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Abstract 

Purpose: Absorbed dose calculation by kernel convolution requires the prior determi-
nation of dose point kernels (DPK). This study reports on the design, implementation, 
and test of a multi-target regressor approach to generate the DPKs for monoenergetic 
sources and a model to obtain DPKs for beta emitters.

Methods: DPK for monoenergetic electron sources were calculated using the FLUKA 
Monte Carlo (MC) code for many materials of clinical interest and initial energies 
ranging from 10 to 3000 keV. Regressor Chains (RC) with three different coefficients 
regularization/shrinkage models were used as base regressors. Electron monoenergetic 
scaled DPKs (sDPKs) were used to assess the corresponding sDPKs for beta emitters 
typically used in nuclear medicine, which were compared against reference published 
data. Finally, the beta emitters sDPK were applied to a patient-specific case calculating 
the Voxel Dose Kernel (VDK) for a hepatic radioembolization treatment with 90Y.

Results: The three trained machine learning models demonstrated a promising 
capacity to predict the sDPK for both monoenergetic emissions and beta emitters of 
clinical interest attaining differences lower than 10% in the mean average percentage 
error (MAPE) as compared with previous studies. Furthermore, differences lower than 
7% were obtained for the absorbed dose in patient-specific dosimetry comparing 
against full stochastic MC calculations.

Conclusion: An ML model was developed to assess dosimetry calculations in nuclear 
medicine. The implemented approach has shown the capacity to accurately pre-
dict the sDPK for monoenergetic beta sources in a wide range of energy in different 
materials. The ML model to calculate the sDPK for beta-emitting radionuclides allowed 
to obtain VDK useful to achieve reliable patient-specific absorbed dose distributions 
required short computation times.

Keywords: Beta emitters, Dose point kernel, Internal dosimetry, Machine learning

Introduction
Personalized medicine advances have significantly enhanced the efficacy of therapeutic 
and palliative treatments for several diseases [1–3]. The introduction of theranostic ther-
apies, combining therapeutic and diagnostic imaging using a single radiopharmaceutical, 
has increased interest in radiopharmaceuticals in various cancer treatments, particularly 
in nuclear medicine [4–6]. The capacity to generate molecular imaging, such as SPECT 
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or PET, used for treatment procedures for real-time monitoring of the whole radiop-
harmaceutical metabolization process, together with the capacity to obtain anatomical 
images alongside molecular imaging (SPECT/CT, PET/CT, PET/MRI), allows for signifi-
cant improvements in dosimetric estimates both before and after treatment [7–9]. Thus, 
theranostic enables patient-specific dosimetric calculations based on molecular and ana-
tomical imaging, improving radionuclide treatment effectiveness and safety [10, 11].

Several approaches for internal dose estimation in nuclear medicine procedures have 
been developed, such as Monte Carlo (MC) transport simulation [12, 13], S-value esti-
mation [14, 15], and dose point kernel (DPK) convolution [16, 17]. The MC method is 
the most precise dosimetric calculation approach, but it requires many computational 
resources and long computation times, making it sometimes inappropriate for clini-
cal usage. On the other hand, methods such as S-values or DPK convolution allow for 
shorter computational times at the expense of lower computational accuracy. Thus, a 
tradeoff between computational time and the precision or accuracy of the dosimetric 
calculation is desirable.

Calculating the absorbed dose by convolution of DPKs requires a prior calculation of 
the DPKs. An extensive list of beta DPKs has been published [18–23]. Also, different 
methods for scaling DPKs to different media have been proposed since they are com-
monly calculated for water; then, DPKs for other media are obtained by applying differ-
ent scaling factors [24, 25]. From the calculated beta DPKs, the so-called Voxel S-values 
(VSV) or Voxel Dose Kernel (VDK) can be obtained, which facilitate the absorbed dose 
calculation by convolution with the accumulated activity since they are represented in 
the form of three-dimensional matrices, and the convolution product can be solved in a 
discrete form, simplifying the calculation of the absorbed dose [26].

Artificial intelligence (AI) disrupted many fields of medical sciences due to computa-
tional advances that occurred over the last decade in terms of innovative hardware and 
software [27, 28], also impacting nuclear medicine [29–31]. In the internal dosimetry 
field, some Deep Learning (DL)-based models have been developed to predict patient-
specific doses based on anatomic and metabolic imaging information; for example, 
Göetz et al. [32] propose a U-Net Deep Neural Network (DNN) that takes as input the 
activity distribution and the density map, the input is an array of 80× 80× 11 , and the 
output is the map of dose corresponding to the dosimetry of the middle slice in the 
inputs arrays; Akhavanallaf et  al. [33] propose a DNN to predict the distribution of 
deposited energy due to 18FDG representing specific 3D voxelized S-values and calcu-
late the absorbed dose by convolution of this with the activity distribution; Li et al. [34] 
train a model of convolutional neural network that learns only the difference between 
the true dose rate map (calculated by MC) and DVK dose rate map with density scal-
ing, the input to the DNN is an array of size 512× 512× 11 , and the out is an array of 
512× 512 that corresponded to the dosimetry of the middle slice in the input arrays.

The calculation of DPKs can be considered a multi-target regression problem in which 
from the characteristics of the medium, such as chemical composition and density, as 
well as physical characteristics, such as the initial energy of the source electrons and the 
range of these in the medium considered, the DPK value as a function of the distance r 
to the source is predicted as a target variable [35]. These types of models are widely used 
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in problems of ecological modeling [36], healthcare [37], environmental [38], and drug 
discovery [39].

The naive solution is the Multi-Target Regressor Stacking (MTRS) [40], a stack of 
regressor for each target variables. However, this does not consider that the target vari-
ables are related and depend on each other. Other models that capture the relationship 
between the target variables are, for example, Regressor Chains (RC) [40], in which a 
series of base regressors are chained to predict the variable of interest. Each model in 
the chain uses the predictions of the previous model as input, and this model allows 
transforming linear regression algorithms from single-target to multi-target. Multi-
Target Support Vector Machine Regressors [41, 42] is a multi-target version of widely 
used support vector machine regressor [43], and this model is powerful, but the main 
disadvantage of this model is the complexity time which increases with the number of 
samples. Random forest regressors show a great capacity to solve this kind of problem 
[44]. However, the interpretability of this model is more complex than linear regressors. 
Finally, artificial neural networks (ANN) [45] have the advantage of representing non-
linear problems, but the search for optimal hyperparameters is an arduous task.

This study presents an RC model with linear regressors as the base regressors for pre-
dicting monoenergetic sDPK. In addition, three regularization methods such as Ridge 
[46], Lasso [47], and ElasticNet [48] are implemented. The Ridge regression uses an 
L2-norm regularization to constrain model coefficients. The Lasso regression uses an 
L1-norm, which produces some coefficients that are exactly zero, so this works as a 
coefficient shrinkage and feature selection. The Elastic Net regression model combines 
L1-norm with L2-norm penalty functions, simultaneously performing features selection 
and coefficient regularization. Moreover, this allows the linear regression model to toler-
ate the multicollinearity of predictors [49]. We focus on these base regressors because 
they are of lower computational complexity [50] and using a regressor chains with linear 
regressors is an interpretable approach.

From the monoenergetic sDPKs calculated by the regressor chains, a methodology for 
estimating the sDPK and the VDK for beta-emitting radionuclides is determined. A dosi-
metric application is performed for 90 Y radionuclide as a test case; then, the absorbed 
map dose is determined by the convolution of the cumulative activity per voxel with the 
VDK calculated from the sDPK and MC volume integration. The two approaches are 
compared and validated by gamma index testing.

This study reports on the implementation of three ML models to predict the sDPK for 
beta emitter nuclear medicine nuclides as well as to achieve patient-specific dosimetry 
quantitatively comparable to Monte Carlo calculations, but requiring much less compu-
tation time being able to provide reliable 3D dose distributions in a few minutes.

Materials and methods
Radionuclides and materials

Table 1 summarizes some beta-emitting radionuclides usually applied in treating differ-
ent diseases [51–55]. The overall maximum energy emitted is 2275.6 keV for 90 Y; there-
fore, energy values between 10 and 3000 keV were considered for monoenergetic beta 
sDPK calculation.
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A method for calculating the sDPK for a spectral emission of beta particles from the 
sDPK for a monoenergetic beta emission is depicted in the following section.

As usual, the studied materials were divided into two sets: the training and the test-
ing sets. Material information in terms of Hounsfield Unit (HU), as described by Sch-
neider et al. [56], was used to define the training set composition, and mass densities 
were assessed using the mean value of the HU considered range [57]. Subsequently, 
the following materials were used as testing compositions: air, lung, soft tissue, and 
cortical bone, according to the ICRP Publication 89 [58]. Tables 2 and 3 summarize 
the composition of the training and testing set.

Table 1 Beta-emitting radionuclides applied in treating diseases

Radionuclide Half-life [days] Eavg(Emax)[keV] Therapeutic indication

89Sr 50.6 587.1 (1502.2) Relief of pain skeletal metastases
90Y 2.7 932.4 (2275.6) Hepatocellular cancer and liver metasta-

sis Non-Hodgkin’s lymphoma
131I 8.0 191.6 (806.9) Hyperthyroidism, differentiated thyroid 

cancer Non-Hodgkin’s lymphoma
177Lu 6.7 148.8 (496.8) Neuroendocrine tumors Prostate tumors
186Re 3.7 359.2 (1072.7) Relief of pain, skeletal metastases
188Re 16.7 795.4 (2120.4) Relief of pain, skeletal metastases

Table 2 Material composition in weight fraction and density [g/cm3] of training dataset

Material H C N O Na Mg P S Cl Ar K Ca Density

HU-950 0.755 0.232 0.013 0.0279

HU-120 0.103 0.105 0.031 0.749 0.002 0.002 0.003 0.003 0.002 0.4810

HU-83 0.116 0.681 0.002 0.198 0.001 0.001 0.001 0.9572

HU-53 0.113 0.567 0.009 0.308 0.001 0.001 0.001 0.9581

HU7 0.108 0.356 0.022 0.509 0.000 0.001 0.002 0.002 1.0108

HU18 0.106 0.284 0.026 0.578 0.000 0.001 0.002 0.002 0.001 1.0030

HU80 0.103 0.134 0.030 0.723 0.002 0.002 0.002 0.002 0.002 1.0591

HU120 0.094 0.207 0.062 0.622 0.006 0.000 0.006 0.003 0.000 1.1187

HU200 0.095 0.455 0.025 0.355 0.001 0.021 0.001 0.001 0.001 0.045 1.1111

HU300 0.089 0.423 0.027 0.363 0.001 0.030 0.001 0.001 0.001 0.064 1.1644

HU400 0.082 0.391 0.029 0.372 0.001 0.039 0.001 0.001 0.001 0.083 1.2236

HU500 0.076 0.361 0.030 0.380 0.001 0.001 0.047 0.002 0.001 0.101 1.2828

HU600 0.071 0.335 0.032 0.387 0.001 0.001 0.054 0.002 0.117 1.3420

HU700 0.066 0.310 0.033 0.394 0.001 0.001 0.061 0.002 0.132 1.4012

HU800 0.061 0.287 0.035 0.400 0.001 0.001 0.067 0.002 0.146 1.4604

HU900 0.056 0.265 0.036 0.405 0.001 0.002 0.073 0.003 0.159 1.5196

HU1000 0.052 0.246 0.037 0.411 0.001 0.002 0.078 0.003 0.170 1.5788

HU1100 0.049 0.227 0.038 0.416 0.001 0.002 0.083 0.003 0.181 1.6380

HU1200 0.045 0.210 0.039 0.420 0.001 0.002 0.088 0.003 0.192 1.6972

HU1300 0.042 0.194 0.040 0.425 0.001 0.002 0.092 0.003 0.201 1.7564

HU1400 0.039 0.179 0.041 0.429 0.001 0.002 0.096 0.003 0.210 1.8156

HU1500 0.036 0.165 0.042 0.432 0.001 0.002 0.100 0.003 0.219 1.8748

HU1600 0.034 0.155 0.042 0.435 0.001 0.002 0.103 0.003 0.225 1.9340
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Beta-emitting radionuclide sDPK

The electron-beta DPK is a function that represents the radial distribution of a spe-
cific absorbed fraction of dose in an infinite homogeneous medium due to a mono-
energetic point source of beta or electron particles. A more useful form of DPK is 
the scaled sDPK, defined as

where ρ is the medium’s density, r0 the range in the Continuous Slowing Down Approxi-
mation ( RCSDA ) approximation, and �(r) is the fraction of absorbed energy at distance r. 
The beta-emitting radionuclide sDPK can be defined as

where rN is the range for the maximum emission energy of the radioisotope and �β(r) 
is the fraction of absorbed energy at a distance r [24]. Considering an infinite sphere 
of a homogeneous material with a source of beta particles in the center, the fraction of 
absorbed energy at a distance from the center is defined as [59]

and �β(r,E) is the fraction of absorbed energy at a distance r to energy E. Equation 3 is 
approximated by

where Ij is the strength of the j-th group with mean energy E0j , �(r,E0j) is the fraction 
of absorbed energy at a distance due to the j-th group of the spectrum and the effective 
energy is Eeff = j IjE0j . From Eqs. 2 and 4,

Introducing Eq. 1 in 5, the sDPK of a betta-emitting radionuclide can be estimated from 
the sDPK for monoenergetic electron source as

Equation 6 states that knowing the sDPK for the monoenergetic source and the emission 
spectra of the radionuclide are required to obtain the sDPK for the radionuclide.
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DPK estimation by Monte Carlo simulations

The DPK for each material was obtained through MC simulations using the general-pur-
pose software FLUKA version 2021.2.0, capable of calculating detailed radiation transport 
and energy deposition [60, 61]. FLUKA can simulate the whole track of several particles like 
photons, electrons, neutrons, and hadrons on a wide range of energies. It has been widely 
used for high-energy physics, experiencing an increasing application for medical physics 
purposes [62, 63]. FLUKA implements an original algorithm for treating multiple scattering 
on charge particles transport based on the Bethe improved Moliere’s theory [64].

FLUKA incorporates standard configurations which activate/deactivate by default 
various features according to the required physical model; in this study, the PRECISIOn 
default was applied, activating the electromagnetic interactions, the Rayleigh scattering, 
and the inelastic form factor corrections to Compton scattering and Compton profiles. 
The transport and production threshold was set on 1 keV for electrons and photons with 
initial energy under 100 keV, and it was set on 10 keV energies above 100 keV. Further-
more, single scattering was set up at boundaries for electron energies from 10 to 100 
keV. Preliminary tests showed that 10 independent cycles of 106 primary particles each 
cycle were the appropriate configuration to be set to obtain accurate results.

The phantom used for DPK calculations consists of 60 concentric spherical shells 
of homogeneous material whose outer radius is 1.5Rcsda . Each shell has a thickness of 
RCSDA/40 . The RCSDA value is obtained using the fitting proposed by Tabata et al. [65], 
where the RCSDA is calculated taking into account the effective atomic number Zeff and 
the effective atomic weight Aeff of compound. Also, a monoenergetic electron source 
was positioned at the center of the spheres.

FLUKA provides the deposited energy δE on each δr thick shell. It is convenient to 
define the sDPK according to the results obtained from simulations and the initial 
kinetic energy E0 expressed in MeV, and the range RCSDA expressed in cm as [21]

sDPK estimation by ML

The problem of predicting monoenergetic sDPK from physical and chemical properties 
can be represented by a multivariate or multi-target regression [35]. Let D be a train-
ing dataset made up of N instances such that D = (X1,Y1), . . . , (XN ,YN ) . Likewise, each 
sample consists of an input array XN of dimensions m such that Xi = (x1, . . . , xm) and a 
target array Y of sizes k such that Yi = (y1, . . . , yk) . The problem is reduced to training a 
multi-target regressor model, which consists of finding a function h that assigns an array 
Y to each array X, that is

The algorithm used was an RC [40]; this chain M was composed of k base regressors 
m, so that M(m) = [M1(m), . . . ,Mi(m), . . . ,Mk(m)] . The dimension k is the same as the 
dimension of the target array Y. Firstly, a model M1 is trained with all input features 
X and the first element of the target array y1 , then, a second model M2 is trained with 

(7)F

(

r

RCSDA

)

=
δE(r)/E0

δr/RCSDA

(8)Y = h(X) : h : Rm → R
k
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elements of X along with the first element y1 as input features, and the second element 
of Y array y2 is the target. Repeat this procedure until all M models for each element of 
array Y have been trained.

Three base regressors were studied: Ridge [46], Lasso [47], and Elastic Net [48] which 
use different regularized terms. The Ridge algorithm minimizes the residual sum of 
squares subject to bound on the L2-norm of the coefficients:

where α � 0 is a constant, and ‖w‖22 is the L2-norm of the coefficient vector. The Lasso 
algorithm is a penalized least-squares method imposing an L1-penalty on the regression 
coefficients:

where α is a constant, and ‖w‖1 is the L2-norm of the coefficient vector. The Elastic Net 
algorithm penalized the least-squares method using a combination of both kinds of 
regularization:

where α and γ are constants and ‖w‖1 and ‖w‖22 are the L1-norm and L2-norm of the 
coefficients vector, respectively.

The system was characterized by the following features of the source: energy E0[keV ] , 
the range RCSDA [g/cm2] , density of medium material ρ[g/cm3] , and the composition of 
the material in weight fraction for the elements considered (H, C, Na, Mg, P, S, Cl, Ar, K, 
Ca), and the monoenergetic sDPK was the target.

Two metrics used to evaluate the models were the coefficient of determination ( R2 ) 
and the Root Mean Square Error (RMSE), defined as

where yi and y′i are i-th components of the sDPK calculated by MC and ML models, 
respectively.

The model predicts the monoenergetic sDPK for a given energy and chemical compo-
sition of the medium and applies Eq. 6 to obtain the sDPK for a given beta emitter in a 
particular medium.

Benchmark evaluation of the calculated sDPK for beta-emitting radionuclides

Beta-emitting radionuclide sDPK calculated by Eq. 6 was benchmarked against previously 
reported results by Botta et al. [66] and Shiiba et al. [67]. Botta used FLUKA for simulating 
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the sDPK, and Shiiba used PHITS (56). The radionuclides considered were 89Sr, 90 Y, 131 I, 
177Lu, 186Re, and 188Re; the materials considered were water and compact bone. The Mean 
Absolute Percentage Error (MAPE) was used as a metric, defined as

where F was the reference sDPK and F ′ the sDPK estimated by the ML model for the i-th 
shell and n is the number of samples.

Dosimetry calculation

The SPECT/CT image obtained from Technetium 99m Tc albumin aggregated ( 99mTc-
MAA) pretreatment simulation before 90 Y hepatic radioembolization was used to cal-
culate the absorbed dose by applying FLUKA MC and Voxel Kernel Convolution (VKC) 
[26]. Figure  1 shows three axial slices of the image of a patient who was administered 
185MBq of 99mTc-MAA. The image size was 512× 512× 258 pixels and a resolution of 
0.98× 0.98× 0.98mm3 . Also, images show the segmentation of the liver and 5 VOIs. Bio-
distribution of 99mTc-MAA and 90 Y microsphere was considered identical.

A source routine was developed to perform the MC simulation of the absorbed dose 
through FLUKA introducing from external file information the position of the active voxel 
and the number of primary particles to be simulated proportional to the number of counts 
in the voxel. One hundred independent cycles of 108 primary particles were simulated to 
achieve an acceptable level of statistical error. The CT images were transformed into a vox-
elized phantom to convert the HU number to material composition and mass density by 
calibration [56].

Monoenergetic electrons sDPK have been calculated by ML model, and then Eq. 6 was 
applied to obtain 90 Y sDPK. A 23× 23× 23 voxelized kernel with 1 mm3 pixel size was 
calculated using MC volume integration of 90 Y sDPK [68]. The activity map was obtained 
from a 99mTc-MAA image using the equation [69]

where Cvoxel(
99mTc) and Cliver(

99mTc) are the 99mTc-MAA SPECT count, in the voxel and 
the whole liver, respectively, and Aliver(

90Y ) is the corresponding net injected activity of 
90 Y, in this case 2.9 GBq.

(13)MAPE(F , F ′) =
100

nsamples

nshells
∑

i=1

�Fi − F ′
i�

�Fi�

(14)Avoxel

(

90Y
)

=
Aliver

(

90Y
)

· Cvoxel

(

99mTc
)

Cliver

(

99mTc
)

Fig. 1 Three axial slices of fusion SPECT/CT with Liver and VOIs consider contoured
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The absorbed dose map was calculated as the convolution of the voxel cumulated 
activity Ã(r) and the VDK K(r)

where T1/2 is the 90Y  half-life ( 64.2 h)
The gamma index was used to compare the absorbed dose maps obtained by MC and 

DVK, defined as [70]

where �r(re, rR) is the distance between evaluated and reference points, �D(re, rR) is the 
difference between doses at the evaluated and reference points, δr is the distance differ-
ence criterion, and δD is the dose difference criterion. The distance criterion was 3 mm, 
the dose criterion was 3% , and the dose map calculated by MC was the reference and 
VDK the evaluation.

Result
Monoenergetic sDPK

Figure  2 shows the sDPK for a monoenergetic source of electrons obtained from cal-
culating the energy deposited in each thickness shell at a distance by MC FLUKA and 
applying Eq. 7. The percentage error for each shell of sDPK was lower than 1% , a distance 

(15)D(r) = Ã(r) ∗ K (r)

(16)= 1.443T1/2(
90Y )Avoxel ∗ K (r)

(17)Ŵ(re, rR) =

√

�r2(re, rR)

δr2
+

�D2(re, rR)

δD2

(18)γ (rR) = min {Ŵ(re , rR) } ∀re

Fig. 2 sDPK calculated by FLUKA MC for four materials from A the training data set and B the testing data set
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shorter than RCSDA ( r < RCSDA ); when increasing the distance up to 1.2 · RCSDA , the per-
centage error increased by 4% . In some materials, it is found that the percentage error at 
distances larger than 1.2 · RCSDA rises to 100% ; therefore, longer distances have not been 
considered.

Table  4 summarizes results for two metrics considering evaluating the performance 
of different base regressors models. The coefficient of determination R2 reaches a value 
greater than 0.80 over the training set for the three base models. However, in the testing 
dataset, the maximum value of R2 achieved 0.76 for the Lasso base regressor. The low-
est value was achieved for RMSE with Ridge base regressor for training and Lasso base 
regressor for testing dataset; refer to Additional file 1 for more details. The sDPK esti-
mated with the ML model for two materials of the testing set for four different monoen-
ergetic electron sources are shown in Fig. 3.

Beta-emitting radionuclide sDPK

The sDPK for 89Sr, 90 Y, 177Lu, 186Re, and 188 Re beta-emitting radionuclides were cal-
culated. Emission spectra were taken from ICRP Publication 107 [71] and fitted with 
a smooth spline of degree 3 for each radionuclide. Then, 1000 values for pair (energy, 
probability) were calculated in the range of 10keV up to the maximum kinetic energy 
release for the radionuclide. The range of electrons for each material and energy was 
estimated using the analytic representation presented by Tabata et al. [65]. In the region 

Table 4 Results obtained for two metrics applied R2 and RMSE, for the three regressors considered

Values in parentheses state for uncertainties corresponding to 1 standard deviation

Training Testing

R2 RMSE R2 RMSE

Ridge 0.850(0.143) 0.0313(0.0144) 0.753(0.180) 0.0385(0.0161)

Lasso 0.839(0.149) 0.0326(0.0146) 0.766(0.184) 0.0367(0.0149)
ElasticNet 0.838(0.149) 0.0329(0.0149) 0.765(0.182) 0.0369(0.0148)

Fig. 3 sDPK calculated by FLUKA MC and ML model for monoenergetic beta source in A lung, B compact 
bone. The sDPK values are plotted as a function of the scaled distance
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where the ML model for calculating monoenergetic electron sDPK was valid (10 keV 
to 3 MeV), the analytical fit of the range showed a difference lower than 2% with NIST 
ESTAR [72].

The ML model calculates monoenergetic sDPK for each energy, the material com-
pound according to Table 3, and the range for the material and energy considered. The 
beta-emitting radionuclide sDPK was determined using Eq.  6 considering a sphere of 
120 shells and thickness of rN /100 , where rN was the range RCSDA for the energy of max-
imum emission. Figure 4 shows beta-emitting radionuclide sDPK for (a) water and (b) 
compact bone, for 90 Y and 131 I, with the sDPK reported by Botta et al. [66] and Shiiba 
et al. [67]. It should be noted that the calculated sDPK was rescaled to the X90 scale [21]. 
This scale uses the distance at which 90% of the emitted energy is absorbed.

Application on dosimetry calculation

Figure 5 shows the absorbed dose map calculated by (A) MC and (B) VDK for the same 
three axial slices shown in Fig.  1, and (C) shows the gamma index for the criterion 
3mm/3% . The activity of each voxel was calculated by Eq.  14 and applied to Eq. 15. The 
voxelized kernel was calculated for each voxel where activity was greater than 0 using 
the calibration of Schneider et al. [56] to transform the Hu to the corresponding material 
compound. The sDPK for 90Y was calculated using Eq. 6 and the monoenergetic sDPK 
predicted by the RC model with Lasso as base regressor.

The mean absorbed dose calculated by MC for the liver and the five VOIs considered 
is greater than the mean absorbed dose calculated by VDK by approximately 7% . The 
standard deviation means of absorbed dose at voxel levels calculated by FLUKA was less 

Fig. 4 Benchmarking sDPK calculated by the ML model with the sDPK reported by Botta et al. [66] and Shiiba 
et al. [67]
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than 9% in the whole liver, and less than 1% in 5 VOIs considered. Table 5 summarizes 
the results obtained for the entire liver and the five VOIs.

In more than 94% of voxels, the gamma index was less than 1 for the 3mm/3% crite-
rion in all regions considered. Figure 5C shows gamma index maps for the same three 
axial slices. As can be seen, at a zone of high dose the gamma index is greater than 1.

Fig. 5 Results of dose absorbed calculated by A MC and B VDK. The figure C is the Index gamma for the 
criterion 3 textmm/3%

Table 5 Dose absorbed calculated by MC and DVK expressed as D̄ ± σ and [Dmin,Dmax] . Also, the 
gamma index calculated is reported for the Liver, and five VOIs consider

Region Dose by MC (Gy) Dose by DVK (Gy) Gamma 
index 
(%)

Liver 88.87± 124.76 82.02± 116.57 94.96

[0.00, 728.70] [0.00, 676.23]

VOI 1 387.61± 142.95 361.77± 134.08 98.19

[25.62, 728.7] [20.33, 676.23]

VOI 2 329.89± 148.59 307.61± 139.29 96.01

[2.24, 673.77] [1.52, 627.85]

VOI 3 334.85± 83.3 312.69± 77.41 94.82

[42.9, 645.47] [40.23, 599.25]

VOI 4 265.95± 47.29 248.45± 44.17 90.02

[114.11, 398.24] [106.17, 371.52]

VOI 5 205.84± 41.99 192.52± 39.2 96.08

[43.75, 297.07] [40.68, 278.4]
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Discussion
The ML-based models with three different base regressors considered have been able 
to predict the monoenergetic electron sDPK with reasonable performance. The R2 
for materials in the testing dataset was more significant than 0.75 in all models stud-
ied. The performance and reliability of models decrease when the initial energy of the 
source increases (see Fig. 3); this is most notable in air and lung. As radionuclides com-
monly used in nuclear medicine present electron emission with energies lower than 
2.5 MeV (e.g., 90Y = 2.28MeV and 188Re = 2.1   MeV), degrading performance at an 
energy greater than 2.5 MeV has not a significant effect when calculating the sDPK for 
beta-emitting radionuclide. Furthermore, the probability of emission of electrons with 
energies higher than 2 MeV represents a small fraction compared to the probability of 
emission of electrons with lower energies where the models have shown the best per-
formance. It is worth noticing that the implemented approach based on ML algorithms’ 
performance to predict and evaluate sDPK may be improved to better deal with high 
electron energy emissions.

Table  4 shows that Lasso, as the base regressor, obtains the highest performance in 
the testing dataset compared to Ridge and Elastic Net. It is worth mentioning that the 
difference in the R2 obtained between Lasso and Elastic Net is minimal. Although Ridge 
achieves a higher performance in the training dataset, it gives a lower result than the 
other two in the training dataset. This effect is due mainly to the fact that some of the 
features in the datasets are collinear, which generates a more significant variance in 
the coefficients producing that minor variations in the predictors produce significant 
changes in the predicted value [49]. Ridge tends to bring the regression coefficients 
to values close to 0. In contrast, Lasso generates a coefficients shrinkage and feature 
selection process intensifying the most relevant attributes and removing those that are 
redundant. Elastic Net produce a coefficients regularization and feature selection. So 
we can see that the features selection process is more robust to the features’ collinearity 
condition [48].

Beta-emitting radionuclide sDPK calculated from monoenergetic sDPK estimated by 
ML models and using Eq. 6 showed promising agreement between values reported by 
Botta et al. [66] and Shiiba et al. [67] (see Fig. 5). Figure 6 shows the MAPE for compact 
bone and water for all radionuclides, which was less than 10% compared to the sDPK 
reported. This discrepancy is mainly due to differences in the spectrum of emissions 

Fig. 6 Mean absolute percentage error (MAPE) for water and compact bone, for all emitters compared to 
those published by Botta et al. [66] and Shiiba et al. [67]
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considered. The model for beta-emitting radionuclides sDPK does not consider the 
Auger and conversion electrons emitted in radionuclide decay, thus influencing at short-
range level. As shown in Fig. 4, the non-negligible differences correspond to regions very 
close to the emission source.

Although many different compounds have been considered to calculate the sDPK 
database, they are limited to biological tissues. Thereby, special care is required for clini-
cal cases involving prosthesis or implants. In this regard, further developments/exten-
sions of the present work are planned to account for such materials. To this aim, the 
three ML-based models studied in this work have demonstrated the capability to quickly 
calculate the monoenergetic sDPK with the composition, density, energy, and range of 
material as input data. This allows the generation of monoenergetic sDPK easily for any 
material, and the beta-emitting radionuclide sDPK can be calculated by the model pro-
posed for a wide range of radionuclides.

Finally, the application of sDPK for dosimetric calculation showed a good agreement 
with FLUKA MC calculation of maps of absorbed dose. Index gamma was less than 1 
in more than 94% of voxels. However, voxel convolution underestimated the absorbed 
dose by 6% approximately. The model proposed to estimate the absorbed dose by voxels 
kernel convolution has shown a real advantage over FLUKA MC when comparing the 
required calculation time, i.e., 7  min versus 40  h, respectively. Moreover, the capabil-
ity of ML-based model’s to quickly calculate several monoenergetic electron sDPK was 
demonstrated, which were further used to estimate the beta-emitting radionuclide sDPK 
tailored to each material.

Conclusion
An ML model was developed to show the capacity to accurately calculate the sDPK 
for monoenergetic beta sources in a wide range of energy and materials compounds. 
Although preliminary evaluations limited to one patient have been useful to verify the 
feasibility of the proposed approach as well as to suggest a promising performance, it 
is worth mentioning that extending the application to attain exhaustive benchmarking 
on a wide patient dataset remains mandatory to proceed with a definitive performance 
evaluation. A model for calculating the sDPK for beta-emitting radionuclide from the 
monoenergetic sDPK allows obtaining the VDK for calculating the absorbed dose at a 
patient-specific level in a short time.

Extending the proposed approach to other ML algorithms evaluating the correspond-
ing performance may constitute a valuable future contribution.
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