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Abstract 

Background:  The use of CT images for attenuation correction of myocardial perfu-
sion imaging with single photon emission computer tomography (SPECT) increases 
diagnostic confidence. However, acquiring a CT image registered to a SPECT image 
is often not possible because most scanners are SPECT-only. It is possible to approxi-
mate attenuation maps using deep learning, but this has not yet been shown to work 
for a SPECT scanner with an IQ·SPECT collimator. This study investigates whether it 
is possible to approximate attenuation maps from non-attenuation-corrected (nAC) 
reconstructions acquired with a SPECT scanner equipped with an IQ·SPECT collimator.

Methods:  Attenuation maps and reconstructions were acquired retrospectively 
for 150 studies. A U–Net was trained to predict attenuation maps from nAC recon-
structions using the conditional generative adversarial network framework. Predicted 
attenuation maps are compared to real attenuation maps using the normalized 
mean absolute error (NMAE). Attenuation-corrected reconstructions were computed, 
and the resulting polar maps were compared by pixel and by average perfusion 
per segment using the absolute percent error (APE). The training and evaluation code 
is available at https://​gitlab.​ub.​uni-​biele​feld.​de/​thuxo​hl/​mu-​map.

Results:  Predicted attenuation maps are similar to real attenuation maps, achieving 
an NMAE of 0.020±0.007. The same is true for polar maps generated from reconstruc-
tions with predicted attenuation maps compared to CT-based attenuation maps. Their 
pixel-wise absolute distance is 3.095±3.199, and the segment-wise APE is 1.155±0.769.

Conclusions:  It is feasible to approximate attenuation maps from nAC reconstructions 
acquired by a scanner with an IQ·SPECT collimator using deep learning.

Keywords:  Deep learning, SPECT, Myocardial perfusion imaging, Attenuation 
correction

Background
Single photon emission computer tomography (SPECT) myocardial perfusion imaging 
(MPI) is a widely used technique for the assessment of coronary artery disease (CAD). 
Unfortunately, photon attenuation severely limits the interpretability of the images for 
this purpose  [1, 2]. Therefore, non-diagnostic CT images are acquired with dedicated 
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SPECT/CT scanners that can be converted into attenuation coefficients. The resulting 
attenuation maps are used for attenuation-corrected (AC) reconstruction.

However, there are a number of drawbacks and barriers to this approach. First and 
foremost, SPECT/CT scanners are more expensive than SPECT-only scanners, resulting 
in less widespread availability. In fact, the market share of SPECT systems that include 
a CT for AC is only 20% [3]. Another problem is that although it is non-diagnostic, low-
dose CT, it still exposes the patient to additional radiation. In terms of patient health, 
it would be better to either avoid this radiation or use it for other diagnostic tests  [4]. 
However, it has not yet been conclusively determined whether non-diagnostic CT can 
still provide useful information, e.g., for the estimation of coronary calcification  [5]. 
Finally, there is the problem of patient motion, which can be a source of misregistration 
between SPECT and CT scans. Misregistration can lead to artifacts in the reconstructed 
images [6, 7].

To address these issues, a current research goal is to approximate attenuation maps 
from non-attenuation-corrected (nAC) reconstructions using deep learning. A num-
ber of papers that have been published on this topic are listed in Table 1. They can 
be divided into direct and indirect approaches. The direct approach is to use a deep 
learning model to transform a nAC reconstruction into an AC reconstruction. In 
contrast, the indirect approach is to approximate an attenuation map from the nAC 
reconstruction, which in turn can be used to compute an AC reconstruction with the 
projection data. The direct approach is usually applied to dedicated cardiac SPECT 
scanners because they have a limited field of view (FOV) that does not cover the 
entire human body [8]. Recently, however, an indirect approach for dedicated cardiac 
SPECT scanners has been presented and found to yield better results than a direct 
approach  [9]. Most of the previous studies, whether direct or indirect, make use of 
a reconstruction derived from counts of one or more lower energy windows (scatter 

Table 1  Overview of existing research on AC of MPI SPECT with deep learning.

Note that the collimator is often not specified in the corresponding paper. In these cases, the European Association of 
Nuclear Medicine (EANM) recommendation is given [18, 19]

Paper Scanner (Manufacturer) Collimator Method Scatter 
window

[8] Discovery NM/CT 570c (GE) Pinhole Direct Yes

[9] Discovery NM/CT 570c (GE) Pinhole Both Yes

[9] NM/CT 850c (GE) LEHR Both Yes

[10] NM/CT 850 (GE) LEHR Indirect Yes

[11] Unknown – Direct No

[12] Discovery NM/CT 570c (GE) Pinhole Direct No

[13] Discovery NM/CT 670 (GE) LEHR Direct Yes

[14] NM/CT 850 (GE) LEHR Indirect Yes

[14] Brightview XCT (Philips) LEHR Indirect Yes

[15] Optima NM/CT 640 (GE) LEHR Indirect No

[16] Discovery NM/CT 570c (GE) Pinhole Direct No

[16] Discovery NM/CT 530c (GE) Pinhole Direct No

[17] Discovery NM/CT 570c (GE) Pinhole Direct No

Ours Symbia Intevo (Siemens) IQ·SPECT Indirect No
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windows) in addition to the normal reconstruction. These lower energy windows may 
contain useful information for approximating the attenuation map, and their inclu-
sion has been shown to lead to better results [10].

In this study, we investigate whether the approximation of attenuation maps using 
deep learning works for scans from a Symbia Intevo SPECT/CT scanner (Siemens 
Healthineers, Erlangen, Germany). In contrast to previous studies, this scanner uses 
the IQ·SPECT technology  [21]. This means that it uses a multifocal collimator that 
focuses at its center and becomes near parallel at its edges. This design is illustrated 
in comparison to a conventional parallel collimator in Fig. 1. An additional difference 
is that the detector heads perform a cardio-centric rotation. As a result, it is a scan-
ner with a FOV that covers the entire human body but still focuses on the heart. This 
design must be taken into account, especially during reconstruction. Verification with 
this scanner is important because deep learning performance is known to degrade 
with data not seen during training. Therefore, a clinical application requires a verifi-
cation with as many modalities as possible. Note that there is already a study inves-
tigating AC for an IQ·SPECT scanner  [22]. However, this study differs from all the 
others in that the polar maps, not reconstructions, are transformed from nAC to AC.

Here, we implement the indirect approach without a scatter-window reconstruc-
tion. The indirect approach is used because the FOV of the scanner covers the entire 
human body, and as mentioned above, has been shown to produce better results. Fur-
thermore, AC reconstruction with a slightly inaccurate attenuation map of the tho-
rax can still produce an accurate reconstruction  [23]. Therefore, this approach has 
a built-in fault tolerance against errors made by the deep learning model. In addi-
tion, the attenuation map is an intermediate result that can be reviewed by a physi-
cian for quality assurance. This could also help address the distrust of deep learning 
due to its black-box nature. The reason for not using a scatter window reconstruction 
is practical. The manufacturer’s software simply does not allow a reconstruction to 
be computed, even though scatter counts are acquired for scatter correction. Custom 
reconstruction is not possible for data acquired with the IQ·SPECT setup. As a result, 
we argue that a deep learning approach to AC that aims to work with as many scan-
ners as possible should not require scatter-window reconstructions, but should make 
their inclusion optional.

Fig. 1  Different collimator designs. The illustration is inspired by [20]
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Materials and methods
Patients and image acquisition

For this retrospective study, 150  SPECT MPI scans from 103 patients were col-
lected from July 2021 to May 2022. The data include stress, rest, stress/rest and rest/
stress studies, which explains why there are more scans than patients. All scans were 
acquired on a Symbia Intevo SPECT/CT scanner with patients in the supine position. 
In the case of stress/rest and rest/stress studies, a separate CT was acquired for each 
protocol. Data were split by patient into training/validation/test sets in a 70:15:15 
ratio. Clinical characteristics of patients by split are shown in Table 2.

SPECT projection data were acquired with two detector heads covering a 208◦ orbit 
with a step size of 6 ◦ , corresponding to 34 angles. Counts were accumulated for a 
photopeak energy window of 129 to 150  keV. While counts were also accumulated 
for a scatter energy window of 108 to 129 keV, they could not be reconstructed, but 
could only be used for scatter correction with the scanner software. For this study, 
reconstruction with and without scatter correction was performed using the ordered 
subset expectation maximization (OSEM) algorithm as implemented in the manufac-
turer’s software with 10  iterations and 3  subsets. The triple energy window method 
was used for scatter correction [24]. Reconstructions have a resolution of 128× 128×
128 voxels with a voxel size of 4.8× 4.8×4.8 mm3 . CTs were acquired with a variable 
number of slices in the axial direction ranging from 23 to 82. They were manually 
aligned to the nAC reconstructions and converted to linear attenuation coefficients 
in units of cm−1 using the scanner software. Subsequently, AC reconstructions were 
computed using the same OSEM algorithm, and both nAC and AC reconstructions 
were cropped to the number of CT slices.

Deep learning model

To transform nAC reconstructions into attenuation maps, we use the conditional gen-
erative adversarial network (cGAN) framework for image-to-image translation  [25]. 
In this framework, two models are trained by competing with each other: the genera-
tor transforms a reconstruction into an attenuation map, while the discriminator tries 
to discriminate whether a pair of a reconstruction and attenuation map is real or fake 
(generated by the generator). It has been shown that this framework leads to better 
results than simply optimizing the distance between a real and a predicted image, not 

Table 2  Gender, age, height and weight of the patients and the imaging protocol in the data by 
split. M indicates male, F female, S stress and R rest. For the numerical values, the mean, the standard 
deviation and the value range are given

Split Gender Age (year) Height (cm) Weight (kg) BMI Protocol

Training 72 M, 20 F 66.0±11.0 174.1±9.2 86.1±18.7 28.3±5.0 76 S, 34 R

34 to 88 158 to 195 48 to 151 18.5 to 40.7

Validation 11 M, 5 F 66.2±9.1 171.1±6.7 88.3±19.0 30.0±5.6 14 S, 5 R

49 to 84 158 to 180 60 to 129 22.6 to 45.2

Test 8 M, 7 F 68.1±9.5 172.0±9.5 91.5±23.2 31.1±7.8 15 S, 6 R

40 to 83 155 to 186 57 to 133 18.6 to 46.3
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only for attenuation map generation [10], but also for RGB image generation [26]. Fig-
ure 2 shows the cGAN framework for predicting attenuation maps.

Regarding model architectures, we follow [10] and use a 3D U–Net [27] as a generator. 
The U–Net architecture is well suited for tasks where the input and output are structurally 
similar, since low-level structural information has a shortcut to the output. As in [10], we 
add batch normalization to each convolutional layer and dropout of 0.15 to the bottleneck 
layer. We test different depths for the generator: either four levels deep, starting with 64 fil-
ters in the first level, or five levels deep, starting with 32 filters. In both cases, the number of 
filters doubles with each level.

As a discriminator, we use a typical convolutional neural network for image classification 
or a PatchGAN [25]. Both consist of a few levels of convolutional layers and max pooling. 
The difference between the two is that the classification network ends with fully connected 
layers, allowing it to discriminate whole images, while the PatchGAN uses convolutional 
layers in a way that it discriminates between overlapping image patches. Similar to the gen-
erator, we test different model depths and numbers of convolutional filters.

In the cGAN framework with discriminator D and generator G, the discriminator is 
trained with the loss

where X is the SPECT image, Y is the target attenuation map, and G(X) is the attenuation 
map generated by the generator. The generator is trained using the loss

where Ladv(X ,Y ) is the adversarial loss, which is the inverted discriminator loss so that 
fooling it is optimized, and Ldist(G(X),Y ) is a loss that evaluates the similarity between 
the generated attenuation map and the real one. The parameters �adv and �dist are weights 
for the respective losses. Common implementations of Ldist are the mean absolute error 
( L1 ), the mean squared error ( L2 ), or a combination of L2 and the gradient difference loss 
LGDL [28].

(1)LD(X ,Y ) = 0.5 D X ,Y −1
2

+ 0.5 D X ,G(X) −0
2

,

(2)LG(X ,Y ) = �advLadv

(

X ,Y
)

+�distLdist

(

G(X),Y
)

,

Fig. 2  Illustration of the cGAN training procedure
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Image pre‑processing and training parameter optimization

Again, according to [10], the patient bed is manually cropped from the target attenuation 
map and reinserted before evaluation. Bed removal and reinsertion can also be auto-
mated by applying a threshold to the attenuation map and selecting the lowest region 
as the patient bed. Furthermore, reconstructions and attenuation maps are zero-padded 
to a minimum size of 32 slices. Afterward, patches with a resolution of either 32× 32× 32 
or 32× 64× 64 are randomly sampled for model training. For the smaller resolution, 50 
to 100 patches were sampled from each image, while for the larger resolution, 25 to 50 
patches were sampled to keep the training time similar. Another important pre-process-
ing step is image normalization, of which there are two common types: 

1.	 Mean: The SPECT image is divided by its mean value.
2.	 Gaussian: The mean value is subtracted from the SPECT image and it is divided by 

its standard deviation.

All of the parameters mentioned so far (model depths, number of convolutional filters, 
type of discriminator, type of distance loss, loss weights �adv and �dist , patch size, number 
of patches, type of normalization and reconstruction with or without scatter correction) 
are optimized by random search [29]. In random search, model training is repeated for 
many iterations, and all parameters are randomly sampled before each iteration. This 
is usually faster than grid search because less time is wasted on irrelevant parameters. 
In each iteration, a model is trained for 100 epochs with a learning rate of 0.001 and a 
batch size of 64 for small patches and 32 for large patches. For each iteration, the model 
weights of the epoch with the minimum L1 loss for the validation split were stored. A 
total of 215 random search iterations were performed.

Data analysis

To analyze the random search, the normalized mean absolute error (NMAE) between 
the generated attenuation map and the real attenuation map is calculated for each image 
in the validation split of the data. Based on the average NMAE, a statistical analysis is 
used to evaluate which hyperparameters lead to a significant improvement. To do this, 
the Shapiro-Wilk test is used to determine whether the distribution of scores for each 
parameter choice is normal, and if so, it is compared with other choices using the t test. 
The average NMAE is also used to select the best performing model. Note that about 
one fourth of the random search iterations (50 out of 215) were discarded because the 
training did not converge to predict adequate attenuation maps. These iterations were 
manually sorted out by looking at a few generated attenuation maps for the validation 
split.

For the best model, attenuation maps are produced for the test split and the NMAE 
is calculated. In addition, the attenuation maps are used to compute AC reconstruc-
tions using a custom implementation of the post-reconstruction attenuation correction 
(PRAC) algorithm [30]. The PRAC algorithm is used because we could not use the gen-
erated attenuation maps in the scanner software and because it is independent of the 
scanner used. The custom implementation of PRAC uses the open source reconstruc-
tion software STIR  [31] and its extension to SPECT  [32]. The AC reconstructions are 
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used to generate polar maps using the Cedars-Sinai Cardiac Suite [33]. Polar maps are 
compared pixel-by-pixel using the APE and by evaluating their correlation. The same is 
done for the average perfusion per segment of the polar maps.

Results
In total, it took nearly two and a half weeks to run 215 iterations of random search on 
a single computer with an NVIDIA RTX A6000 graphics card. On average, it takes just 
over two hours to train a single model. The following presentation of random search 
results is limited to those that show a significant improvement based on the t test.

These are the type of distance loss (Fig.  3a) and the type of discriminator (Fig.  3b). 
Using the L1 loss (0.024±0.005) as the distance loss is significantly better p=0.01 
than using L2 + LGDL (0.026±0.006). Using a classification neural network as a dis-
criminator (0.023±0.004) is significantly better (p= 0.00006) than using a PatchGAN 
(0.02636±0.006).

In contrast to [10], using mean normalization (0.025±0.006) is not more robust than 
Gaussian normalization (0.024±0.005) in our experiment. However, the reason for this 
may be that non-convergent iterations were discarded. While only 12 out of 72 iterations 
trained with mean normalization were discarded, it was 20 out of 72 for Gaussian nor-
malization. Other factors that have a strong influence on training convergence are the 
loss weights �adv and �dist . Choosing �adv larger than �dist increases the likelihood that 
the training will not converge. While only 8 out of 34 iterations with �adv=1, �dist=100 
did not converge, it was 11 out of 34 for �adv=100, �dist=1.

The best iteration achieved an NMAE of 0.018±0.006 on the validation split and 
0.020±0.007 on the test split. Training was performed using patches with a resolution 
of 64× 64× 64 voxels, mean normalization and loss weights �adv =1 and �dist=100. The 
generator is a four-level deep U–Net with 64, 128, 256 and 512 convolutional filters per 
level. The discriminator is a typical image classification network with three levels of con-
volution with 64, 128 and 256 filters, followed by two fully connected layers with 512 
and 128 neurons. Training reached the minimum validation loss after 60 epochs. A pre-
diction of an attenuation map by this model is shown next to a real attenuation map in 
Fig. 4 to give an idea of the quality of the predicted attenuation maps.

Figure 5 shows an example of polar maps generated using CT-based AC (CTAC), deep 
learning-based AC (DLAC) and nAC reconstructions. Note that both the CTAC and 

Fig. 3  Training results depending on the type of distance loss and the type of discriminator. The bars show 
the average NMAE and individual results are scattered



Page 8 of 11Huxohl et al. EJNMMI Physics           (2023) 10:49 

the DLAC reconstructions were computed using the PRAC algorithm. In this example, 
an improvement due to attenuation correction is clearly visible, and DLAC produces a 
similar polar map to CTAC. This qualitative observation is further supported by a quan-
titative evaluation of the perfusion scores and pixels of the polar maps. For this purpose, 
Fig. 6 shows Bland–Altman plots for the 17-segment perfusion scores, and Fig. 7 shows 
pixel-wise correlation maps. Both show a high agreement between CTAC and DLAC, 
while nAC often underestimates perfusion. The APE of the average perfusion per seg-
ment between DLAC and CTAC is 1.155±0.769, while it is 7.26428±5.48144 for nAC. 
The correlation coefficient is R=0.97 for DLAC and R=0.79 for nAC. Similarly, the abso-
lute pixel distance is 3.095±3.199 with a correlation coefficient of R=0.97 for DLAC and 
8.559±7.665 with a correlation coefficient of R=0.81 for nAC.

Fig. 4  From left to right: an attenuation map slice, the corresponding best model prediction and the 
absolute difference between the two slices. The color bar on the right encodes the attenuation in cm−1

Fig. 5  An example of the polar maps generated with CTAC, DLAC and nAC reconstructions. Numbers and 
color indicate the average perfusion per segment

Fig. 6  Bland–Altman plots for the 17-segment perfusion scores of the test split images. They show the 
difference between DLAC and CTAC on the left and nAC and CTAC on the right
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Discussion
In this work, it was tested whether it is possible to approximate attenuation maps for 
reconstructions acquired with a SPECT scanner equipped with an IQ·SPECT collimator 
using deep learning. For this purpose, a U–Net was trained using the cGAN framework. 
The influence of training parameters was investigated using a random search proce-
dure. It was shown that using an L1 loss as the distance loss is preferable to L2 + LGDL . 
Furthermore, using a classification network as a discriminator gave better results than 
using a PatchGAN, and cGAN training converged more reliably when the distance loss 
was weighted higher than the adversarial loss. Other training parameters, such as the 
use of reconstructions with or without scatter correction, did not significantly affect the 
results.

The best model trained by the random search procedure produces attenuation maps 
that are similar to the real attenuation maps. Predicted and actual attenuation maps dif-
fer only in the fine structure and at the body edges (see Figure 4). That the fine structure 
cannot be recovered is to be expected, since it does not contribute significantly to the 
distance loss used to train the generator. The reason for the differences at the body edges 
could be that SPECT images are acquired at a lower resolution than CT images, which 
means that the edges cannot be recovered as well. However, both differences are small 
overall, which means that they do not considerably affect the use of the predicted atten-
uation maps for attenuation correction. This is shown by computing AC reconstructions 
with the PRAC algorithm and subsequently generating polar maps. Compared to nAC 
polar maps, DLAC polar maps have a high pixel-wise and average perfusion per segment 
agreement with CTAC polar maps.

A limitation of this study in terms of practical application is that AC reconstructions and 
polar maps were not tested to determine whether diagnostically relevant information is 
lost. The measures used for comparison assess similarity but do not necessarily account for 
diagnostically relevant features. Besides, the manual handling of the patient bed hinders the 
practical application. While it is certainly possible to measure the patient bed and insert it 
into the attenuation map predicted by the deep learning model, a more elegant solution, 
which should be investigated in future work, is for the model to estimate the bed directly 
from the emission data, such as shown in [9]. In addition, we note that there is a difference 

Fig. 7  Pixel-wise correlation maps between DLAC and CTAC polar maps on the left and nAC and CTAC polar 
maps on the right for all test split images. The correlation was calculated using pixels in the circular region of 
the polar maps at a resolution of 512× 512
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between the CTAC reconstructions computed with the PRAC algorithm and the CTAC 
reconstruction computed with the vendor software. Compared to the vendor reconstruc-
tions, the DLAC reconstructions computed with the PRAC algorithm are still more simi-
lar than the nAC reconstructions, but they are less close. However, a comparison between 
CTAC and DLAC reconstructions computed with the PRAC should be a better indicator of 
the suitability of the predicted attenuation map for reconstruction, since the reconstruction 
algorithm is the same while only the input is different. Finally, the results need to be vali-
dated with an inter-institutional dataset and it needs to be tested if a model can be trained 
that can handle multiple scanners simultaneously.

Conclusion
This paper shows that deep learning can be used to approximate attenuation maps from 
nAC reconstructions acquired with a scanner equipped with an IQ·SPECT collima-
tor. The approximation is possible even without the use of scatter window reconstruc-
tions, which could not be obtained from the manufacturer’s software. Furthermore, it 
is shown that an L1 distance loss and a classification network as a discriminator are the 
best choices for training a U–Net with the cGAN framework for this purpose.
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