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Introduction
Positron emission tomography (PET) is a noninvasive molecular imaging modality 
widely used in oncology, neurology, cardiology, and other fields [1–8]. Good image qual-
ity and accurate quantification are vital in PET imaging for clinical diagnosis, prognosis, 
staging/restaging, and treatment monitoring. Nowadays, the ordered subset expecta-
tion maximization (OSEM) algorithm is the most popular PET imaging method used 
in clinical routines. A major drawback of the OSEM algorithm is that the image noise 

Abstract 

Objectives: To validate a total-body PET-guided deep progressive learning recon-
struction method (DPR) for low-dose 18F-FDG PET imaging.

Methods: List-mode data from the retrospective study (n = 26) were rebinned into 
short-duration scans and reconstructed with DPR. The standard uptake value (SUV) 
and tumor-to-liver ratio (TLR) in lesions and coefficient of variation (COV) in the liver 
in the DPR images were compared to the reference (OSEM images with full-duration 
data). In the prospective study, another 41 patients were injected with 1/3 of the activ-
ity based on the retrospective results. The DPR images (DPR_1/3(p)) were generated 
and compared with the reference (OSEM images with extended acquisition time). The 
SUV and COV were evaluated in three selected organs: liver, blood pool and muscle. 
Quantitative analyses were performed with lesion SUV and TLR, furthermore on small 
lesions (≤ 10 mm in diameter). Additionally, a 5-point Likert scale visual analysis was 
performed on the following perspectives: contrast, noise and diagnostic confidence.

Results: In the retrospective study, the DPR with one-third duration can maintain the 
image quality as the reference. In the prospective study, good agreement among the 
SUVs was observed in all selected organs. The quantitative results showed that there 
was no significant difference in COV between the DPR_1/3(p) group and the reference, 
while the visual analysis showed no significant differences in image contrast, noise and 
diagnostic confidence. The lesion SUVs and TLRs in the DPR_1/3(p) group were signifi-
cantly enhanced compared with the reference, even for small lesions.

Conclusions: The proposed DPR method can reduce the administered activity of 18F-
FDG by up to 2/3 in a real-world deployment while maintaining image quality.
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increases fast as the iteration number grows, so the iterative process has to be stopped 
early, and therefore, an additional post-processing filter is used to smooth the image. 
Advanced reconstruction algorithms such as BSREM [9] and TVREM [10] incorporate 
a penalty term in the formula which suppresses the image background noise during the 
iterative reconstruction process and thus no post-processing filter is needed. During the 
past few years, deep learning approaches have been proven to achieve superior perfor-
mance in denoising PET images [11–16]. It has shown the potential of low-dose to full-
dose conversion in various studies. Sanaatet al. predicted regular full-dose PET images 
from simulated 1/8th low-dose PET images using CycleGAN model [11]. Schaefferkoet-
ter et al. evaluated the denoising performance of a 3D CNN model with different count 
levels from 1 to 20 million [12]. Wang et al. developed a CNN model which combines 
simulated 1/16th low-dose PET scans and simultaneously MRI scans to produce a stand-
ard-dose PET scan [13]. Mehranian et al. trained the deep learning enhancement model 
with partial-duration OSEM images into target full-duration BSREM images and finally 
allowed a reduction in scan time by up to 50% [14]. The main concerns of previous stud-
ies are as follows: (i) The training target images were acquired from conventional PET 
scanners with a long acquisition time, which may provide PET images with good but 
sub-optimal image quality because the sensitivity of the conventional PET scanners is 
much lower than that of the total-body PET scanner; (ii) all studies use deep learning 
as an image post-processing technique; however, recent studies have shown that incor-
porating the neural network model into the iterative process may achieve better results 
[15], 16; and (iii) though all the studies aim to realize low-dose PET body imaging, the 
evaluations were conducted using simulated data, not real-world low-dose data.

We have developed a deep progressive learning reconstruction method (DPR) 
and evaluated it with extensive phantom and patient studies [16]. The training data 
used in the network come from the total-body PET (uEXPLORER, United Imaging 
Healthcare, China) images with an acquisition time of 15 min, which can generate 
excellent image quality and can easily overcome the above-mentioned challenges. 
However, uEXPLORER is too expensive and not every PET center can afford it. If the 
training data acquired from uEXPLORER can be used to improve the image quality 
of conventional PET scanners, the entire molecular imaging community can benefit 
from it. Thus, we designed this study and validated it using uMI 780, a digital PET/
CT scanner with a standard axial field-of-view (FOV) of 30 cm. We first investigated 
the performance of the DPR algorithm in shortening the acquisition time with the 
retrospective data. The reduced acquisition is to simulate the reduced injected activ-
ity in PET imaging and provide evidence for the subsequent study with real-world 
low-dose injection. Thus, the patients were prospectively enrolled with an injection 
of reduced activity based on the above results. The image quality of these patients 
was comprehensively evaluated regarding quantification accuracy, lesion contrast as 
well as visual assessment.

This study aimed to investigate the image quality of 18F-FDG PET images recon-
structed by the DPR algorithm in patients with both a simulated and real-world 
low-injected activity and compare it to that reconstructed by the standard OSEM 
algorithm.
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Methods
The DPR algorithm employs two networks, i.e., a denoising network (CNN-DE) which 
can remove the noise from the input image and an enhancement network (CNN-EH) 
which maps from a low convergent image to a high convergent image. Both CNN-DE 
and CNN-EH were trained based on the designed feedback network. One hundred 
patient data acquired from uEXPLORER were used for network training. For CNN-DE, 
PET images with 10% uniformly down-sampled counts were used as training input, and 
PET images with full counts were used as training targets. For CNN-EH, PET images 
with insufficient iterations were used as training input, and PET images with sufficient 
iterations were used as training targets. The details of algorithm design, network train-
ing and testing are described in the Additional file  1. The algorithm was evaluated in 
two steps, and a flow diagram of the study is shown in Fig. 1. A current guideline for 
PET oncological study [1] recommends the specified product of acquisition time per bed 
position and the administered activity for a given patient. Therefore, one may decide to 
apply a higher activity and reduce the acquisition duration, or to use a reduced activity 
and accordingly increase the acquisition duration. The latter one is preferable to keep 
in line with the ALARA principle. In our clinical routines, the acquisition time for each 
bed position is fixed as 2 min with an administered activity linear to the patient weight 
(3.7 MBq/kg) to simplify the acquisition procedure. Thus, the performance of the pro-
posed DPR algorithm was first evaluated using the retrospective data where the above 
dose regimen was applied. The acquisition time per bed position was reduced to 1/n 
(n = 2, 3, 4) to simulate the low-dose scenario. Quantitative analysis was performed 
to compare the quantification accuracy and image quality between the full-dose data 
reconstructed with OSEM and low-dose data reconstructed with DPR and evaluate 
the ability of the DPR in reducing the dose. Based on the results from the retrospec-
tive study, the patient was prospectively enrolled and injected with reduced activity in 
the subsequent prospective study. Both the qualitative and quantitative analyses were 

Fig. 1 Flow diagram of the reconstruction process and analysis. OSEM, ordered subset expectation 
maximization algorithm. DPR, deep progressive learning algorithm
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performed to compare the full-acquisition data reconstructed with OSEM and reduced-
acquisition data reconstructed with DPR.

Patients

The study included a retrospective and a prospective patient cohort. Twenty-six and 
41 oncological patients (female/male: 26/41, age 15–87 years) referred to the Shanghai 
General Hospital from November 2020 to September 2021 for clinical 18F-FDG PET/
CT examinations were enrolled, respectively. Their demographic and clinical informa-
tion is listed in Table 1. All patients had fasted for at least 6 h, and a blood glucose level 

Table 1 Patient demographic characteristics

N.A., not applicable; BMI, body mass index
a Data are presented as the mean ± standard deviation [minimum, maximum]
b Number of patients

Parameter Retrospective study Prospective study p value

No. of patients 26 41 N.A.

Age (years) 63.7 ± 16.4 [24,  87]a 52.9 ± 12.2 [15,  69]a 0.003

Gender

 Female 8 18 0.315

 Male 18 23

 Weight (kg) 65.2 ± 12.2 [51.2,  110]a 61.9 ± 12.6 [44, 101.4]a 0.233

 Height (cm) 166.2 ± 8.6 [150,  184]a 163.4 ± 9.6 [146,  183]a 0.289

 BMI 23.5 ± 3.1 [17.3, 32.5]a 23.0 ± 3.4 [16.3, 31.7]a 0.570

 Glucose level 5.38 ± 0.88 [4.3, 7.9]a 5.34 ± 0.84 [3.8, 8.1]a 0.846

 Injected activity (MBq) 258 ± 46 [200,  407]a 81 ± 15 [51,  115]a < 0.001

 Injected activity/weight(MBq/kg) 3.97 ± 0.28[3.61, 4.75]a 1.32 ± 0.18[1.10, 2.11]a < 0.001

 Uptake time (min) 70 ± 14 [49,  97]a 68 ± 16 [39,  105]a 0.458

Primary cancer type N.A.

 Leukemia 1b 3b

 Bladder cancer 1b 0

 Multiple myeloma 1b 0

 Lung cancer 6b 9b

 Liver cancer 0 1b

 Laryngeal carcinoma 1b 0

 Bone tumor 1b 0

 Colorectal cancer 3b 2b

 Lymphoma 5b 8b

 Ovarian cancer 1b 0

 Breast cancer 1b 2b

 Renal cancer 1b 1b

 Esophageal cancer 2b 2b

 Gastric cancer 1b 0

 Pancreatic cancer 1b 1b

 Pelvic carcinoma 0 1b

 Tongue cancer 0 2b

 Uterine cancer 0 5b

 Aplastic anemia 0 1b

 Popliteal fossa tumor 0 1b

 Tonsil tumor 0 1b

 Nasopharyngeal cancer 0 3b
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was confirmed to be ≤ 10 mmol/mL before the 18F-FDG injection. A weight-based 18F-
FDG (full and one-third) dose was administered to the patient of the two cohorts using 
a fully automated PET infusion system (MEDRAD, Bayer Medical Care Inc. Pennsyl-
vania, USA) that allows an accurate dose administration. During an uptake period of 
about 60 min, the patients were hydrated orally with 0.5–1.0 L of water. This study was 
approved by the Institutional Review Board of Shanghai General Hospital, and the 
written informed consent was waived in the retrospective part and obtained from the 
patients in the prospective part.

PET/CT acquisition and reconstruction

All patients were scanned with a digital PET/CT scanner (uMI 780, United Imaging 
Healthcare). The system details and performance characteristics of uMI 780 and uEX-
PLORER are summarized in Table 2. These two systems have a similar spatial resolution, 
energy resolution and TOF resolution. The only major difference is the axial FOV, which 
leads to the sensitivity difference. Patients were firstly scanned with CT with a fixed tube 
voltage of 120 kV and an auto-mAs technique for dose modulation, providing anatomi-
cal information and attenuation correction to PET images. Subsequently, patients were 
scanned with PET in step-and-shoot mode. PET data were acquired in list mode for 
2 min per bed position in the retrospective study. In the prospective study, the patients 
were injected with one-third of the activity and the acquisition duration was accord-
ingly increased to 6 min to achieve the same product of the administered activity and 
the acquisition duration as that in the retrospective study. The acquired data were recon-
structed with both OSEM and DPR algorithms (hereinafter referred to as OSEM_full(r) 
and DPR_full(r) in the retrospective study, and OSEM_full(p) in the prospective study). 
The OSEM algorithm was applied with 2 iterations, 20 subsets, a Gaussian filter with full 
width at half maximum of 3 mm, 192 × 192 matrix, 600 FOV, 2.68 mm slice thickness, as 
well as TOF and resolution modeling. The standard corrections (scatter, random, dead 
time, decay, attenuation, and normalization) were included in the reconstruction. The 
DPR algorithm was applied with the same FOV, matrix, and slice thickness as in the 
OSEM. No other post-processing method was included in the reconstruction.

In the retrospective study, we rebinned the list-mode PET data to 1, 2/3, and 1/2 min 
per bed position to simulate the 1/n (n = 2, 3, 4) of the administered activity. The 
DPR algorithm was also applied to the rebinned PET data (hereinafter referred to as 

Table 2 PET scanner characteristics of uMI 780 and uEXPLORER

Data are from the datasheets provided by the manufacturer

uMI 780 uEXPLORER

Crystal material LYSO LYSO

Crystal size 2.76 × 2.59 × 18  mm3 2.76 × 2.76 × 18  mm3

Number of detector rings 112 672

Detector SiPM SiPM

Axial FOV 300 mm 1940 mm

Sensitivity 16 kcps/MBq 176 kcps/MBq

TOF resolution 450 ps 430 ps

Spatial resolution 2.9 mm@center 2.9 mm@center

Scatter fraction 38% 38%
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DPR_1/2(r), DPR_1/3(r) and DPR_1/4(r)). In the prospective study, PET images were 
reconstructed using the first 2 min data with the DPR algorithm (hereinafter referred to 
as DPR_1/3(p)). In summary, OSEM_full(r) was compared to DPR_full(r), DPR_1/2(r), 
DPR_1/3(r), and DPR_1/4(r) in the retrospective study, while OSEM_full(p) was com-
pared with DPR_1/3(p) in the prospective study.

Image analysis in the retrospective study

In the retrospective study of this work, the image quality was quantitatively assessed 
on an advanced workstation (uWS-MI, United Imaging Healthcare). For each patient, 
a volume of interest (VOI) with a diameter of 30 ± 3  mm was manually drawn at the 
same position and the slice on a homogeneous area of the right liver lobe. The SUVmean 
and standard deviation (SD) within the VOI were recorded. The liver COV, as a measure 
of background noise, was obtained by dividing the SD by the SUVmean. Regarding the 
lesions, SUVmax of the identified FDG-avid lesions was measured by placing a VOI to 
encompass the whole lesion. Thus, tumor-to-liver ratio (TLR), as a measure of image 
contrast, was obtained by dividing the lesion SUVmax by the liver SUVmean.

Image analysis in the prospective study

In the prospective study, the same nuclear medicine physician analyzed the images on 
the same workstation as in the retrospective study. Similarly, a VOI was manually drawn 
at the right liver lobe, aorta, and gluteus maximus. The SUVmean and standard devia-
tion (SD)of the VOI for each series were recorded. The liver and the muscle COV were 
obtained by dividing the SD by the SUVmean. The value of SUVmax and TLR for each 
identified lesion was obtained using the same method as the above. In addition, the 
diameter of the lesion was measured on the CT images.

Subsequently, the qualitative image quality of unlabeled images was assessed by two 
nuclear medicine physicians (XY, 17 years of experience, and WTS, 18 years of experi-
ence) in a randomized order. The patient’s clinical information, as well as the acquisi-
tion duration and reconstruction algorithm, were blinded to the reader. The physicians 
viewed both the maximum intensity projection (MIP) and transverse PET images and 
judged the image quality using a 5-point Likert scale in the following three perspectives: 
image contrast, image noise and diagnostic confidence (with 1 = worst and 5 = best). A 
score of 3 was given to images that were acceptable for clinical diagnosis.

Statistical analysis

Continuous parameters are presented as the mean ± SD and range. Fisher’s exact test 
was performed to investigate the distribution of gender in the two cohorts. An inde-
pendent t test was used to test the other demographic parameters of the enrolled 
patients from the two cohorts. Fully acquired data were reconstructed with OSEM to 
generate images as a reference. Bland–Altman plot analyses were performed to assess 
the agreement of the SUVs between the reference and DPR images. All the quantita-
tive parameters were tested for normality using the Kolmogorov–Smirnov test and the 
two-tailed paired samples t test was subsequently performed. Inter-rater reliability was 
evaluated using Cohen’s weighted kappa (linear) coefficient. The scores of the qualita-
tive image quality were subsequently compared using the Wilcoxon signed-rank test. 
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Statistical significance was considered for a p value less than 0.05, and all statistical 
tests were performed using SPSS Statistics, version 25 (IBM, Armonk, NY, USA) and R 
package.

Results
Retrospective study

The liver SUVmean agreed well as shown in Bland–Altman plots (Fig. 2). No significant 
difference was found between the DPR groups and the reference (all p > 0.05), indicating 
a good quantification accuracy. The liver COV in the DPR_1/3(r) group showed no sig-
nificant difference with that in the reference (p = 0.955), indicating a comparable image 
quality (Fig.  2). The image quality of the DPR_1/2(r) and DPR_full(r) groups was sig-
nificantly improved with a reduced COV value (both p < 0.001). Both the lesion SUVmax 
and TLR in all the DPR groups showed a significant enhancement compared to those 
in the reference (all p < 0.001), indicating an improvement in lesion conspicuity. Based 
on the above results, we concluded that the DPR algorithm can reduce the acquisition 
time to 1/3. Thus, in the subsequent prospective study, the image quality of the patients 
injected with 1/3 of 18F-FDG was analyzed.

Fig. 2 Quantitative results of the retrospective study. a is Bland–Altman plots of liver SUVmean between the 
DPR group and the reference group in the retrospective study. All the DPR groups showed a good agreement 
on the quantification accuracy of the liver SUVmean with the reference. b–d are the comparison of the liver 
COV, lesion SUVmax and TLR between DPR groups and the reference in the retrospective study. The liver 
COV showed no significant difference between the DPR_1/3(r) group and the reference. All the DPR groups 
show a significantly elevated SUVmax and TLR compared to the reference group, indicating improved image 
contrast. ***p < 0.001; ns, no significant difference. Whisker indicates a standard deviation. COV, coefficient of 
variance. SUV, standardized uptake value. TLR, tumor-to-liver ratio
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Prospective study

In the prospective study, we analyzed the uptake of background tissues, including 
the liver, blood pool and muscle, and found that the values of SUVmean agreed well 
between groups as shown in the Bland–Altman plots (Fig. 3). Subsequently, the COVs 
of the background tissues were compared (Fig. 3). There was no significant difference 
of the COVs between the DPR_1/3(p) group and the reference (p = 0.055, 0.526 and 
0.604 for the liver, blood pool and muscle, respectively), showing a comparable qual-
ity with the reference.

A total of 98 lesions were identified in the reference images and included in the 
quantitative analysis. The SUVmax and TLR of the lesions in all the DPR groups were 
significantly larger than those in the reference group (both p < 0.001, as shown in 
Fig. 3). The enhancement of the lesion uptake in the DPR images can be observed in 
the MIP and transverse images. Figure 4 illustrates PET images of a 31-year-old man 
with Hodgkin’s lymphoma. Both the MIP and transverse images of the DPR images 
showed improved lesion detectability. Meanwhile, the DPR images demonstrated a 
non-inferior performance in the noise level compared to the reference.

A further study was performed on the small lesions with a diameter of less than 
10 mm (n = 27). In the DPR images, a significantly higher uptake was also found than 
that in the OSEM images (p < 0.001). Likewise, the TLR in the DPR groups showed 
significant improvement compared with that in the OSEM group (both p < 0.001).

In the visual analysis, the weighted kappa coefficient was 0.612, indicating a sub-
stantial agreement of the subjective score between the two readers. There were no 
significant differences between the DPR_1/3(p) group and the reference regarding the 

Fig. 3 Quantitative results of the prospective study. a is the Bland–Altman plots of the liver, the blood 
pool and the muscle SUVmean between DPR_1/3(p) images and the reference. b, c are the comparisons 
of the lesion SUVmax and TLR between DPR groups and the reference (blue line: an increase; orange line: a 
decrease). The SUVmax and TLR of all the DPR groups were significantly improved compared to the reference 
group. d–f are the comparisons of the liver, the blood pool and the muscle COV between DPR groups and 
the reference. The liver, the blood pool and the muscle COV showed no significant difference between the 
DPR_1/3 group and the reference. ****p < 0.0001; ns, no significant difference. SUV, standardized uptake 
value. TLR, tumor-to-liver ratio. COV, coefficient of variance
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contrast, noise and diagnostic confidence (p = 0.284, 0.655 and 0.137, respectively), as 
shown in Fig. 5.

Discussion
In this study, we investigated the image quality of a deep progressive learning algorithm 
with both simulated and real-world reduced administered activity of clinical data. As 
known, PET is associated with the detection of annihilation photons that are produced 

Fig. 4 PET images of a 31-year-old male patient diagnosed with Hodgkin’s lymphoma in the prospective 
study. After injection of 85 MBq 18F-FDG, the patient underwent a PET scan with 6 min per bed position 
77 min post-injection. To comprehensively compare the clinical images reconstructed by the two algorithms, 
we further reconstructed the data with 1/3 and full of the acquisition duration for OSEM and DPR algorithms. 
Both the MIP (upper row) and transverse images (middle row) demonstrated improved lesion detectability 
of the DPR images compared to the OSEM images with the same acquisition duration (a–d). The transverse 
image in the liver plane showed reduced image noise when comparing subfigures a–d, while the image 
noise in the subfigures b and c was at a comparable level

Fig. 5 Visual assessment of the image contrast, noise and diagnostic confidence between DPR_1/3(p) 
images and the reference. There was no significant difference found in all three perspectives. ns, no 
significant difference
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back-to-back after positron emission from a radioactive tracer. Hence, radiation expo-
sure is inevitable in PET imaging, and the injected dose should be reduced while main-
taining adequate image quality to provide sufficient clinical information. Particularly for 
longitudinal studies when multiple PET/CT scans are performed, it is desirable to adapt 
the injected dose to the lowest level to reduce the accumulated dose. In addition, con-
cerns about radiation exposure are of great interest in pediatric populations because the 
risk of radiation-induced carcinogenesis is higher in children, so they are prone to sec-
ondary tumors during their lifetime [17–19]. Thus, reducing the administered activity in 
PET imaging is highly desirable in clinical routines.

The advent of the total-body or long axial FOV PET scanners has made a breakthrough 
in the system sensitivity, which has been proven its ability in reducing the administered 
activity [20–24]. However, up to now, there are only a limited number of total-body 
PET/CT scanners available worldwide. To better exploit the potential of this powerful 
tool, a deep learning-based method utilizing the high-quality total-body PET images 
is expected. Thus, it can be implemented in other PET sites for more urging low-dose 
PET imaging. The DPR algorithm in this study is the first attempt to utilize the total-
body PET images as the target images during the network training. It can be regarded 
as a bridge to link the conventional PET scanner and the total-body PET scanner. In this 
work, both the simulated and the real-world low-dose DPR images were evaluated and 
compared with the standard OSEM images and showed that the image quality can be 
maintained even if the injected dose was reduced to 1/3.

During the network training of deep learning-based PET denoising techniques, high-
quality images reconstructed from a high injected dose or a long acquisition time are 
required to be used as the training labels. However, high injected dose in PET imaging 
is related to the potential safety concerns and is not employed in clinical practice. On 
the other hand, a longer acquisition time may adversely degrade the image quality due 
to the patient’s motion during the acquisition. An alternative solution is to adapt the 
regularized images with less noise and better contrast, such as block sequential regular-
ized expectation maximization (BSREM) [14, 25, 26]. Moreover, the employment of the 
total-body PET images can make an unprecedented breakthrough in the image quality 
of the training dataset. The proposed DPR method utilized two learning steps to transfer 
the low-quality images to high-quality images and is feasible for both reducing noise and 
improving image contrast. A shortcoming of the CNN-based methods is that the per-
formance is usually degraded on small lesions since they are overwhelmed by the image 
noise in low SNR images. The proposed DPR method can tackle this problem by incor-
porating the networks into the iteration process [16]. In a previous study on the same 
network, even the smallest hot sphere with a diameter of 10 mm in a NEMA IEC body 
phantom still showed at least twofold contrast-to-noise (CNR) gain. Consistent results 
were found with the clinical data in this study. The DPR algorithm on the small lesions 
still showed good performance regarding both the quantitative SUV measurements and 
TLR values.

However, increased lesion SUVmax may have its side effect, that is, the quantita-
tion inconsistency between DPR and OSEM. Many clinical criteria, such as Deauville 
score on lymphoma, are based on SUV, so increased SUV may lead to different diag-
nostic results and therefore medical treatment [27]. New PET scanners have better 
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TOF resolution, smaller detector size and higher system sensitivity. The introduction 
of new reconstruction methods makes the contrast recovery of small lesions higher. 
As we can see, all advances in hardware and algorithms may have an impact on the 
detectability of small lesions and therefore change the SUVs. If the quantitative inter-
pretation criteria are not updated with the evolution of PET technologies, it will be a 
dilemma to adopt new technologies in clinical practice [28, 29]. According to EANM’s 
recommendations, at this stage, at least two images should be generated for a routine 
PET examination, i.e., one maximizes the algorithm performance for optimal visual 
interpretation and the other one follows the EARL specifications for consistent quan-
titative measurement [1].

The present study has several limitations. First, this work was a single-center 
study with a limited number of enrolled patients. A large-scale multicenter study is 
expected to be performed, especially on the quantification accuracy of SUVs which 
is essential in the multicenter or cross-machine PET study. In addition, the difference 
in physiological uptake was accidentally observed between the images reconstructed 
by the first two-minute data and the last two-minute data in the prospective study. In 
this study, we rebinned the first two-minute data to reconstruct DPR images for anal-
ysis. Furthermore, the supervised network in the work was trained with 18F-FDG PET 
data and this study only enrolled oncological patients who underwent 18F-FDG PET 
examinations. Currently, PET imaging combined with other tracers is widely used 
and studied. In future work, the performance of the DPR algorithm can be trained 
and evaluated with other non-18F-FDG tracers, such as 68Ga-PSMA.

In conclusion, in this work, a total-body PET-guided deep progressive learning 
method was proposed for reducing the noise and improving the contrast of 18F-FDG 
low-dose PET images. Both simulated and real-world low-dose studies demonstrated 
that PET imaging with the DPR algorithm can reduce the administered activity to 1/3 
of the standard without compromising the image quality and small lesion detectabil-
ity. This study has shown the potential of the proposed DPR algorithm in low-dose 
PET imaging for conventional digital PET/CT scanners in clinical routines.

Abbreviations
CNN  Convolutional neural network
COV  Coefficient of variation
DPR  Deep progressive learning reconstruction method
OSEM  Ordered subset expectation maximization
PET  Positron emission tomography
SD  Standard deviation
SUV  Standard uptake value
TB-PET  Total-body positron emission tomography
TLR  Tumor-to-liver ratio
VOI  Volume of interest

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s40658- 022- 00508-5.

Additional file 1. The details of algorithm design, network training and testing.

Author contributions
YX and JZ contributed to the study conception and design. JW and YD prepared the material and collected the data. WQ, 
YL and ZQ analyzed the data. TW and YW drafted the manuscript. All authors read and approved the final manuscript.

https://doi.org/10.1186/s40658-022-00508-5


Page 12 of 13Wang et al. EJNMMI Physics            (2022) 9:82 

Funding
This study is supported by the National Natural Science Foundation of China (81971647 and 82171978) and Shanghai 
Shenkang Hospital Development Center Clinical Study Project (SHDC2020CR2057B).

Availability of data and materials
Data are available upon request to the corresponding author.

Code availability
Not applicable.

Declarations

Ethics approval and consent to participate
All procedures performed in studies involving human participants were in accordance with the ethical standards of the 
institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or 
comparable ethical standards. This study was approved by the Institutional Review Board of Shanghai General Hospital, 
and the written informed consent was waived in the retrospective part and obtained from the patients in the prospec-
tive part.

Consent for publication
Patients signed informed consent regarding publishing their data and photographs for scientific use.

Competing interests
Ying Wang, Jingyi Wang, Yang Lv, Yun Dong and Zheng Qian are all full-time employees of United Imaging Healthcare, 
China. All other authors have no conflicts of interest to report.

Received: 19 June 2022   Accepted: 31 October 2022

References
 1. Boellaard R, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 20. Eur J Nucl Med Mol 

Imaging. 2015;42(2):328–54. https:// doi. org/ 10. 1007/ s00259- 014- 2961-x.
 2. Anand SS, Singh H, Dash AK. Clinical applications of PET and PET-CT. Med J Armed Forces India. 2009;65(4):353–8. 

https:// doi. org/ 10. 1016/ S0377- 1237(09) 80099-3.
 3. Fletcher JW, Djulbegovic B, Soares HP, Siegel BA, Lowe VJ, Lyman GH, et al. Recommendations on the use of 18F-

FDG PET in oncology. J Nucl Med. 2008;49:480–508. https:// doi. org/ 10. 2967/ jnumed. 107. 047787.
 4. Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, et al. A combined PET/CT scanner for clinical oncol-

ogy. J Nucl Med. 2000;41:1369–79.
 5. Dilsizian V, Bacharach SL, Beanlands RS, et al. ASNC imaging guidelines/SNMMI procedure standard for positron 

emission tomography (PET) nuclear cardiology procedures. J Nucl Cardiol. 2016;23(5):1187–226. https:// doi. org/ 10. 
1007/ s12350- 016- 0522-3.

 6. Schwaiger M, Ziegler S, Nekolla SG. PET/CT: challenge for nuclear cardiology. J Nucl Med. 2005;46:1664–78.
 7. deKemp RA, Yoshinaga K, Beanlands RS. Will 3-dimensional PET-CT enable the routine quantification of myocardial 

blood flow? J Nucl Cardiol. 2007;14(3):380–97. https:// doi. org/ 10. 1016/j. nuclc ard. 2007. 04. 006.
 8. Tai YF. Applications of positron emission tomography (PET) in neurology. J Neurol Neurosurg Psychiatry. 

2004;75:669–76. https:// doi. org/ 10. 1136/ jnnp. 2003. 028175.
 9. Lindström E, Sundin A, Trampal C, et al. Evaluation of penalized-likelihood estimation reconstruction on a digital 

time-of-flight PET/CT scanner for 18F-FDG whole-body examinations. J Nucl Med. 2018;59(7):1152–8. https:// doi. 
org/ 10. 2967/ jnumed. 117. 200790.

 10. Baratto L, Duan H, Ferri V, Khalighi M, Iagaru A. The Effect of various β values on image quality and semiquantitative 
measurements in 68Ga-RM2 and 68Ga-PSMA-11 PET/MRI images reconstructed with a block sequential regularized 
expectation maximization algorithm. Clin Nucl Med. 2020;45(7):506–13. https:// doi. org/ 10. 1097/ RLU. 00000 00000 
003075.

 11. Sanaat A, Shiri I, Arabi H, Mainta I, Nkoulou R, Zaidi H. Deep learning-assisted ultra-fast/low-dose whole-body PET/
CT imaging. Eur J Nucl Med Mol Imaging. 2021. https:// doi. org/ 10. 1007/ s00259- 020- 05167-1.

 12. Schaefferkoetter J, Yan J, Ortega C, et al. Convolutional neural networks for improving image quality with noisy PET 
data. EJNMMI Res. 2020;10(1):105. https:// doi. org/ 10. 1186/ s13550- 020- 00695-1.

 13. Wang YJ, Baratto L, Hawk KE, et al. Artificial intelligence enables whole-body positron emission tomography scans 
with minimal radiation exposure. Eur J Nucl Med Mol Imaging. 2021. https:// doi. org/ 10. 1007/ s00259- 021- 05197-3. 
10. 1007/ s00259- 021- 05197-3.

 14. Mehranian A, Wollenweber SD, Walker MD, et al. Image enhancement of whole-body oncology [18F]-FDG 
PET scans using deep neural networks to reduce. Eur J Nucl Med Mol Imaging. 2021. https:// doi. org/ 10. 1007/ 
s00259- 021- 05478-x.

 15. Reader AJ, Corda G, Mehranian A, Costa-Luis CD, Ellis S, Schnabel JA. Deep learning for PET image reconstruction. 
IEEE Trans Radiat Plasma Medical Sci. 2020;5:1–25.

 16. Lv Y, Xi C. PET image reconstruction with deep progressive learning. Phys Med Biol. 2021;66(10): 105016. https:// doi. 
org/ 10. 1088/ 1361- 6560/ abfb17.

 17. Kleinerman RA. Cancer risks following diagnostic and therapeutic radiation exposure in children. Pediatr Radiol. 
2006;36(Suppl 2):121–5. https:// doi. org/ 10. 1007/ s00247- 006- 0191-5.

https://doi.org/10.1007/s00259-014-2961-x
https://doi.org/10.1016/S0377-1237(09)80099-3
https://doi.org/10.2967/jnumed.107.047787
https://doi.org/10.1007/s12350-016-0522-3
https://doi.org/10.1007/s12350-016-0522-3
https://doi.org/10.1016/j.nuclcard.2007.04.006
https://doi.org/10.1136/jnnp.2003.028175
https://doi.org/10.2967/jnumed.117.200790
https://doi.org/10.2967/jnumed.117.200790
https://doi.org/10.1097/RLU.0000000000003075
https://doi.org/10.1097/RLU.0000000000003075
https://doi.org/10.1007/s00259-020-05167-1
https://doi.org/10.1186/s13550-020-00695-1
https://doi.org/10.1007/s00259-021-05197-3.10.1007/s00259-021-05197-3
https://doi.org/10.1007/s00259-021-05197-3.10.1007/s00259-021-05197-3
https://doi.org/10.1007/s00259-021-05478-x
https://doi.org/10.1007/s00259-021-05478-x
https://doi.org/10.1088/1361-6560/abfb17
https://doi.org/10.1088/1361-6560/abfb17
https://doi.org/10.1007/s00247-006-0191-5


Page 13 of 13Wang et al. EJNMMI Physics            (2022) 9:82  

 18. Voss SD, Reaman GH, Kaste SC, Slovis TL. The ALARA concept in pediatric oncology. Pediatr Radiol. 
2009;39(11):1142–6. https:// doi. org/ 10. 1007/ s00247- 009- 1404-5.

 19. Hall EJ, Brenner DJ. Cancer risks from diagnostic radiology. Br J Radiol. 2008;81(965):362–78. https:// doi. org/ 10. 1259/ 
bjr/ 01948 454.

 20. Tan H, Sui X, Yin H, et al. Total-body PET/CT using half-dose FDG and compared with conventional PET/CT 
using full-dose FDG in lung cancer. Eur J Nucl Med Mol Imaging. 2021;48(6):1966–75. https:// doi. org/ 10. 1007/ 
s00259- 020- 05091-4.

 21. Zhao YM, Li YH, Chen T, et al. Image quality and lesion detectability in low-dose pediatric 18F-FDG scans using total-
body PET/CT. Eur J Nucl Med Mol Imaging. 2021;48(11):3378–85. https:// doi. org/ 10. 1007/ s00259- 021- 05304-4.

 22. Xiao J, Yu H, Sui X, et al. Can the BMI-based dose regimen be used to reduce injection activity and to obtain a con-
stant image quality in oncological patients by 18F-FDG total-body PET/CT imaging? Eur J Nucl Med Mol Imaging. 
2021. https:// doi. org/ 10. 1007/ s00259- 021- 05462-5.

 23. Tan H, Cai D, Sui X, et al. Investigating ultra-low-dose total-body [18F]-FDG PET/CT in colorectal cancer: initial experi-
ence. Eur J Nucl Med Mol Imaging. 2021. https:// doi. org/ 10. 1007/ s00259- 021- 05537-3.

 24. Hu Y, Liu G, Yu H, et al. Feasibility of ultra-low 18F-FDG activity acquisitions using total-body PET/CT. J Nucl Med. 
2021. https:// doi. org/ 10. 2967/ jnumed. 121. 262038.

 25. Zanoni L, Argalia G, Fortunati E, et al. Can Q. Clear reconstruction be used to improve [68 Ga]Ga-DOTANOC PET/
CT image quality in overweight NEN patients? Eur J Nucl Med Mol Imaging. 2021. https:// doi. org/ 10. 1007/ 
s00259- 021- 05592-w.

 26. Yang FJ, Ai SY, Wu R, et al. Impact of total variation regularized expectation maximization reconstruction on the 
image quality of 68Ga-PSMA PET: a phantom and patient study. Br J Radiol. 2021;94(1120):20201356. https:// doi. org/ 
10. 1259/ bjr. 20201 356.

 27. Ly J, Minarik D, Edenbrandt L, et al. The use of a proposed updated EARL harmonization of (18)F-FDG PET-CT in 
patients with lymphoma yields significant differences in Deauville score compared with current EARL recommenda-
tions. EJNMMI Res. 2019;9(1):65. https:// doi. org/ 10. 1186/ s13550- 019- 0536-3.

 28. Barrington SF, Sulkin T, Forbes A, et al. All that glitters is not gold—new reconstruction methods using Deau-
ville criteria for patient reporting. Eur J Nucl Med Mol Imaging. 2018;45(2):316–7. https:// doi. org/ 10. 1007/ 
s00259- 017- 3893-z.

 29. Boellaard R, Sera T, Kaalep T, et al. Updating PET/CT performance standards and PET/CT interpretation criteria 
should go hand in hand. EJNMMI Res. 2019;9(1):95. https:// doi. org/ 10. 1186/ s13550- 019- 0565-y.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s00247-009-1404-5
https://doi.org/10.1259/bjr/01948454
https://doi.org/10.1259/bjr/01948454
https://doi.org/10.1007/s00259-020-05091-4
https://doi.org/10.1007/s00259-020-05091-4
https://doi.org/10.1007/s00259-021-05304-4
https://doi.org/10.1007/s00259-021-05462-5
https://doi.org/10.1007/s00259-021-05537-3
https://doi.org/10.2967/jnumed.121.262038
https://doi.org/10.1007/s00259-021-05592-w
https://doi.org/10.1007/s00259-021-05592-w
https://doi.org/10.1259/bjr.20201356
https://doi.org/10.1259/bjr.20201356
https://doi.org/10.1186/s13550-019-0536-3
https://doi.org/10.1007/s00259-017-3893-z
https://doi.org/10.1007/s00259-017-3893-z
https://doi.org/10.1186/s13550-019-0565-y

	Deep progressive learning achieves whole-body low-dose 18F-FDG PET imaging
	Abstract 
	Objectives: 
	Methods: 
	Results: 
	Conclusions: 

	Introduction
	Methods
	Patients
	PETCT acquisition and reconstruction
	Image analysis in the retrospective study
	Image analysis in the prospective study
	Statistical analysis

	Results
	Retrospective study
	Prospective study

	Discussion
	References


