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Abstract 

Background:  [18F] FDG PET-CT has an important role in the initial staging of lung 
cancer; however, accurate differentiation between activity in malignant and benign 
intrathoracic lymph nodes on PET-CT scans can be challenging. The purpose of the 
current study was to investigate the effect of incorporating primary tumour data and 
clinical features to differentiate between [18F] FDG-avid malignant and benign intratho-
racic lymph nodes.

Methods:  We retrospectively selected lung cancer patients who underwent PET-CT 
for initial staging in two centres in the Netherlands. The primary tumour and sus-
pected lymph node metastases were annotated and cross-referenced with pathology 
results. Lymph nodes were classified as malignant or benign. From the image data, we 
extracted radiomic features and trained the classifier model using the extreme gradient 
boost (XGB) algorithm. Various scenarios were defined by selecting different combina-
tions of data input and clinical features. Data from centre 1 were used for training and 
validation of the models using the XGB algorithm. To determine the performance of 
the model in a different hospital, the XGB model was tested using data from centre 2.

Results:  Adding primary tumour data resulted in a significant gain in the performance 
of the trained classifier model. Adding the clinical information about distant metasta-
ses did not lead to significant improvement. The performance of the model in the test 
set (centre 2) was slightly but statistically significantly lower than in the validation set 
(centre 1).

Conclusions:  Using the XGB algorithm potentially leads to an improved model for 
the classification of intrathoracic lymph nodes. The inclusion of primary tumour data 
improved the performance of the model, while additional knowledge of distant metas-
tases did not. In patients in whom metastases are limited to lymph nodes in the thorax, 
this may reduce costly and invasive procedures such as endobronchial ultrasound or 
mediastinoscopy procedures.
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Background
Non-small cell lung cancer (NSCLC) is one of the most prevalent malignancies in the 
western world; PET-CT has an important role in its initial staging [1–5]. The use of 
[18F] FDG PET-CT for preoperative staging of NSCLC reduces both the total number 
of thoracotomies and the number of unnecessary thoracotomies [6–9]. It has high sen-
sitivity and intermediate specificity for the detection of primary tumours, locoregional 
lymph node metastases, and distant metastases. The limited specificity of PET-CT for 
lymph node metastases necessitates pathological confirmation, mostly obtained through 
the use of endobronchial ultrasound or mediastinoscopy procedures [10–16], which are 
costly and carry a risk of complications.

Artificial intelligence has the potential to improve diagnostic accuracy and manage-
ment in patients with NSCLC [17–20], and specifically for use with CT imaging [21–23]. 
Wang et al. [24] demonstrated that a classification model for PET-CT, based on machine 
learning (ML) methods, can be highly accurate and perform on par with or better than 
human observers in differentiating between malignant and benign intrathoracic lymph 
nodes. Yoo et al. [25] included primary tumour data and achieved better performance, 
using a boosted decision tree in a single-centre study in a Korean population.

The aim of this study was to use an improved gradient boost algorithm-based imple-
mentation of gradient boosted classification models for the supervised classification of 
intrathoracic lymph nodes in patients with NSCLC in a retrospective multicentre study 
in Dutch hospitals. We also investigated the effect of additional clinical record informa-
tion of distant metastases to differentiate between [18F] FDG-avid malignant and benign 
intrathoracic lymph nodes. We only made use of open-source and readily available free 
software tools for the selection of radiomic features, training, and evaluation of our clas-
sification model.

Methods
Patient group

We included 148 consecutive patients, diagnosed with NSCLC, who underwent a 
clinically indicated PET-CT scan for primary staging between July 2017 and July 2019 
in the Albert Schweitzer hospital in Dordrecht (centre 1) and between July 2014 and 
December 2019 in the Diakonessen hospital in Utrecht (centre 2). For patient charac-
teristics, see Table 1. The decision to request a PET-CT for primary staging of NSCLC 

Table 1  Patient characteristics

Centre 1 Centre 2

Number of patients 118 30

Age (average ± SD) 69 ± 9 years 67 ± 11 years

Male/female 67/51 20/10

Blood glucose level (average ± SD) 5.8 ± 1.1 mmol/L 6.4 ± 2.2 mmol/L

Smoking status
Current/ex/never/unknown

37/57/5/19 18/11/1/0

Tumour type
Adeno/squamous/large cell/NOS/unknown

41/41/22/10/4 12/4/4/4/6

Stage: I/II/III/IV 12/20/48/37 3/2/12/13
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was made at the discretion of the referring pulmonologist. All patients were scanned 
60 min after intravenous administration of 2–3 MBq/kg of [18F] FDG, after which a 
low-dose CT was performed for attenuation correction and anatomical reference. 
At both centres, the PET-CT acquisitions were scanned using a Biograph mCT PET-
CT system, manufactured by Siemens Healthcare (Erlangen, Germany). The clini-
cal acquisition protocol at both sites consisted of a scanning time of 3 min per bed 
position and a similar iterative reconstruction of the acquired data incorporating the 
point spread function and time-of-flight corrections.

Patients who had [18F] FDG uptake above background in intrathoracic lymph nodes 
underwent biopsy, mostly with an endobronchial ultrasound-guided fine-needle aspi-
ration, within one week after PET-CT scan. A small group underwent surgical biopsy, 
either during the mediastinoscopy or at the definitive surgery.

Image pre‑processing

The acquired and reconstructed image volumes were anonymized and transferred to 
a workstation for further analysis. The primary tumour and suspected lymph node 
metastases were annotated using Osirix MD software (Pixmeo SARL, Geneva, Swit-
zerland). PET images and fused PET-CT images were used for annotation. When two 
lymph nodes were fused at a border, the borders were adhered to separate the vari-
ous lymph node stations, as described in the 2009 IASLC lymph node map [26]. The 
annotation was performed by a nuclear medicine physician with 8 years of experience 
in reading PET-CT scans. After cross-referencing with pathology results obtained 
with biopsy or surgery, lymph nodes were classified as malignant or benign. Lymph 
nodes without pathologic confirmation were excluded from the analysis, see Table 2. 
The resulting 504 samples of malignant and benign lymph nodes were combined with 
various clinical data from the corresponding patients and were subsequently used as 
the dataset for the creation and analysis of the classification model.

The lymph nodes and primary tumours were extracted from the PET volumes by 
using the segmentation masks from the manual segmentation step mentioned above. 
All segmented volumes were padded with zeros to create volumes with the dimen-
sions 144 × 144 × 144.

After normalization of the PET images, we created input data records for each 
lymph node of the dimensions 144 × 144 × 144. The input data record for each lymph 
node contained the  lymph node PET image and the lymph node segmentation mask 
(as shown in Fig.  1), and we combined these images with the primary tumour PET 
image and the primary tumour segmentation mask.

Table 2  Overview of included lymph nodes and primary tumours

Centre 1 Centre 2 Total

Number of primary tumours 118 30 148

Malignant lymph nodes 312 75 387

Benign lymph nodes 94 23 117
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Radiomic features and machine learning methods

To establish a baseline, we first analysed the performance of a simple standardized 
uptake value (SUV) threshold model based on the mean SUV of the lymph nodes. 
Boosted decision trees have previously been shown to be very successful for the classifi-
cation of intrathoracic lymph nodes [24, 25]. A specific implementation of the gradient 
boosting method is the extreme gradient boosting (XGB) algorithm. This algorithm has 
been shown to be even more successful [27], and therefore, we used the XGB algorithm.

For both the primary tumours and lymph nodes, we derived diagnostic features from 
the PET data using the PyRadiomics library (version 3.0.1). This open-source library 
extracts a standard set of features and, therefore, improves reproducibility [21]. The fea-
tures can be subdivided into 7 different feature groups: first-order statistics, shape-based 
(3D), grey-level co-occurrence matrix, grey-level size zone matrix, grey-level run length 
matrix, neighbouring grey tone difference matrix, and grey-level dependence matrix 
features. In each feature group, a different number of features was available to be cal-
culated. In total, 107 features were calculated for each of the two different data inputs 
(primary tumour PET and lymph node PET image data). All features were included.

To study the effects of the absence or inclusion of the primary tumour and clinical 
information into our models, we defined various scenarios by selecting different com-
binations of data input (primary tumour PET and lymph node PET) combined with 
different clinical features (all clinical features, only metastases features, and no clinical 
features), which resulted in six scenarios. The model in which all clinical features were 
included contained the patient’s age, sex, smoking status, and, in the case of metasta-
ses, specific information about the type of metastasis (abdominal, bone, adrenal, liver, or 
thyroid). In all scenarios, the data from centre 1 were used for training and validation of 
the models (see Table 1). To train and validate the models, we used a 10 times repeated 
stratified fivefold validator. This cross-validation method splits the data into five differ-
ent subsets in which the training set consisted of four subsets and the validation set con-
sisted of one subset. This process was repeated until the model was trained and validated 
by all different combinations of subsets. Besides that, we studied the impact of including 

Fig. 1  Example of the input data. Each input dataset consisted of a manually segmented primary tumour 
and a manually segmented lymph node. All data were padded with zeros to have the same size of 
144 × 144 × 144 voxels
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less features in the model and, therefore, we created three additional scenarios that con-
tained the 5, 10, and 20 best-performing features. To determine the best-performing fea-
tures, the model was trained (10 times repeated stratified fivefold) and, then, the feature 
weights were calculated. The top 5, 10, and 20 best-performing features were selected as 
model features. Those models were compared to the model in which all features were 
included.

To compare various models, we determined the receiver operator characteristic 
(ROC) curves. The effect of the absence or inclusion of the primary tumour information 
and clinical information was evaluated by the area under the ROC curve (AUC). The 
AUCs were analysed with the independent two sample t test. The performance of the 
best model was evaluated for the validation set (10 times repeated stratified fivefold vali-
dator) by the diagnostic accuracy (ACC), the negative predictive value (NPV), positive 
predictive value (PPV), specificity (SPEC), and sensitivity (SENS). To determine the per-
formance of the model in a different hospital, the model was tested using the data from 
centre 2 (see Table 1) and evaluated by the ACC, NPV, PPV, SPEC, and SENS. Python 
software and scikit-learn toolkit were conducted for establishment and evaluation of the 
models. A p value of less than 0.05 was considered significant.

Results
Distribution of SUV

For each patient, we determined the SUV of both the primary tumour and the lymph 
nodes for which pathology results were present. As shown in Fig. 2, the distributions of 
the SUVs of the malign and benign groups of lymph nodes differed significantly.

ROC curves

We determined the ROC curves and AUC values for the classifier models, which were 
trained and validated using data from centre 1. All the classifier models significantly out-
performed the simple threshold model based on the mean SUV, see Fig. 3. For reference, 
we also included the results of the human observer studies as reported by Wang et al. 
[24] (sensitivity 90% and specificity 73%) and Yoo et al. [25] (sensitivity 75% and speci-
ficity 80%). The results showed that adding primary tumour information resulted in a 
significant gain in performance compared to using the node image data only (Fig. 3a). 
Adding the clinical information, including distant metastases, did not lead to significant 
differences in AUC values (Fig. 3b). No significant differences were observed between 
the model using all features or only the top 5, 10, and 20 best-performing features; 
however, the model including all features and only the top 10 best-performing features 
showed a small increase in AUC compared to the top 5 and top 20 models (Fig. 3c). To 
prevent overfitting, the model using the top 10 best-performing features was selected as 
the best-performing model. This model consisted of radiomic features using data input 
from PET lymph nodes as well as PET primary tumour data. An overview of the top 5, 
10, and 20 best-performing features is shown in Table 3.

Performance indicators

For the model using the top 10 best-performing features, the ACC, NPV, PPV, SPEC, 
and SENS have been summarized for the data in centre 1 (validation set) and centre 2 
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(test set), see Table 4. The performance of the model in the test set was slightly but statis-
tically significantly worse than in the validation set.

Discussion
In patients with NSCLC, [18F] FDG PET-CT has a high sensitivity but intermedi-
ate specificity in the detection of intrathoracic lymph node metastases. In clini-
cal practice, this means that even in lymph nodes with very little [18F] FDG uptake, 
metastasis cannot be ruled out and pathologic confirmation is necessary. Pathologic 

Fig. 2  Overview of the SUV-mean of the datasets from both hospitals (ASZ and DK) used in this study. The 
left-hand side shows the distribution of SUV-mean of the primary tumours. The right-hand side shows the 
distribution of SUV-mean of benign and malignant lymph nodes

Fig. 3  Overview of ROC curves for the XGB classifier models with and without the inclusion of primary 
tumour features (left), with and without the inclusion of additional clinical knowledge (middle) and a 
selection of features (right). For reference, the SUV threshold model is also shown. The performance of 
doctors is taken from Wang et al. [24] and Yoo et al. [25]
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confirmation usually requires mediastinoscopy or endobronchial ultrasound-guided 
fine-needle aspiration, which are costly and carry a risk of complications. The pre-
sent study was conducted to find whether the XGB-based model could differenti-
ate between malignant and benign lymph nodes in PET-CT in a clinical setting. We 
investigated the effect of the absence or inclusion of the primary tumour data, as well 
as clinical data into our models in a retrospective two-centre study in Dutch hospi-
tals. The performance of the model was tested on a completely separate data set from 
a different hospital.

The inclusion of primary tumour data improved the performance of the model, but 
additional knowledge of distant metastases and other clinical data did not. Optimal 
performance was achieved using only the top 10 best-performing features. When the 

Table 3  Overview of the top 5, top 10, and top 20 best-performing features and the permutation 
feature importance

Feature Data input Feature weight

PET lymph 
node

PET primary

1 90 Percentile X 0.63

2 Sphericity X 0.16

3 Elongation X 0.08

4 Variance X 0.07

5 Least axis length X 0.06

6 Grey-level non-uniformity X 0.06

7 Short-run high grey-level emphasis X 0.03

8 Energy X 0.02

9 Short-run emphasis X 0.02

10 Dependence non-uniformity X 0.02

11 Maximum 2D diameter row X 0.02

12 Interquartile range X 0.02

13 Grey-level non-uniformity normalized X 0.01

14 Large dependence high grey-level emphasis X 0.01

15 Short-run emphasis X 0.01

16 Robust mean absolute deviation X 0.01

17 Elongation X 0.01

18 Minimum X 0.01

19 Mean absolute deviation X 0.01

20 Maximum X 0.01

Table 4  Performance results in centre 1 (mean ± st.dev.) and centre 2 of the XGB model using the 
top 10 best-performing features

Centre 1 (validation set) Centre 2 
(test set)

ACC​ 0.92 ± 0.02 0.88

NPV 0.95 ± 0.03 0.90

PPV 0.83 ± 0.09 0.70

SENS 0.85 ± 0.07 0.80

SPEC 0.95 ± 0.03 0.90
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model was tested using data from centre 2, the mean NPV decreased from 0.95 to 
0.90. As expected, using data from another hospital resulted in a small decrease in 
ACC, NPV, PPV, SPEC, and SENS. An explanation for this might be small differences 
in practical implementation between both hospitals, such as the temperature in the 
patient resting room, the distance between the resting room and the scanner room, 
and the exact time between the injection and the start of the scan. Furthermore, there 
were small differences in patient characteristics between centre 1 and centre 2. Cen-
tre 2 consisted of relatively more men, more smokers, more adenocarcinomas, and a 
higher blood glucose level. Although those differences in practical implementation 
and patient characteristics will not lead to big differences in image quality, this could 
be an explanation for the difference in performance of our model between centre 1 
and centre 2.

To the best of our knowledge, only Yoo et al. [25] and Wang et al. [24] attempted a 
similar study using several ML strategies. Consistent with the results of both groups, we 
showed that an ML-based classifier can perform equal to, if not better than, physicians 
on certain metrics. A SPEC of 73% was found in the study by Yoo et al. [25] and 89% in 
the study by Wang et al. [24], while our study found a SPEC of 90%. Besides the SPEC, 
we also found an improved ACC compared to Yoo et al. [25] and Wang et al. [24] (88% 
vs. 81% vs. 86%). Our study found a highest NPV of 90%, which is higher than the value 
previously reported by Yoo et al. [25] (73–81%). A possible explanation for the improved 
performance in our study is that we included primary tumour data and that we used a 
more advanced boosted decision tree. Besides that, our study was performed in a dif-
ferent patient population, which could result in small differences in performance. The 
NPV found in our study is comparable with the results of a meta-analysis of endoscopic 
ultrasound-guided fine-needle aspiration (89–91%) [28]. Conceivably, the present or a 
similar algorithm could replace or supplement endobronchial ultrasound procedures in 
patients who have [18F] FDG-avid lymph nodes in locations that are difficult to reach.

There are some important potential drawbacks associated with our study. For example, 
we used pathological data as a gold standard, but in clinical practice, surgically resected 
lymph nodes are hard to match with their counterparts in medical imaging. This might 
have also introduced a bias, which affects the reliability of our classifiers, although our 
results are consistent with the results of other groups. Additionally, we made use of 
manual segmentation of the image data, which was performed by a single experienced 
physician. Although this might have introduced some bias and small delineation errors, 
we do not believe that our results would have significantly changed by performing the 
segmentation task by multiple physicians. In clinical practice, however, this process 
should be automated before ML classification models can be applied routinely. Besides 
that, we used image data from two different hospitals. Although both centres are large 
regional hospitals with a general patient population, it is unknown how the software 
would perform in different patient groups, in different hospitals, and with different PET-
CT scanners. To reduce the effects of overfitting, we used a fivefold validation and a test 
set from a different hospital. Ideally, the robustness of our classifiers should be evaluated 
in a large prospective study. When using a pooled dataset for training the classifier, we 
expect that this will result in similar performance between the training and test set. This 
suggestion is an important issue for future research. High performance of similar ML 
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models on diagnostic CT data classification seems to suggest that even higher classifica-
tion results might be possible and, therefore, we up-sampled and co-registered the PET 
volumes to the CT data; however, the performance of our model decreased when adding 
CT data features. An explanation might be respiratory motion artefacts and incorrectly 
registered diagnostic CT image data with PET-CT data. Therefore, we only used features 
based on the PET primary tumour and PET lymph node data.

Conclusion
This study showed that using an XGB-based algorithm could potentially improve the 
performance of the classification of lymph node metastasis of NSCLC from PET images. 
In agreement with previous studies, we found that a simple threshold technique was 
inferior, but the XGB-based classifier models outperformed the human observers in 
terms of both negative predictive value and specificity. The inclusion of the primary 
tumour data improved the performance of the model, while additional knowledge of dis-
tant metastases did not significantly improve the performance of our model.
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