
for the head though, it has been shown that an adult database might not be suitable for a 
paediatric cohort and vice versa [33, 191]. In addition, MacKewn et al. demonstrated that 
even in the case of patients with thick hair (which is not included in the atlas databases) 
up to 10% bias might be observed at the occipital part of the brain [192].

In terms of accuracy, most methods seem to provide less than 5% bias when compared 
to CT attenuation correction in the brain. Cabello et al. reported similar results when 
comparing the methods proposed by Burgos et al. [60] and from Izquierdo-Garcia et al. 
[172] with a slightly higher intersubject variability for the latter. Similar conclusion was 
reported by Ladefoged et al. [36], who compared the methods proposed by Burgos et al. 
[60], Izquierdo-Garcia et al. [172] and Merida et al. [178] with all three methods having 

Table 3 (continued)

Study Method Validation data† 
(tracer)

Region Reported error (%)

Proposed 
method

Vendor method

Wallstén et al. 
[187]

Statistical 
decomposition 
algorithm 
to generate 
pseudo-CTs from 
the patients’ T2 
images

15  ([11C]acetate) Pelvis −2.3(prostate 
lesion)
−4.2 ± 5.7 (bone)

Dixon: −5.6
Dixon: −17.7 ± 8.4

Sousa et al. [165]* A database 
of paired of 
68Ge-transmission 
AC maps-T1 
images registered 
to the patients’ 
T1 image and 
averaging all 
transmission AC 
maps

9  ([11C]PE2I) Brain −0.1 ± 3.2 N/A

The regional mean relative error along with the standard deviation (where available) in radiotracer uptake across subjects is 
reported unless otherwise specified. The corresponding error for the vendor-provided method is quoted where available. CT 
was used for reconstruction of the reference images unless otherwise specified
† Number of patients on which the method is evaluated, *transmission data used for reconstructing the reference PET 
images, ^ relative absolute error is reported, □ voxel-wise error is reported
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similar performance in the brain and all of them outperforming the vendor-provided 
Dixon and UTE sequences and the MLAA method. More specifically, the methods from 
Burgos et al. [60] and Merida et al. [178] performed better in terms of bone accuracy 
while the methods from Izquierdo-Garcia et  al. [172] and Merida et  al. [178] had the 
lower variability in the cerebellum.

Only a limited number of studies have extended the atlas methods for whole-body 
applications [186, 188, 190]. Unfortunately, these studies indicate that these methods 
provide only moderate improvements when compared to a Dixon-based attenuation 
correction including bone information.

A generic disadvantage of all the atlas-based methods is the complexity in 
implementing them. Most methods require offline post-processing with the overall 
runtime for implementing them taking between 30 min and 2 h or more [36], making 
it impractical for a clinical setting [193]. The fact that most methods need offline post-
processing also means that access to additional tools is required, making it a multi-step 
procedure. Pitfalls surrounding such procedures include standardisation of the offline 
tools used for coregistration, for the extraction of tissue probability maps and to make 
sure that the methods are streamlined and do not depend heavily on the user. Moreover, 
most methods require at least one anatomical image to be acquired for the atlas to 
be transferred to. This means that an acquisition of 5–6  min is required for each bed 
position. Even though in most research studies and in the brain, this is generally not an 
issue, in a clinical setting where patients scanned with 2-[18F]FDG for less than 4 min/
bed position, this might be a limiting factor.

Considering the similarity in accuracy that most of these methods provide, it would 
make sense to opt for the most straightforward and easier to implement. The methods 
proposed by Burgos et  al. [60], Merida et  al. [178] and from Izquierdo-Garcia et  al. 
[172] are all of similar complexity and seem to be leading to comparable results and are 
probably more easily adapted for body applications [194].

Machine learning attenuation correction methods
Although the majority of publications for attenuation correction on PET-MR in the last 
three years are dominated by deep learning methods, a few earlier studies used “tradi-
tional” machine learning to generate pseudo-CT images. Those are more user depend-
ant, as structured data need to be generated from the images and be used as input to 
train a clustering algorithm such as Gaussian mixture model, support vector machine or 
random forests. With additional input from the user when the outcome is sub-optimal, 
the algorithm can then quickly process new data. These methods do not require high 
computational power, but they need a large amount of data for accurate tissue classi-
fication. Deep learning is a subset of machine learning, which quickly became popular 
thanks to the recent technological advancements making powerful graphic processing 
units widely available, and the availability of large databases that can be implemented for 
training deep learning models. These will be simply referred to as “deep-learning meth-
ods” for the rest of this review to differentiate them from the machine learning meth-
ods. One of the main differences compared to machine learning is that deep-learning is 
less user-dependant as the algorithms rely on training their artificial neural networks to 
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identify underlying features in the images while learning from their own errors. There-
fore, these methods have no need for “hand-crafted” data.

Machine learning methods

Machine learning methods have been used widely in the effort to perform attenuation 
correction. However, this review will only describe methods in which machine learning 
is the predominant method rather than peripherally being applied in the methods 
described above. One of the earliest approaches was presented by Johansson et al., who 
used two UTE image sets, a T2 image and a CT image from just four brain scans. A 
Gaussian mixture regression model was then used to link the intensities between MR 
and CT images in order to predict the pseudo-CT from an MR input [195, 196] with a 
number of studies also adapting this method [197, 198] or using polynomial regression 
[108] and support vector regression instead [199].

Most commonly though, manually extracted features from paired MR and CT images 
such as the spatial coordinates, pairwise voxel differences [200], gradient, textural and 
special frequency features [201–203] are used to identify regions of the same class. One 
of the few such approaches applied on brain 2-[18F]FDG PET data, incorporated random 
forest regression to generate the pseudo-CT leading to biases of up to 4% [201, 202].

Alternatively, a few groups employed machine learning methods to NAC PET data 
[204] or on the refinement of the existing MR-based AC methods [205] in order to avoid 
the need of additional datasets from another scanner although the methods are still to 
be applied on PET data.

Deep learning methods

The generic principle in deep learning is to define a neural network and train the 
algorithm on paired data to predict the target image when given an input image or 
images. The training process broadly resembles the iterative reconstruction process 
with the data first being forward-propagated and applied to all neural layers until the 
final prediction is generated. A loss function is applied to evaluate the accuracy of 
that prediction, the loss is then back-propagated in order to fine-tune the weights 
and the process is repeated, undergoing an iterative procedure until the loss-function 
is minimised [206]. The three main steps for deploying an algorithm involve: (1) the 
training part using the input and target images while withholding a subset of the initial 
data from the database, (2) validation of the performance of the model while fine-tuning 
the hyper-parameters and (3) testing of the algorithm using an external dataset.

Despite the difficulty in finding a meaningful relationship between CT and MR images 
using traditional techniques, deep learning approaches, by identifying appropriate 
underlying features from both images, have been fairly successful in predicting CT 
from MR images. The majority of deep learning applications in this context make use of 
convolutional neural networks (CNNs). A popular sub-category of the CNNs, especially 
in the context of semantic segmentation, are the fully convolutional networks (FCNs), 
which mainly use convolutional operations between layers rather than including fully 
connected layers which result in reduced number of parameters and therefore faster 
training. Their general architecture is an encoding path in which the input image is 
encoded into features and a decoding path in which the features are used to predict 
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the final image. The most popular algorithm currently is the U-Net, which was initially 
proposed for image segmentation in which information from the encoding part is passed 
onto the decoding part to regain lost spatial information [207]. A combination of the 
two previous methods would be the generative adversarial network (GAN) with their 
FCN model used as the generator and a CNN as the discriminator (adversarial) network 
which tries to discriminate between the true and pseudo-CT images as produced by the 
FCN model [208]. The encouraging results from such methods have resulted in a large 
number of studies trying to address the problem of attenuation correction in PET-MR 
for both brain and body acquisitions.

Brain

U‑Net As mentioned earlier, the majority of deep-learning-based AC for both brain 
and non-brain methods employ the U-Net architecture. The main differences between 
the methods adopting the U-Net algorithm are the architecture of the encoding path, the 
type of data used (2D or 3D) and the type of input and ground-truth (output) images. The 
vast majority of these studies aim at creating images with continuous values rather than 
performing classification tasks for attenuation correction.

Perhaps the most intuitive approach in terms of the data provided to the network 
is paired CT and anatomical MR data [209–211]. Paired UTE [210, 212, 213], 
Dixon [214, 215], ZTE-based [75] and T1-weighted [215, 216] with CT images 
have been used to train the algorithm leading to comparable results, which in all 
cases outperformed the vendor-provided MR-based AC methods with SUV biases 
of approximately 5% [75, 210, 211, 214] for 2-[18F]FDG and has been evaluated for 
various other tracers as well such as  [11C]PiB,  [18F]MK-6240 [217] and  [15O]H2O PET 
[213]. The combination of both ZTE and Dixon images as input data has not shown 
a significant improvement compared to a single set of input data [214] although the 
idea of using multiple MR images has not been extensively investigated. In addition, 
it has been shown that noisy images such as dynamic PET data can also be provided 
as priors to the network to extract low-level image statistics which could help to fine-
tune the final prediction [218, 219].

Another intriguing concept is to avoid the use of anatomical MR images and use 
pairs of images whose signal is more correlated. Such examples are the NAC PET 
(input) along with their corresponding CT images (ground truth) [41], NAC (input) 
with CT-based AC (ground truth) PET images [220–223], and the MLAA-generated 
activity distribution and μ-map (input) along with the corresponding CT (ground 
truth) [224, 225]. Those methods exhibited higher biases in SUVs when compared to 
other deep learning studies. It should be noted though, that so far, only the 2D version 
of the network has been applied to the data (a single slice rather than multiple slices 
is used as input to the model) making it unclear whether the higher bias is due to that 
or the lack of paired structural images during the training process. Other methods are 
more difficult to replicate in most clinical settings [226].

A more recent technique that attempts to further improve the pseudo-CT is to 
incorporate the U-Net into a GAN architecture (although alternative pairs such 
as MR and corrected PET images have also been proposed [227]). The additional 
discriminator model in these architectures which compares the pseudo-CT as 
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generated from the U-Net with its original image helps in refining the final image. 
GANs are therefore recommended for complex tasks but are more difficult to train. 
However, using a 3D patch-based CNN structure as the discriminator in what is 
known as the cycleGAN (assess the generated pseudo-CT using the real CT and 
the generated pseudo-MR using the real MR), Gong et  al. did not report notable 
differences compared to the U-Net when training 3D data [228].

Other networks Contrary to the previous methods, many of the initial attempts 
aimed at identifying the various classes within the organ (soft tissue, bone, air, etc.) 
and applying a uniform μ value across that class. The most widely used network in this 
context is the VGG16, which uses 16 layers that contain weights in which each voxel 
of the input image is classified to predefined tissues classes. Coregistered paired CT 
images thresholded to three tissue classes and anatomical MR [114, 229, 230] or UTE 
[231] images have been used as training data for variations of the network. The cor-
responding MR image of the target could then be used as input to generate a pseudo-
CT with uniform HUs for each predefined class. Although this approach hasn’t been 
extensively applied, a significantly reduced bias in SUV is reported for brain 2-[18F]
FDG-PET scans compared to the Dixon method with biases of approximately 1% [114]. 
The longer training requirements of the network along with the fact that it results in 
uniform HUs for a certain number of classes, make the method less appealing. An 
alternative to VGG16, with comparable performance in the overall brain, is to use a 
three-layer probabilistic neural network which estimates the probability of the UTE 
images to belong in one of the specified classes [232, 233].

Several other networks have also been applied for generating pseudo-CT images 
with continuous values but have drawn limited attention so far. Of note is the GAN-
based approach by Arabi et  al. who used a structure of three convolutional and three 
fully connected layers for each set of GANs with the first set synthesising the pseudo-CT 
image (synGAN) and the second taking the pseudo-CT image and segmenting it into 
soft tissue, bone, air in cavities and air in background (segGAN) [38]. Another notable 
example is the high-resolution network (HighRes), which was first introduced for image 
segmentation [234]. The network starts from high-resolution convolution streams 
(blocks) adding high-to-low convolution streams while moving deeper in the network. 
The various blocks are connected in parallel to maintain the information of the high-
resolution information. Variations of this network have been trained to either generate 
pseudo-CTs from anatomical T1 and T2 images [235, 236] or to generate μ-maps from 
sinogram data [237] with both attempts leading to fairly accurate PET images. Other 
promising approaches, which have resulted in images comparable to ground-truth CT 
images, have yet to be applied to PET data for attenuation correction [208, 238–240].

Whole‑body

U‑Net As in previous sections, the studies applying deep learning methods in body 
images are more limited compared to brain. Moreover, since most deep learning stud-
ies applied in body regions are relatively recent, the majority are attempting to predict 
the value of the output image at the pixel level. Deep learning methods using anatomical 
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paired MR-CT images as input have mainly been used in the pelvis which is less prone to 
motion compared to thorax. The challenge in this case is to accurately identify the bone 
which is where most MR-based techniques are prone to error. A number of methods 
which used paired 2D Dixon and CT [241, 242], 3D ZTE and CT [40], 3D T1 and CT 
[243] images or an additional deep learning-based segmentation step to segment the air 
from the bowl areas [244], resulted in comparable biases of approximately 5% in the pelvic 
bone regions. Moreover, it was recently shown that if the uncertainty in the prediction is 
also taken into account, implants could be more easily identified [245, 246].

In studies that involve regions prone to involuntary motion, most techniques tried 
to avoid the use of paired MR and CT images, mainly to circumvent the need of data 
from another modality. When anatomical images were used, non-rigid registration 
between the input data was performed before providing them to the network. In order 
to bypass the registration problem, Dong et  al. used NAC 2-[18F]FDG PET images to 
predict the attenuation-corrected image in the cycleGAN network [228, 247–251]. In 
another noteworthy study from Guo et  al., the low-frequency information was used 
from the AC and the NAC PET images, which were more indicative of the anatomy 
rather than the tracer distribution, from which the correction map was estimated 
and used to make predictions more generalisable for different tracers [252]. In other 
methods, coregistration had to be performed between the MLAA-generated activity 
distribution and μ-map with the corresponding CT [253–257], the NAC PET and the 
CT images [258–264], and in a more recent study, the reconstructed PET image was 
predicted directly from paired T1 and PET images as reconstructed with the vendor-
provided method [265]. In all those methods, the results for the lung are much improved 
compared to the Dixon method even for low-dose data [257]. However, the reported 
errors are still approximately 10%, indicating that further improvements could still be 
performed. Moreover, the main drawback is that these methods are specific to the tracer 
in the PET images used for training. Nonetheless, despite difficulties in coregistrations, 
Schaefferkoetter et al. reported similar levels of bias when using the cycleGAN to predict 
pseudo-CT from Dixon images [266].

Other networks One of the few attempts to generate a pseudo-CT with a classification 
method was also one of the earliest by Nie et al. who fed paired T1 and CT images of the 
pelvis to a relatively shallow 3D FCN achieving a good agreement with the ground-truth 
CT although a PET evaluation was not performed [267, 268]. The most notable exam-
ple though is the one from Bradshaw et al. [269], who used the DeepMedic architecture 
[270]. The network consists of two blocks of convolutional layers each ran in parallel, with 
one block receiving patches of normal and the other of low resolution T1 and T2 images 
from the pelvis, followed by two fully connected and a classification layer. As in previous 
studies, in order to avoid registration of the input data, a synthetic CT image with uni-
form HUs for each class and generated by combining the Dixon, T2 and CT images was 
used as ground truth. When applied in the pelvis though, similar or higher level of bias 
was reported when compared to previously described deep learning methods. Moreover, 
the HighRes method has also been applied in the torso with extremely promising results 
[271, 272].
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All deep learning-based AC methods that have been applied on clinical PET data and 
report relative agreement with a reference method are listed in Table 4.

Discussion

The majority of studies that use “traditional” machine learning methods lack quantitative 
evaluation on reconstructed PET images and the limited available results, even though 
they indicate a relatively good agreement with the gold standard methods, do not lead 
to much lower bias when compared to the more established atlas methods. In addition, 
they could be equally time-consuming to implement making it challenging for a busy 
clinical environment. Deep learning techniques, on the other hand, are more appealing 
as they seem to provide accurate results while being quick to implement once the model 
is trained and deployed. Although the U-Net architecture is the one most widely used, 
the reported bias is of similar level for all studies. To properly compare the different 
methods, especially considering the limited number of quantitative PET evaluations for 
each method, the same training, validation and testing data would need to be used.

As in previous sections, the vast majority of the published studies are focused on the 
brain. The agreement with CT reconstruction seems to be quite impressive with most 
studies reporting a bias of up to 5%. Higher biases are quoted for studies which trained 
the network on 2D datasets. This highlights the need to utilise as much spatial context 
as possible in all dimensions [225]. The main advantages of the deep learning methods 
in terms of accuracy seem to be noted in the non-brain studies. Even though more 
limited in numbers, the reported bias in organs hampered by involuntary movement 
is considerably less when compared to MR, emission and atlas methods. The most 
intriguing approach for whole body studies would be the methods where no registration 
is needed for the input data to avoid misregistration errors as briefly mentioned in the 
motion correction section. However, if CTAC is used as a gold-standard which requires 
registration to the PET data, it might be difficult to evaluate their accuracy [259]. 
Moreover, since the networks learn to some extent the biodistribution of the tracer used 
in the non-corrected/corrected images, they might not be generalisable to any tracer.

One of the limiting factors in the majority of published studies is the lack of testing 
on external datasets with the validation data being used instead for assessing the 
performance of the method [273]. This is a general issue in the field of AI and deep 
learning that could lead to “data leakage”. Kapoor and Narayanan recently evaluated the 
reproducibility of various machine learning methods across different fields and reported 
issues to a staggering number of 329 studies whose results could not be replicated [274]. 
This strongly highlights the need for a rigorous assessment and standardised procedures 
when developing an algorithm. As standardisation strategy in multi-centre trials, 
Shiri et al. suggest the use of a single model that has been refined from the respective 
model trained for a single sight [275]. Moreover, similarly to the atlas methods, limited 
and non-diverse training datasets will have a direct effect on the generated output. 
Ladefoged et  al. had to train paediatric only brain images as an adult database could 
lead to large errors [212]. However, their most recent work indicated that when applying 
transfer learning even with very small number of data the robustness of the model can 
increase and be applicable for brains of various sizes, different pathologies and even 
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when metallic implants are present [215, 276]. Alternatively, simulated images could 
potentially improve the robustness of the network [277]. Finally, even though most 
studies in Table  4 report very small errors, a couple of recent studies have reported 
that a minimum of 100 training datasets are needed to generate a robust model that 
produces accurate pseudo-CT images [215, 278]. The amount of data usually available 
and restrictions in data sharing make such tasks challenging for most research centres. 
It is expected that this difficulty may be overcome with the increase of available public 
databases.

Alternative attenuation correction methods
A handful of methods that fall outside of the aforementioned categories have also been 
proposed. A straightforward idea would be to simply use the NAC PET data and apply 
intensity thresholds in order to identify the various tissue classes from which the final μ-
map could be generated [279]. Despite this method being appealing due to its simplicity 
and being independent of additional scans, certain structures such as the bone are still 
difficult to identify on an 2-[18F]FDG scan and it assumes certain biodistribution of 
the tracer. Another method, would be to use a  [18F]NaF PET scan to identify the bone 
region which can then be segmented and added to the μ-map. Although this method 
does provide an accurate bone region, it still has the limitation that the patients need to 
undergo an additional  [18F]NaF scan [280]. The idea of a transmission source has also 
been suggested with or without the combination of the existing attenuation correction 
techniques on PET-MRI [281–286] with promising results. All these methods require 
additional hardware to accommodate the transmission source which adds a level of 
complexity in the scanning process [286], and therefore, application to clinical data 
has been somewhat limited. An interesting approach by Rothfuss et al. is the use of the 
naturally occurring background radiation from the Lutetium Oxyorthosilicate (LSO) 
crystals for transmission scanning [287, 288]. The method has even been coupled with 
deep learning approaches to further refine the transmission image [289]. This still 
involved a few practical issues though as the patients needed to have the transmission 
scan prior to injection so that no additional radiation interferes with the scan.

Attenuation correction of MR coils
Whilst the attenuation due to MR coils in the PET field of view occupies a much smaller 
percentage of the literature compared to human attenuation correction, it remains 
an important and active topic of research. Eldib et  al. have previously presented a 
comprehensive review of the challenges and general methods for coil attenuation 
correction [290]. In brief, ignoring the MR coils during attenuation correction 
could result in an activity underestimation of up to 25% and visible artefacts on the 
reconstructed PET images [100, 291–294]. This problem is easier to tackle for rigid 
coils such as for the head and neck, as these remain in a fixed position during the 
scan. Therefore, one of the methods described in this review can be used to generate 
the human attenuation correction map, while a “template” of the attenuation map of 
the coil can retrospectively be added to it before the final composite map is used for 
reconstruction of the PET data [103, 290]. This “template” can be a CT scan [100, 103], a 
transmission scan [283, 284], a computer-aided design of the coil [105] or transmission 
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data using background radiation from the LSO crystals [295], with all methods being able 
to reduce the activity bias to less than 5%. Using CT scans is the most straightforward 
and easily accessible approach and has been used to include other rigid hardware as well 
such as radiotherapy flat-beds [296], while it is also the method currently implemented 
by the manufacturers. Issues such as streaking artefacts due to metallic components 
have been easily addressed by simple thresholding, while the bilinear interpolation 
method to convert HUs to linear attenuation coefficient at 511 keV has been found to be 
applicable even for those highly attenuating components [3, 296]. Nonetheless, the level 
of accuracy could vary by a factor of two depending on the coil used [297] while coils 
with many metal components could still lead to substantial artefacts [290]. Moreover, 
accurate registration approaches need to be followed since even a 2 mm misregistration 
in the interface between the head and neck coil could lead to visible artefacts [100].

This problem becomes much more challenging for the flexible coils used for body 
scans as these are not in a fixed position and adapt to the patient’s body shape. These 
coils are currently not taken into account when performing attenuation correction 
on PET-MR scanners. Most approaches rely on performing a CT scan of the coil 
and then try to localise it on the MR images in order to coregister the CT to the MR 
image [290]. The localisation of the coil can be performed by using fiducial markers 
[291, 292], a UTE sequence [103, 290] and more recently, with a camera that is able 
to provide 3D information of the imaged object (Kinect V2) [294]. A workaround for 
radiotherapy studies on the pelvis, is to set-up a rigid coil-holder to place the coils on 
top and then follow a similar approach as for the rigid coils [298]. Despite all methods 
showing decrease in bias, they also exhibit certain implementation difficulties [290, 294]. 
An interesting approach suggested by Heuẞer et al., which still needs to be evaluated 
against a reference method, is the use of the MLAA algorithm with the attenuation being 
updated only outside of the patients’ with a fixed AC map being given for the patients’ 
body [293].

Ideally, a holistic approach that addresses the attenuation from all materials in the 
FOV of the PET-MR scanner would be used. However, the attenuation of coils, due to 
their inability to produce a MR signal, is studied independently to the human attenuation 
correction. Since the main source of attenuation has been shown to be mainly due to the 
casing of the coils though [100], perhaps the future direction for at least the mitigation of 
this problem might be the design of new low attenuating coils with a few studies already 
suggesting designs that could reduce PET quantification bias to less than 5% [299–301].

Overall discussion
Despite the considerable number of developed methods for performing attenuation 
correction on the PET-MR, the problems has, unfortunately, not been fully addressed, 
and this is reflected by the large amount of ongoing research and number of new stud-
ies currently being published. One of the main reasons is the large level of bias in cer-
tain regions when the vendor available techniques are applied, which make it relatively 
easy to develop a method that outperforms them. Why do recent studies still tend to 
compare their methods with the Dixon- or UTE-based μ-maps even though it has been 
established that in most cases they are not as accurate or reproducible? We believe that 
the answer is twofold: (i) Despite their poor performance in terms of accuracy these 
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methods remain the most straightforward and easy to implement with minimal user 
input which makes them attractive in a clinical setting and (ii) the overwhelming litera-
ture, which also tends to be region specific, has not allowed many methods to be widely 
established in order to be used as comparators when a new method is proposed while 
the vendor methods are readily available. Recent guidelines from the European Asso-
ciation of Nuclear Medicine (EANM) for clinical 2-[18F]FDG brain scanning also do 
propose the use of the vendor-provided MR sequences for attenuation correction until 
more advanced techniques such as deep learning are commercially available [302].

For PET-MR scanners to be finally introduced into clinic, an attenuation correction 
method with the following criteria are required:

• To be accurate and reproducible
• To provide images comparable to state-of-the-art PET-CT scanners
• To be quick and easy to implement without the need of specially trained staff

The following desirable criteria would also provide ease of use in PET‑MR scanning

• To be generalisable (i.e. independent of tracer, patient age, etc.)
• To be independent of the scanned region
• To be insensitive to registration errors between PET and attenuation correction map

The advantages, disadvantages and a summary of the characteristics of the four 
approaches discussed in this review are summarised in Table 5.

If a region-specific approach is to be adapted, then there is probably not much value 
in investing more time in developing additional methods just for the brain. Many of 
the current methods, including the ZTE with continuous μ-values [73], a number of 
atlas methods [60, 172, 179, 181, 182, 193] and a number of deep learning methods [38, 
210, 212, 228, 237, 239, 248, 303] have already demonstrated accuracy of less than 5% 
in most brain regions. Those would need to be compared in terms of the above criteria, 
and standardisation procedures need to be established if more than one is widely used.

Deep learning techniques seem to have been more widely applied in whole-body 
research patients compared to atlas- and emission-based techniques. The promising 
results in terms of accuracy, image quality and ease of use are the main contributors. 
Even research groups who had previously proposed atlas- and emission-based methods 
seem to be moving towards deep learning approaches. However, a rigorous evaluation 
of these methods is still required in terms of the above criteria. Many methods have 
not been tested against external datasets, which is an important evaluation step prior 
to model deployment as the model needs to be generalisable, i.e. to provide equally 
accurate results on independent patient cohorts. If further refinement is required, then 
it needs to be retrained using a more diverse dataset or use transfer learning methods.

In summary, thanks to the incredibly active research community which has deeply 
appreciated the importance of an accurate and robust attenuation correction method 
in PET, it seems that confidence in using PET-MR for clinical and research scanning is 
increasing, opening up the doors to the numerous applications that this modality can 
offer. However, a careful evaluation still needs to be performed for many of the proposed 
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methods and the most accurate, robust and suitable for a clinical setting identified and if 
needed optimised.
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