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Abstract 

Purpose:  Efforts have been made both to avoid invasive blood sampling and to 
shorten the scan duration for dynamic positron emission tomography (PET) imaging. 
A total-body scanner, such as the uEXPLORER PET/CT, can relieve these challenges 
through the following features: First, the whole-body coverage allows for noninvasive 
input function from the aortic arteries; second, with a dramatic increase in sensitivity, 
image quality can still be maintained at a high level even with a shorter scan duration 
than usual. We implemented a dual-time-window (DTW) protocol for a dynamic total-
body 18F-FDG PET scan to obtain multiple kinetic parameters. The DTW protocol was 
then compared to several other simplified quantification methods for total-body FDG 
imaging that were proposed for conventional setup.

Methods:  The research included 28 patient scans performed on an uEXPLORER PET/
CT. By discarding the corresponding data in the middle of the existing full 60-min 
dynamic scan, the DTW protocol was simulated. Nonlinear fitting was used to estimate 
the missing data in the interval. The full input function was obtained from 15 subjects 
using a hybrid approach with a population-based image-derived input function. Quan-
tification was carried out in three areas: the cerebral cortex, muscle, and tumor lesion. 
Micro- and macro-kinetic parameters for different scan durations were estimated by 
assuming an irreversible two-tissue compartment model. The visual performance of 
parametric images and region of interest-based quantification in several parameters 
were evaluated. Furthermore, simplified quantification methods (DTW, Patlak, fractional 
uptake ratio [FUR], and standardized uptake value [SUV]) were compared for similarity 
to the reference net influx rate Ki.

Results:  Ki and K1 derived from the DTW protocol showed overall good consistency 
(P < 0.01) with the reference from the 60-min dynamic scan with 10-min early scan and 
5-min late scan (Ki correlation: 0.971, 0.990, and 0.990; K1 correlation: 0.820, 0.940, and 
0.975 in the cerebral cortex, muscle, and tumor lesion, respectively). Similar correla-
tionss were found for other micro-parameters. The DTW protocol had the lowest bias 
relative to standard Ki than any of the quantification methods, followed by FUR and Pat-
lak. SUV had the weakest correlation with Ki.  The whole-body Ki and K1 images gener-
ated by the DTW protocol were consistent with the reference parametric images.
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Conclusions:  Using the DTW protocol, the dynamic total-body FDG scan time can be 
reduced to 15 min while obtaining accurate Ki and K1 quantification and acceptable 
visual performance in parametric images. However, the trade-off between quantifica-
tion accuracy and protocol implementation feasibility must be considered in practice. 
We recommend that the DTW protocol be used when the clinical task requires reliable 
visual assessment or quantifying multiple micro-parameters; FUR with a hybrid input 
function may be a more feasible approach to quantifying regional metabolic rate with 
a known lesion position or organs of interest.

Keywords:  Total-body PET, Simplified protocol, Kinetic modeling, Parametric imaging

Introduction
18F-FDG positron emission tomography (PET) imaging is widely used for tumor charac-
terization, staging, restaging, and therapy monitoring [1, 2]. Currently, FDG PET quan-
tification is mostly limited to standard uptake value (SUV), a semiquantitative measure 
derived from static acquisition. Several alternative measures exist to better quantify the 
differences in subjects, including normalizing the activity concentration by using the 
lean body mass (SUL) [3] and the body surface area [4], rather than the total body mass. 
SUV-based measures have a number of disadvantages [5–7]. An optimal scan window, 
for example, may differ between subjects; inter-study variability in blood supply may 
also influence quantification; and an uptake image may contain both specific and non-
specific components. To reduce the effect of nonspecific uptake, SUV was proposed to 
be normalized to the uptake in the background region (SUR) [8] or to the integral of the 
arterial input function (fractional uptake ratio [FUR]) [9]. To improve the diagnosis, it 
has also been proposed to assess the relative SUV change between early and late scans 
[10].

On the other hand, net influx rate Ki is a full-quantitative parameter that outperforms 
SUV in differentiating malignant from benign lesions and delineating tumor volume 
[11–16]. Accurate Ki estimation necessitates full dynamic PET acquisition. A stand-
ard dynamic acquisition protocol warrants more than 60 min of list-mode acquisition 
beginning with tracer injection, together with sequential arterial blood sampling. The 
two most common methods for calculating Ki are irreversible two-tissue compartment 
model (2T3k) fitting [17] and Patlak graphical analysis [18, 19]. If the arterial input func-
tion of the full scan can be approximated, for example, with a population-based one 
sampled and averaged from previous full dynamic scans, the scan time for Patlak graphi-
cal analysis can be significantly reduced [20].

Many efforts have been made to avoid invasive blood sampling and shorten the dura-
tion of scans. Several noninvasive methods for determining the input function have been 
proposed, including image-derived input function (IDIF) [21, 22], population-based 
input function (PBIF) [23, 24], model-based input function [25], and hybrid input func-
tion [26] (combination of IDIF and PBIF). The difficulty in obtaining the input function 
for a bed position with no large artery in the field of view (FOV) is a concern when using 
these methods. IDIF derived from carotid artery scanning, for example, is known to be 
underestimated in brain PET. The FlowMotion technique can obtain the input function 
for the entire body from the aortic arteries, allowing for whole-body Ki imaging [27]. 
While for reducing scan time, one option is to replace the long dynamic acquisitions 
with two static acquisitions, i.e., the dual-time-window protocol. This protocol has been 
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shown to be reliable for obtaining reliable Ki quantification and images [8, 28–30]. The 
majority of the preceding studies, however, are based on Patlak graphical analysis for 
FDG, from which only the macro-parameter Ki (net FDG influx rate) can be obtained. 
On the other hand, nonlinear estimation based on 2T3k model can also yield micro-
kinetic parameters like K1, k2, and k3. Previous research has shown that K1 is a useful 
marker for identifying tumor subgroups [31] and assessing chemotherapy response [32]. 
k3 was proven to be effective in subtyping of pheochromocytoma and paraganglioma 
[33]. The combination of K1 and Ki is also useful in gaining access to metabolic tumors 
[34]. However, a whole-body assessment of these micro-parameters would require a 
total-body dynamic scan. Nonlinear parametric estimation is known sensitive to the 
quality of dynamic images; thus, region of interest (ROI)-based kinetic analysis is fre-
quently used instead of voxelized parametric images. One can imagine that the quality of 
kinetic modeling would be even less reliable with a simplified imaging protocol because 
the scan data would be less reliable.

Total-body scanners, such as the uEXPLORER or Biograph Vision Quadra, may be 
able to address these issues in dynamic imaging. First, the whole-body coverage allows 
for the noninvasive input function from the aortic arteries to be obtained, which has 
already been shown to be close to the arterial sampling, at least for FDG [35]. Zhang 
et al. [36] and Sari et al. [37] investigated the feasibility of extracting an input function 
from dynamic images of the left atrium, left ventricle, aortic artery, and carotid artery, 
for example. This capability can improve the dependability of IF estimation methods 
such as PBIF approximation and the hybrid method. Second, with a significant increase 
in sensitivity, image quality can be maintained at a high level even when scanning for 
a shorter period of time than usual [38–40]. This will enable the use of more flexible 
simplified protocols with significantly reduced scan time, allowing for more confident 
linear or nonlinear parametric estimation. uEXPLORER was used to investigate simpli-
fied dynamic FDG total-body imaging protocols. Feng et al. [41] investigated early FDG 
kinetics using only 2-min post-injection data to obtain whole-body K1 images with IDIF. 
Wu et al. [26] proposed two simplified acquisition protocols for producing whole-body 
Ki images with hybrid input functions, reducing the scan time to 10 min. Liu et al. [39] 
obtained 45-min scan data and reported that the quantification of Ki was comparable to 
the 60-min scan.

In this study, we used a dual-time-window (DTW) total-body FDG scan protocol to 
obtain multiple kinetic parameters in key areas. The protocol included two dynamic 
acquisitions: An early acquisition performed 10 min after injection and a late acquisition 
performed with a fixed end time of 60 min. Nonlinear fitting with rational functions was 
used to fill the missing data in the interval. The full input function was obtained using 
a hybrid approach with a population-based image-derived function (PB-IDIF) from 15 
subjects. The processed data at each ROI were then used to estimate micro- and macro-
kinetic parameters K1, k2, k3, Ki, and Vb in 2T3k model. Fast nonlinear least squares 
fitting at each voxel was also used to generate whole-body parametric images. The pro-
posed DTW protocol quantification was evaluated and compared with existing simpli-
fied quantification methods such as SUV, FUR, and Patlak analysis. Finally, we discuss 
which simplified quantification method is appropriate for specific clinical applications. 
The novelties of the present work are twofold: First, with 10-min early acquisition and a 
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5-min late acquisition on a total-body PET, relatively accurate quantifications of Ki, K1, 
k3, and Vb at whole-body level were obtained. Second, quantification of DTW was first 
time compared with several existing simplified quantification methods, including Patlak 
analysis, FUR, and SUV, as surrogates for the net influx rate Ki.

Materials and methods
Study subjects and image generation

The present study was approved by the Institutional Review Board of Henan Provincial 
People’s Hospital, China. After obtaining informed consent, 28 human subjects were 
enrolled in the study. Table 1 shows the demographic information for all participants. 
Among the 28 participants, 18 were used for normal organ/tissue quantification, and 
10 were used for tumor lesion quantification (one lesion from each). A total-body PET/
CT scan was performed on each subject at Henan Provincial People’s Hospital using an 
uEXPLORER PET/CT scanner (United Imaging Healthcare, Shanghai, China). The fol-
lowing are the scan procedures. Following the injection of 18F-FDG in the lower extrem-
ity vein, a CT scan was performed for attenuation correction, followed by a 60-min 
list-mode acquisition. The list-mode data were partitioned and reconstructed to produce 
66 images (24 × 5 s, 6 × 10 s, 6 × 30 s, 6 × 60 s, 24 × 120 s). Each frame was reconstructed 
with manufacturer-supplied reconstruction software (TOF-OSEM with 3 iterations and 
24 subsets) with the point-spread-function  modeled. The reconstruction process com-
pensated for random, scatter, attenuation, normalization, and dead time effects. The 
reconstructed image had a total of 192 × 192 × 672 voxels. In the transaxial plane, the 
reconstructed image had a slice thickness of 2.89 mm and a voxel size of 3.125 mm. Vis-
ual examinations were performed by an experienced operator to guarantee the enrolled 
subjects free of visible body motion artifacts. Using frame-by-frame movies, the status 
of patient movement was inspected in axial, coronal, and sagittal view planes. The exclu-
sion criteria were the positional displacement  cannot exceed 3 voxels for several consec-
utive frames. 3D ROIs were drawn in both normal tissues (cerebral cortex, muscle) and 
tumor lesions for ROI-based quantifications. The time-activity curve (TAC) at each ROI 
was created by averaging the activity uptake of all voxels over time and was then used for 
the quantifications described below. Pixel-by-pixel, whole-body parametric images were 
also created.

Proposed DTW protocol and data processing

The DTW protocol, as shown in Fig. 1, consists of two short dynamic acquisitions: an 
early acquisition performed after injection for 10 min and a late acquisition performed 

Table 1  Demographical information (mean ± s.d.)

*Five subjects had a malignant tumor in the lung, 4 subjects had a undetermined tumor in the lung, and 1 subject had a 
malignant tumor in the liver

No. of 
subjects

Age (years) Gender 
(male/
female)

Height (cm) Weight (kg) Injected dose (MBq)

Healthy subjects 18 55.2 ± 5.9 10/8 163.8 ± 8.0 60.9 ± 9.0 227.3 ± 30.9

Subjects with tumor 10 61.5 ± 9.0 6/4 160.6 ± 4.3 57.9 ± 7.4 232.9 ± 44.9
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after a break with a fixed end time of 60 min. To determine the shortest possible scan 
time, various late scan durations (5, 10, and 20  min) were tested. DTW (10 + 5  min) 
refers to the DTW protocol with a 10-min early scan and a 5-min late scan for conveni-
ence; similar notations were used for the other two late scan durations. The protocol was 
tested by discarding the corresponding data in the middle of a 60-min dynamic scan. As 
a result, the first step in data processing was to fill in the gaps. To estimate the data in the 
interval, nonlinear fittings to the 3rd degree rational function were used, and the func-
tion was as follows:

where CE(t) is the fitted tissue activity concentration over time and p1–p8 are the param-
eters that affect the shape of the TAC. (p1 was fixed to 0, p2 was fixed to 1, and others 
were restricted to be positive.) The fitted and the original measured data were then com-
bined to complete the 60-min TACs at each ROI.

Due to the lack of imaging data in the scan interval, the input function was derived 
using an approach as follows that is similar to the hybrid approach described in the 
Introduction. From the reconstructed images, IDIF was extracted from the ascending 
aorta for each subject, where cardiac and respiratory motion was less prominent than 
at the left ventricle; hence, the partial volume effect (PVE) was less. A 10-mm-diameter 
ROI was drawn on 6 consecutive slices during early time frames (0–30 s). The hybrid IF 
was combined with the IDIF from the scan period and scaled with PB-IDIF for the miss-
ing part. The PB-IDIF was obtained by averaging the normalized IDIFs of 15 subjects (10 
males, 5 females, 53.5± 12.7  years, 65.7± 9.2 kg, 249.5± 42.4 MBq) from the 60-min 
full dynamic scans. The equation to generate a hybrid IF was as follows:

where Cimage(t) is from the measured data, Cp0(t) is the PB-IDIF, t1 is the end time of the 
early scan, t2 is the start time of the late scan, and andµ and γ are the scaling factors. 
Blood-to-plasma correction was not performed in this study, i.e., Cp(t) used the whole 
blood TAC derived from the images. Delay correction was performed for each ROI as in 
[42]: The input function was shifted from − 60 to + 60 s, and a 2T3k model was fitted to 
each regional TAC with the shifted input function. For each region, the delay time that 

(1)CE(t) =
p1 + p3 × t + p5 × t2 + p7 × t3

p2 + p4 × t + p6 × t2 + p8 × t3

(2)CP(t) =

Cimage(t), (0 ≤ t < t1)

µe−γ (t−t1)Cp0(t), (t1 ≤ t < t2)
Cimage(t), (t2 ≤ t ≤ 60min)

Fig. 1  Scan protocols of different quantification methods used in this study
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provides the best fitting was thus selected. The dispersion was not considered in the pre-
sent study. Kinetic modeling was then performed for the complete TAC and input func-
tion at each ROI with the 2T3k model. In this model, the dynamic activity change was 
described by a set of linear ordinary differential equations:

where Cp(t), C1(t), and C2(t) correspond to activity concentration in plasma, free FDG, 
and phosphorylated FDG, respectively, and K1, k2, k3, and k4 denote the transform rates 
between the compartments. Because the phosphorylation of FDG is considered an irre-
versible reaction in most tissues, the above-mentioned model was simplified by assum-
ing k4 = 0. The intensity value of each voxel in a PET image represented the sum of 
activity concentrations in all compartments:

where CPET(t) is the measured tissue activity concentration, Cb(t) is the activity concen-
tration in blood, and Vb is the vascular volume fraction. By taking Eq. 3 to Eq. 4, kinetic 
parameters were estimated by minimizing the objective function:

where Ct is the simulated activity concentration by applying the estimated kinetic 
parameters into Eq. (4), p represents K1, k2, k3, and Vb; i is the frame index; and ωi is the 
weight at each frame.

Apart from the ROI-based analysis, we also performed a voxel-based analysis aiming 
to generate parametric images for each simplified dynamic scan. Given the large num-
ber of voxels in a whole-body image, the conventional nonlinear problem in Eq. 3 was 
reformed into a linearized problem [43, 44], as shown in the following equation:

where P1, P2, P3, P4, and P5 are the functions of kinetic parameters to be estimated. Law-
son–Hanson NNLS (nonnegative least squares) algorithm was then applied to solve the 
above equation. This will accelerate the estimation dramatically, thereby allowing the 
generation of whole-body multiparametric images within 1 min in our experience. After 
obtaining K1, k2, and k3, one can compute the macro-kinetic parameter (image) Ki:

which represents the net FDG influx rate and is a surrogate to the glucose influx 
rate. The unit for Ki and K1 is ml/g/min, while for k2 and k3 is min−1. In this study, 

dC1(t)

dt
= K1Cp(t)− (k2 + k3)C1(t)+ k4C2(t)

(3)
dC2(t)

dt
= k3C1(t)− k4C2(t)

(4)CPET(t) = VbCb(t)+ (1− Vb)[C1(t)+ C2(t)]

(5)χ2 =

N
∑

i=1

ωi[CPET(ti)− Ct(ti, p)]
2

(6)

CT (t) = P1CP(t)+P2

∫ t

0
CP(τ )dτ+P3

∫ t

0

∫ τ

0
CP(s)dsdτ+P4

∫ t

0
CT (τ )dτ+P5

∫ t

0

∫ τ

0
CT (s)dsdτ

(7)Ki =
K1 × k3

k2 + k3
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Lawson–Hanson NNLS was used to generate multiparametric (K1, k2, k3, Vb, Ki) images 
using full dynamic data, and Patlak Ki images using 30-min data were generated for 
comparison.

Other simplified quantification methods

Standardized uptake value (SUV): SUV was calculated using the following equation:

where CPET(T) is the mean activity concentration in 50–60 min, and A and W are the 
total injected activity (Bq/cc) and body weight (kg) of the subject, respectively.

Fractional uptake ratio (FUR): FUR is defined as in [9, 45]:

where CPET(T) is normalized by the integral of plasma activity concentration from the 
start to time T. Like SUV, FUR can be calculated from a single static PET scan (50–
60 min in this study). However, the input function is still required to calculate the inte-
gral in the denominator. Similar to the proposed protocol, a hybrid input function was 
used here with a different method of scaling:

where the area under the curve (AUC) in 50–60 min was used to scale PB-IDIF Cp0(t) 
with a factor α to obtain the full input function.

Patlak graphical analysis: Patlak analysis [18, 19] can be expressed as a linear regres-
sion process:

where CPET(T) and Cp(T) are the activity concentration in tissue and plasma at time T(0–
60 min), respectively; Ki denotes the net FDG influx rate; int is the y-axis intercept of 
the regression plot; and t∗ is the time point (30 min in this study) when an equilibrium 
between blood and tissue is reached. The input function for Patlak analysis was obtained 
in the same manner as that for FUR.

Statistical analysis

All statistical analyses were performed using Statistical and Machine Learning Toolbox 
in MATLAB R2018b. Twelve subjects (5 males, 7 females, 57.8 ± 9.1 years, 62.5 ± 12.3 kg, 
injection dose 230.3± 47.6 MBq) were randomly chosen from the subjects listed in 
Table 1 to evaluate the comparability of the hybrid IFs to IDIFs with correlation anal-
ysis. To verify the accuracy of the complete TAC, the mean absolute percentage error 
(MAPE) of all time points in the interval was calculated for each subject:

(8)SUV =
CPET(T )

A/W

(9)FUR =
CPET(T )

∫T0 Cp(t)dt

(10)Cp(t) =

{

α · Cp0(t), (0 ≤ t < 50min)
CPET(t), (50 ≤ t ≤ 60min)

(11)
CPET(T )

Cp(T )
= Ki ×

∫T0 Cp(t)dt

Cp(T )
+ int

(

t ≥ t∗
)
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where i is the index of the frame in the interval; ti is the sample time point; n is the total 
number of sample time points; and CE and CM are the estimation and true measured 
activity concentrations, respectively. The Bland–Altman distribution of the MAPE in 
TAC estimation for each ROI was plotted. The parameters computed by 2T3k from the 
entire 60-min scan were used as the reference for the ROI-based quantification. For each 
ROI, the kinetic parameters (K1, k2, k3, Vb, and Ki) were calculated and compared to the 
reference. Correlation determination and bias analysis were carried out for various scan 
duration configurations. The percentage bias of Ki and K1 from the DTW protocol was 
calculated as:

where Kref and KDTW denote a specific parameter from the standard full scan protocol 
and the DTW protocol, respectively. Correlation analysis was performed for each sim-
plified quantification method to the true quantification from the full scan, where P < 0.05 
was considered as a significant correlation.

Results
Hybrid IFs and TAC completion

The IFs for both DTW and FUR/Patlak analysis were generated according to the steps 
described in Methods section. Correlation of AUCs between the hybrid IFs and the ref-
erence IDIFs from the full scan was determined. As shown in Fig. 2, relatively high cor-
relations were observed for both DTW (R2 = 0.995, y = 1.04*x-0.0271) and FUR/Patlak 
(R2=0.931, y = 1.01*x-0.0193).

The estimated TACs in ROIs were compared to the reference measured ones from a 
full scan. Figure 3d shows the distribution of the MAPE for each ROI. Even for the pro-
tocol with the shortest scan duration (a 10-min early scan and a 5-min late scan), the 
TACs after completion were generally close to the reference ones. It is true, however, 
that estimation accuracy decreases as scan time decreases.

ROI‑based quantification for the DTW protocol

The correlation results of Ki are shown in Fig.  4. In general, as the late scan duration 
decreased, the correlation also decreased. Nonetheless, even for the 5-min late scan, a 
relatively high correlation was observed, with correlation coefficients and linear regres-
sion equation being (0.971, y = 1.04*x − 0.0013), (0.990, y = 0.990*x + 0.0001), and (0.990, 
y = x − 0.0002) for the cerebral cortex, muscle, and tumor lesion, respectively. Figure 5a 
depicts the corresponding percentage bias distributions in Ki. The bias varied across the 
ROIs, with the cerebral cortex, muscle, and tumor lesion being − 0.1 ± 3.2%, − 3.3 ± 6.7%, 
1.2 ± 2.5%, respectively. As shown in Additional file 1: Fig. S1, the correlation coefficients 
and linear regression equations of K1 derived from DTW (10 + 5 min) comparing with 
the reference were (0.820, y = 1.03*x + 0.0006), (0.940, y = 0.890*x + 0.0028), and (0.975, 
y = 0.98*x + 0.0018) for the cerebral cortex, muscle, and tumor lesion, respectively. 

(12)MAPE_TAC(%) =

∑

i |CE(ti)− CM(ti)|/CM(t)

n
× 100%

(13)Bias_K (%) =
Kref − KDTW

Kref
× 100%
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Figure 5b depicts the bias analysis for K1. The bias of K1 in estimation varied across ROIs, 
with the cerebral cortex, muscle, and tumor being 5.2 ± 8.6%, 2.6 ± 9.1%, 1.7 ± 7.9%. In 
all regions, the bias in K1 was greater than that in Ki. In Additional file 1: Figs. S2 and S3 
show the correlation analysis for k3 and Vb.

Comparison among different simplified quantification methods

The proposed protocol’s quantification was compared to three existing FDG quanti-
fication methods, namely SUV, FUR, and Patlak analysis. The Ki estimated from a full 
dynamic scan was used as a reference. Table 2 displays Ki correlations. The scattering 
plots for these correlations are shown in Additional file 1: Fig. S4. The DTW protocol 
(10 + 5 min) had the highest quantification accuracy relative to the reference Ki of all the 
simplified quantification methods, followed by FUR and Patlak analysis. In all three sam-
pled regions, SUV had the lowest correlation.

The results for the visual appearance of the parametric images were overall consistent 
with the ROI-based quantifications. Figure 6a shows the example Ki images generated 
by the reference 60-min full scan, the DTW protocols, and Patlak analysis; Fig. 6b shows 
the difference images between the Ki derived from DTW protocols or Patlak analysis 
and the reference Ki images. It can be seen that the bias of Ki increases as the dura-
tion of the DTW protocol decreases; however, even with a 15-min total scan time, the 

Fig. 2  Example of hybrid IFs used for DTW (a) and Patlak/FUR quantifications (c). Their corresponding 
correlations to the true IDIFs are shown in (b) and (d), respectively
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Ki image is still more consistent with the reference Ki image than the one generated by 
Patlak analysis. The coefficient of variation in sampled muscle region (red box in Fig. 6a) 
was used to quantify the noise level of Ki images. For the reference Ki images, the mean 
and standard deviation of the coefficient of variation are 0.21 ± 0.003; for Ki images 
derived from DTW protocols, the values are 0.24 ± 0.005 (10 + 20  min), 0.28 ± 0.005 
(10 + 10 min), 0.31 ± 0.007 (10 + 5 min), respectively; and for Patlak Ki images, the value 
is 0.83 ± 0.18, which is higher than others and indicated an overall higher level of noise. 
K1 images derived from the DTW protocols were almost visually identical to the refer-
ence, as shown in Fig. 6c.

Discussion
The DTW FDG scan protocol was implemented on a state-of-the-art uEXPLORER 
scanner in this study, and multiple kinetic parameters were quantified. Whole-body 
imaging allows for a simultaneous scan of the entire human body with unprecedented 
sensitivity, as well as the extraction of IDIF directly from large arteries such as the aorta. 
Multiple kinetic parameters can be obtained by using the processed TACs and the input 
function at the designated organs. The results showed that with a 10-min early acquisi-
tion and a 5-min late acquisition, relatively accurate quantifications of Ki, k1, k3, and Vb 
could be obtained. The estimation bias could be reduced with a longer scan duration. 
Furthermore, we compared the quantification of DTW to several existing simplified 
quantification methods, including Patlak analysis, FUR, and SUV, as a surrogate for the 
net influx rate Ki. The proposed DTW protocol produced the most accurate quantifica-
tion, followed by FUR and Patlak analysis, while SUV had the lowest correlation, which 

Fig. 3  For an example subject, nonlinear fitting of the missing data was performed using the 3rd degree 
rational function. a–c correspond to the TACs in the cerebral cortex, muscle, and tumor, respectively; d 
Bland–Altman plots of the MAPE (mean absolute percentage error, Eq. 12) in TAC estimation for each ROI with 
different scan durations
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is consistent with previous study findings [20, 26, 46]. In terms of visual performance, 
the DTW protocol generated parametric Ki and K1 images that were more consistent 
with the reference and had less noise than the Patlak analysis had.

To reduce the total scan time while maintaining an acceptable quantification accuracy, 
nonlinear estimation was applied to the shortened dynamic scan data. DTW protocol 

Fig. 4  Correlation analysis for Ki derived from the DTW protocol with different scan durations. The ROIs were 
sampled in the cerebral cortex, muscle, and tumor lesion. The correlation plot for K1 is shown in Additional 
file 1: Fig. S1. The associated Bland–Altman plots are shown in Additional file 1: Fig. S5

Fig. 5  Distribution of the percentage bias in Ki (a) and K1 (b) derived from the DTW protocol
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allows for the efficient use of hospital facilities while maintaining quantification accu-
racy. For example, interleaved scans become possible, during which the first scan of the 
second patient can be acquired, while the first patient rests outside the scanning room. 
The potential inaccuracy of the estimated IFs and TACs is a disadvantage of this method. 
However, it was found that combining the scaled PB-IDIF with the existing part IDIF 
from the dual-phase scan can provide accurate IF. TACs estimated using nonlinear fit-
ting with a rational function were also close to the true ones. Inferring parameters from 
reduced scan data did introduce bias in Ki and K1 estimation. Using the tumor lesion as 
an example, Ki estimation was quite accurate with a relative bias of less than 5%, while 
K1 estimation had a relative bias of less than 20%. One possible explanation is that the 
size of some tumors is small and hence TACs are quite unstable compared to uniform 
regions such as a muscle. This is especially true for the early stage of the scan, where 
estimation of K1 depends mostly on. Another possibility is that some tumors had not 
reached true equilibrium even after 60 min of scanning. Estimation based on 2T3k may 
not be optimal in such cases. Regarding the nonlinear fitting to complete the missing 
data in the interval, it took 1 min to run over a single dynamic scan.

There are some limitations to the current study: (1) A direct comparison between 
the hybrid input function and the arterial sampled input function is missing. (2) 
Although the primary goal of this work is to compare against DTW to existing sim-
plified measures, it may be an unfair comparison since they have different amount 
of data available for kinetic modeling. For instance, Patlak, FUR, SUV all use single 
scan. DTW protocol with more scan information in theory can achieve more accu-
rate estimation in kinetic parameters. In the future, it may be necessary to compare 
the current DTW protocol with other published dual-time-window methods, such 
as dual-time-point Patlak analysis [29] and retention index [46]. (3) A 60-min scan 
may not be long enough to capture the kinetics in some organs, such as the brain and 
some malignant tumors, to reach the equilibrium state. To avoid the potential bias in 
Ki and K1 quantification caused by this factor, a longer scan time may be required. 

Table 2  Correlation analysis for Ki and its surrogate parameters from different quantification 
methods; the squared correlation coefficient (R2), p value(p), and linear regression equations with 
each quantification method were listed in the table and the results of strongest correlation was 
marked in bold

Methods Cerebral cortex Muscle Tumor

DTW Ki (10 + 5 min) R2 = 0.971 R2 = 0.990 R2 = 0.990
p < 0.01 p < 0.01 p < 0.01

y = 1.04*x − 0.0013 y = 0.099*x + 0.0001 y =  x − 0.0002

Patlak Ki (30–60 min) R2 = 0.961 R2 = 0.863 R2 = 0.990

p < 0.01 p < 0.01 p < 0.01

y = 0.99*x + 0.002 y = 0.94*x + 0.0002 y = 0.99*x + 0.0008

FUR (50–60 min) R2 = 0.967 R2 = 0.937 R2 = 0.972

p < 0.01 p < 0.01 p < 0.01

y = 1.13*x + 0.0033 y = 1.2*x + 0.0013 y = 1.08*x + 0.0028

SUV (50–60 min) R2 = 0.447 R2 = 0.729 R2 = 0.390

p < 0.01 p < 0.01 p = 0.054

y = 126.66*x + 1.722 y = 159.22*x + 0.2178 y = 121.1*x + 1.113
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(4) The dispersion effect for the input function was not modeled by our method. 
This could have resulted in quantitative inaccuracies in head and neck organ meas-
urements [47]. Furthermore, scatter corrections may be insufficiently accurate due 
to the very concentrated and rapidly changing tracer distribution in the first few sec-
onds after injection. (5) There could be a misalignment in patient position between 

Fig. 6  Whole-body parametric images from a dynamic scan: (a) Ki images generated from the 60-min full 
scan, the DTW protocols, and Patlak analysis; the muscle region inside the red box was sampled to quantify 
the image noise; (b) difference images between the ones and the reference Ki image from 60-min full scan; 
(c) K1 images generated from the 60-min full scan and the DTW protocols;
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the early and late phases of the DTW protocol’s actual implementation that affects 
the accuracy of the kinetic parameter estimation. It may be necessary to align and 
perform new reconstructions with the re-aligned attenuation image. To avoid two 
attenuation CT scans, one option is to use the TOF information (e.g., MLAA [48]) 
or deep learning techniques [49]) to generate the pseudo-attenuation map for the 
second scan. Then, one can register the first CT image to this attenuation map and 
hence apply the transformation to the corresponding PET data. Low-dose CT could 
be another solution to reduce the total amount of radiation exposure, which will 
require dedicated denoising techniques such as deep learning. (6) The current DTW 
protocol was implemented on a total-body scanner, which is available in few insti-
tutions for now. In theory, it can also be applied on a conventional scanner with 
short FOV. In such case, full kinetic analysis can only be performed near the chest 
region since conventional scanner need to capture the input function from the early 
dynamics of the descending aorta. Therefore, at least the micro-parameters cannot 
be obtained for non-chest regions. Another potential issue when applying DTW 
protocol on a conventional scanner would be the relatively lower sensitivity com-
pared with the uEXPLORER which could hamper the estimation from the partial 
scan data, especially when assessing voxelized parametric images. (7) The number 
of patients included in the study is limited, given the difficult in acquiring a dynamic 
scan without patient motion affected. A dynamic total-body scan may be vulnerable 
to patient movement, especially when considering the increased sensitivity. Motion 
could potentially affect not only the visual quality but also the accurate quanti-
fication across the entire body. In this work, we only performed the simple visual 
inspection to exclude the datasets with obvious motion artifacts. Therefore, an even 
more thorough quantitative quality control on the effect of motion may be required 
other than simply checking visually the images frame by frame. In case when motion 
is severe, motion compensation [50–52] will be essential before applying the data 
analysis to a given dynamic scan.

The study’s primary goal was to investigate and improve the feasibility of using 
the total-body dynamic imaging protocol in clinics. Although a total-body scanner 
greatly aids in this goal, we believe that not all applications are suitable for dynamic 
imaging, even with proper scan time reduction. When weighing the benefits of 
increased absolute quantification accuracy versus the additional effort required, 
some existing alternatives to SUV may be preferable. As demonstrated by the find-
ings, when the clinical task is to quantify the regional metabolic rate for a known 
lesion position or organs of interest, FUR with the hybrid IF is the most feasible 
protocol because it requires a regular scan time with an acceptable bias in Ki estima-
tion. However, when detecting an unknown lesion that necessitates a reliable visual 
assessment or quantifying micro-kinetic parameters such as K1, the DTW protocol 
may be preferable. It would be also interesting to investigate which simplified quan-
tification should be used for applications such as assessing the treatment response. 
More research for specific applications should be done to minimize the trade-off 
between accuracy achieved and the extra effort required for dynamic imaging.
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Conclusion
In this study, we evaluated a DTW protocol for FDG quantification and compared 
its accuracy to that of existing simplified quantification methods, e.g., Patlak analy-
sis, FUR, and SUV. The results showed that by using the DTW protocol, the dynamic 
total-body FDG scan time could be reduced to 15 min. It is possible to achieve accu-
rate Ki and K1 quantification as well as acceptable visual quality in parametric images. 
We anticipate seeing benefits from applying a similar concept to dynamic imag-
ing with other radiotracers, such as 68  Ga-PSMA. Although scanners such as uEX-
PLORER can help to shorten the scan time, more time and effort are still required 
when compared to traditional SUV static imaging. As a result, other existing simpli-
fied quantifications, such as FUR or SUR, may be more appropriate at least in certain 
applications.
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