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Abstract 

Background:  The clinical utility of radiomics is hampered by a high correlation 
between the large number of features analysed which may result in the “bouncing 
beta” phenomenon which could in part explain why in a similar patient population tex‑
ture features identified and/or cut-off values of prognostic significance differ from one 
study to another. Principal component analysis (PCA) is a technique for reducing the 
dimensionality of large datasets containing highly correlated variables, such as texture 
feature datasets derived from FDG PET images, increasing data interpretability whilst at 
the same time minimizing information loss by creating new uncorrelated variables that 
successively maximize variance. Here, we report on PCA of a texture feature dataset 
derived from 123 malignant melanoma lesions with a significant range in lesion size 
using the freely available LIFEx software.

Results:  Thirty-eight features were derived from all lesions. All features were standard‑
ized. The statistical assumptions for carrying out PCA analysis were met. Seven principal 
components with an eigenvalue > 1 were identified. Based on the “elbow sign” of the 
Scree plot, only the first five were retained. The contribution to the total variance of 
these components derived using Varimax rotation was, respectively, 30.6%, 23.6%, 
16.1%, 7.4% and 4.1%. The components provided summarized information on the 
locoregional FDG distribution with an emphasis on high FDG uptake regions, contrast 
in FDG uptake values (steepness), tumour volume, locoregional FDG distribution with 
an emphasis on low FDG uptake regions and on the rapidity of changes in SUV inten‑
sity between different regions.

Conclusions:  PCA allowed to reduce the dataset of 38 features to a set of 5 uncor‑
related new variables explaining approximately 82% of the total variance contained 
within the dataset. These principal components may prove more useful for multiple 
regression analysis considering the relatively low numbers of patients usually included 
in clinical trials on FDG PET texture analysis. Studies assessing the superior differential 
diagnostic, predictive or prognostic value of principal components derived using PCA 
as opposed to the initial texture features in clinical relevant settings are warranted.
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Introduction
Radiomics, the process of extracting and analysing textural features from medical 
images including 18F-fluorodeoxyglucose (FDG)/PET (positron emission tomography) 
CT (computed tomography) imaging, has been shown to hold promise for characteriza-
tion and predicting response to treatment and outcome of human malignancies [1–3].

Many of the textural features derived by available software algorithms have proven 
to be highly correlated with the metabolic tumour volume (MTV) as well as to each 
other [4, 5]. For instance, in a study by Orlhac et  al. on a group of patients suffering 
from various types of malignancies, using the LIFEx software, it was shown that there 
is no added value in calculating several indices belonging to the same group, because 
they describe highly correlated information. In their study, even indices from different 
groups were proven to still be significantly correlated [4]. Likewise, in a study by Hatt 
et al. specifically focusing on the relationship between entropy and dissimilarity derived 
from the grey-level co-occurrence matrix and high-intensity large-area emphasis and 
zone percentage derived from the size-zone matrix, the latter features were shown to be 
correlated with MTV to a different degree. The level of correlation tended to decrease 
substantially when larger volumes are considered [5]. Moreover, for linear models, such 
as multiple regression analysis, a minimum number of 10–15 patients per predictor vari-
able has been shown to produce reasonably stable estimates [6, 7]. Thus, as a function 
of the number of patients under study, a specific selection of the various texture fea-
tures derived through radiomics shown to be of relevance in univariate analysis, should 
be made for inclusion in the multiple regression analysis. To date, however, most of the 
clinical studies that reported on the predictive and prognostic value of texture features 
derived from FDG PET images have included a small number of patients and identified 
multiple image-derived texture features with no pre-specified analytical model which 
may have resulted in a statistical type-I error inflation. In a study by Chalkidou et al. [8] 
applying appropriate statistical corrections on a series of 15 published studies dealing 
with texture analysis of PET and CT studies in oncology, an average type-I error prob-
ability of 76% (range 34–99%) was estimated with the majority of published results not 
reaching statistical significance. Furthermore, it was suggested that the persistently high 
correlation identified in their study for various texture features including MTV may have 
led to instability of the regression coefficients weights in the multivariable model used 
with small changes in the data leading to very different regression coefficients [9]. Whilst 
some studies corrected for this phenomenon better known as “the bouncing beta’s”, this 
was not the case for most of the studies reported. Both phenomena could explain in part 
why in a similar patient population, e.g. colorectal or oesophageal carcinoma, texture 
features identified and/or cut-off values of prognostic significance differ from one study 
to another.

Principal component analysis (PCA) is a technique for reducing the dimensionality 
of large datasets containing highly correlated variables, such as texture feature data-
sets derived from FDG PET images, increasing data interpretability whilst at the same 
time minimizing information loss by creating new uncorrelated (orthogonal) variables 
that successively maximize variance. Given that the new variables are uncorrelated, 
PCA omits the “bouncing beta” phenomenon. Furthermore, the limited number of new 
uncorrelated features generated by PCA may prove more useful for multiple regression 
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analysis when considering the relatively low numbers of patients usually included in 
clinical trials on FDG PET texture analysis. Here, we report on PCA of a texture feature 
dataset derived from 123 malignant melanoma lesions with a significant range in lesion 
size using the freely available LIFEx software.

Patients and methods
Patients

This retrospective study was approved by the ethics committee of the AZ Groeninge 
Hospital. The requirement to obtain informed consent was waived. Twenty-six patients 
suffering from malignant melanoma referred for 18F-FDG PET/CT imaging were 
included in the study. There were 12 men and 14 women. Mean number of lesions per 
patient included was 4 (range 2–10). The total number of lesions studied was 123.

Data acquisition, reconstruction and tumour segmentation

All patients underwent a whole-body FDG PET/CT scan using a GE 64 mCT scanner. 
Patients fasted for at least 8 h prior to imaging to ensure a serum glucose level less than 
200 mmol/L. The time difference between injection and acquisition was 60 ± 7 min fol-
lowing injection of 7 MBq/k body weight of 18F-FDG. PET raw data (list mode acquisi-
tion) were acquired for 1 min per bed position from the top of the skull to the proximal 
third of the femora or to the toes, depending on the location of the primary treated 
tumour. CT was performed with a tube voltage of 120 kV and a tube current ranging 
from 80 to 180 mAs (automatic setting). PET images were reconstructed using time of 
flight (TOF), point spread function (PSF) correction (QCLEAR) and a 256 × 256 matrix 
(corresponding voxel volume 2.7 ×  2.7 ×  2.7  cm3). SUV was calculated as 18F-FDG 
uptake with decay correction normalized to injected dose and patient body weight.

Tumour volumes of interest (VOIs) were delineated using region growing and a fixed 
threshold set to 40% of the SUVmax (standardized uptake value) in the lesions. If nec-
essary, a manual adjustment to exclude neighbouring interfering activity was made per 
VOI. Tumour VOIs were delineated on the QCLEAR generated images given that they 
were shown to produce better image quality in terms of signal-to-noise ratio, contrast 
and lesion detectability. The minimal lesion volume included for subsequent analysis 
was 5 cm3.

Texture analysis

First- and higher-order features were obtained using the IBSI-compliant LIFEx soft-
ware [10–12]. Higher-order features were calculated using the grey-level co-occurrence 
matrix (GLCM), the neighbourhood grey-level different matrix (NGLDM), the grey-level 
run length matrix (GLRLM) and the grey-level size zone matrix (GLSZM). Image noise 
was reduced by resampling original PET values to 64 Gy levels or bins (fixed bin number 
discretization). A quantization of 64 Gy levels was previously shown to provide the best 
compromise between sufficient sampling of voxel SUVs, preservation of original inten-
sity information and potential complementary information with respect to metabolic 
tumour volume [5]. In total, 38 features were studied, respectively, volume, sphericity, 
compacity, homogeneity, HISENT_log 10 (entropy from the histogram) and HISENT_
log2, features derived from the GLCM (homogeneity, energy, contrast, correlation, 
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entropy and dissimilarity), features derived from the GLRLM (SRE (short-run empha-
sis), LRE (long-run emphasis), LGRE (low grey-level run emphasis), HGRE (high grey-
level run emphasis), SRLGE (short-run low grey-level emphasis), SRHGE (short-run 
high grey-level emphasis), LRLGE (long-run low grey-level emphasis), LRHGE(long-
run high grey-level emphasis), GLNUr (grey-level non-uniformity for run), RLNU (run 
length non-uniformity) and RP (run percentage)), features derived from the NGLDM 
(coarseness, contrast and busyness), features derived from the GLZLM (SZE (short-zone 
emphasis), LZE (long-zone emphasis), LGZE (low grey-level zone emphasis), HGZE 
(high grey-level zone emphasis), SZLGE (short-zone low grey-level emphasis), SZHGE 
(short-zone high grey-level emphasis), LZLGE (long-zone low grey-level emphasis), 
LZHGE (long-zone high grey-level emphasis), GLNUz (grey-level non-uniformity for 
zone), ZLNU (zone length non-uniformity) and ZP (zone percentage)).

Statistical analysis

Statistical analysis was performed using SPSS version 27. Prior to analysis, all texture 
features were standardized ((texture feature result – texture feature mean)/texture fea-
ture standard deviation) yielding a mean value of 0 and a standard deviation of 1 for 
all texture features. Standardization was performed as to make sure all the variables 
included have the same standard deviation and thus also the same weight, allowing for 
correct axis calculation of the principal components. Thus standardized texture feature 
data were used for principal component analysis (PCA).

The Kaiser–Meyer–Olkin (KMO) test was used to assess the suitability of the data 
set for factor analysis (a value > 0.6 was deemed significant). Bartlett’s test of spheric-
ity was used to assess whether the correlation matrix of the normalized texture features 
proved significantly different from an identity matrix in which correlations between var-
iables are all zero. (A p value < 0.05 was deemed significant.) Varimax rotation was used 
to maximize the sum of the variance of the squared loadings (where “loadings” means 
correlations between variables and principal components). It does so by creating new 
uncorrelated or orthogonal variables, called principal components, that successfully 
maximize variance. Finding such new variables reduces to solving an eigenvalue/eigen-
vector problem.

Principal components with eigenvalues greater than 1 (Kaiser criterion) were consid-
ered significant.

The commonalities for each principal component (the squared multiple correlations 
between the newly generated principal components and all other texture features) were 
considered significant when higher than or equal to 0.60.

Results
Mean lesion volume was 61.9 cm3 (range 5–635 cm3).

The KMO measure of adequacy was 0.712 and Bartlett’s test yielded a p value of 
0.0001, thus meeting the statistical assumptions for carrying out principal component 
analysis.

Seven principal components with an eigenvalue > 1 were identified. Based on the 
“elbow sign” of the Scree plot, the first five were retained.
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The contribution to the total variance of these five principal components derived 
using Varimax rotation was, respectively, 30.6%, 23.6%, 16.1%, 7.4% and 4.1%. These 
five principal components together thus explained approximately 82% of the total 
cumulative variance (see Table 1).

The correlation of each principal component with the standardized texture features 
is shown in Table 2 (rotated component matrix; only correlations > 0.6 are reported).

The first principal component proved highly positively correlated with sGLRLM_LRE, 
sGLRLM_LRHGE, sGLZLM_LZHGE, sGLZLM_LZE and sGLCM_Energy (r ≥ 0.946).

The second principal component proved highly positively correlated with sGLCM_
contrast and sNGLDM_contrast, sGLCM_dissimilarity, sGLZLM_SZE, sGLRLM_
SRHGLE, sGLZLM_HGZE, sGLZLM_SZHGE, sGLZLMZP and sGLRLM_HGRE 
(r ≥ 0.654).

The third principal component proved highly significantly positively correlated 
with sGLZLM_GLNU, sGLRLM_RLNU, sGLZLM_ZLNU, sVolume and sCompacity 
(r ≥ 0.835).

The fourth principal component proved highly positively correlated with sGLRLM_
LGRE, sGLRLM_SRGLE, sGLRLM_LRLGE and sGLZLM_LGZE (r ≥ 0.677).

Finally, the fifth component proved highly positively correlated with sGLZLM_
LZLGE, sGLRLM_GLNU and sGLDLM busyness (r ≥ 0.677).

Table 1  Total variance explained by the principal components

Principal component Eigenvalue % Variance Cumulative 
% variance

1 11.3 30.6 30.6

2 8.7 23.6 54.2

3 5.9 16.1 70.3

4 2.7 7.4 77.7

5 1.5 4.1 81.8

Table 2  Principal component loadings (correlations between standardized (s) texture features and 
principal components; r-values are given between brackets)

PC1 PC2 PC3 PC4 PC5

sGLRLM_LRE (0.977)
sGLRLM_
LRHGE(0.971)
sGLZLM_
LZHGE(0.961)
sGLZLM_LZE(0.947)
sGLCM_
Energy(0.946)
sUniformity(0.833)
sGLRLM_SRE(0.714)
sGLRLM_RP(0.614)

sGLCM_Contrast 
(0.903)
sGLCM_Dissimilarity 
(0.898)
sNGLDM_Con‑
trast(0.864)
sGLZLM_SZE(0.817)
sGLRLM_
SRHGE(0.785)
sGLZLM_
HGZE(0.731)
sGLZLM_
SZHGE(0.726)
sGLZLM_ZP(0.671)
sGLRLM_
HGRE(0.654)

sGLZLM_
GLNUz(0.968)
sGLRLM_
RLNU(0.961)
sGLZLM_
ZLNU(0.890)
sVolume(0.881)
sCompacity(0.835)

sGLRLM_
LGRE(0.948)
sGLRLM_
SRGLE(0.912
sGLRLM_
LRLGE(0.870)
sGLZLM_
LGZE(0.677)

sGLZLM_LZLGE(0.835)
sGLRLM_GLNUr(0.736)
sNGLDM_busy‑
ness(0.677)
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Discussion
In the study presented, tumour volume delineation was performed using a 40% 
threshold region growing method, given that previous studies have shown that a 
fixed threshold of 40% best approximates tumour volume [13]. Whilst a gradient-
based method would have allowed assessment of the entire tumour, including areas 
of necrosis, they are not widely available and currently their use is mainly limited to 
those research centres where they were developed [14–17].

Volumes smaller than 5  cm3 were not included for analysis for two reasons. First, 
as shown previously, discontinuities such as sharp changes in image contrast when 
approximated by a Fourier series will be truncated with an overshoot at the border of 
discontinuity. This will lead to an overestimation of SUVmax values for lesions below 
22 mm of diameter (or a corresponding volume of 5  cm3) when using the QCLEAR 
algorithm provided by GE, adopted in the current study, and to an underestimation of 
the tumour volume when using region growing for these smaller lesions [18]. Second, 
given that some texture parameters are based on series of neighbouring voxel values 
in the x, y or z directions and series less than 4 voxels would not make the calculations 
meaningful, calling for texture calculation in volumes of at least 4 × 4 × 4 = 64 voxels 
corresponding to a minimal volume required of at least 4 cm3 when using a voxel size 
of 4 mm and assuming sphere-like lesions [4, 19].

Using principal component analysis, the dataset of 38 texture features generated 
could be compressed to a dataset of 5 new uncorrelated variables or principal com-
ponents that explained approximately 82% of the total variance. The first principal 
component, accounting for 30.6% of the total variance, proved significantly correlated 
with those features assessing the distribution of long homogenous runs and zones 
in the tumour volume with an emphasis on those with high grey levels or accord-
ingly high SUV values. Thus, this marker likely captures the locoregional FDG dis-
tribution within the tumour emphasizing the importance of those regions with high 
FDG-uptake, known to be more aggressive. SUVmax values have been previously 
confirmed to be a significant indicator of tumour aggressiveness and prognosis in a 
wide variety of human malignancies, e.g. non-small cell lung carcinoma, breast carci-
noma and endometrial carcinoma [20–24]. However, whilst clinically useful, a single 
SUV value cannot capture all of the relevant information within the tumour. Assess-
ing tumour heterogeneity in SUV values in non-small cell lung carcinoma patients, 
the latter was found to be an independent predictor of overall survival in NSCLC can-
cer patients in multivariable analysis in a study by Hughes et al. [25]. In their study, 
tumour heterogeneity was evaluated as the percentage variance unexplained in the 
tumour region-of-interest uptake values using an ellipsoidally contoured model 
and a homogenous tumour mass whose voxel intensity is greatest at the centre and 
diminishes in a monotone fashion as one moves radially towards the periphery of the 
tumour for comparison. Runs and zones of different FDG uptake likely reflect cell 
populations with different growth rates, vascularity, necrosis and cavitation and thus 
different levels of aggressiveness, all of which contribute to the overall aggressiveness 
of the tumour [26].

The second principal component, accounting for 23.6% of the total variance, proved 
most correlated with those texture features assessing the contrast in the tumour volume. 
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Contrast reflects the sharpness of the PET images and the depth of the texture grooves of 
SUV peaks.

The third principal component, accounting for an additional 16.1% of the total variance, 
proved significantly correlated with tumour volume and thus by definition also to tumour 
compactness (tumour volume/tumour surface area3/2) and to texture features assessing 
the non-uniformity of the length and zones of SUV levels. The latter features are known to 
increase when tumour volume increases as evidenced by the strong collinearity between 
these features and tumour volume reported previously by other authors, also including CT-
imaging, and confirmed in this study [4, 5, 27]. Additionally, as shown by Welch et al. [28] 
using CT images obtained from head and neck and lung carcinoma patients, when correct-
ing these features for tumour volume, e.g. GLNU, their prognostic accuracy is decreased 
emphasizing the importance of the tumour volume as prognosticator [28].

The fourth principal component, accounting for 7.4% of the total variance, proved highly 
correlated with texture features assessing the distribution of low grey level/SUV runs, both 
short and long. The higher the contribution of these texture features, the higher the propor-
tion of the total tumour volume that is non-aggressive is likely to be. The degree of glucose 
uptake by human malignancies as imaged by FDG-PET has been previously shown to be 
directly related to histologic measures of tumour differentiation with well-differentiated 
tumours having low FDG uptake and moderately and poorly differentiated tumours hav-
ing higher uptake [29, 30]. At the molecular level, a comparison of metabolism- and stem-
cell-related gene expression performed by Riester et al. on a series of 552 cancer specimens 
derived from patients with various malignancies showed that carbohydrate/pentose/nucle-
otide synthesis-related genes were elevated only in tumours that had high glucose uptake, 
as evidenced by FDG PET imaging, and were similar in gene expression patterns to stem 
cells [31].

Finally, the fifth principal component proved correlated with those features assessing the 
rapidity of changes in intensity (SUV values) between different neighbourhoods.

Of interest, in this series, features representing randomness and entropy such as nGLCM 
entropy or entropy derived from the histogram proved less significantly correlated with 
either of the principal components obtained (r < 0.58) as opposed to various other features 
(see Table  1). Various clinical studies have previously shown features assessing entropy 
derived from FDG PET images to be predictive for outcome in a wide variety of human 
malignancies, e.g. oesophageal carcinoma and cervical carcinoma [32, 33]. Furthermore, 
these features proved to be highly reproducible and robust to the delineation method used 
[34].

Shortcomings

This retrospective study included melanoma lesions known to be highly aggressive. It is not 
to be excluded that principal component analysis of other types of human malignant lesions 
who are less aggressive results in a different set of principal components.

Conclusions
In this study on a series of 123 malignant melanoma lesions with a wide range in lesion 
size, PCA allowed to reduce the dataset of 38 texture features derived using the LIFEx 
software to a set of 5 uncorrelated new variables, whilst maintaining approximately 82% 
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of the total variance contained within the dataset. These 5 new uncorrelated variables 
provide summarized information on the locoregional FDG distribution with an empha-
sis on high FDG uptake regions, contrast in FDG uptake values (steepness), tumour vol-
ume, locoregional FDG distribution with an emphasis on low FDG uptake regions and 
on the rapidity of changes in SUV intensity between different regions. Assessment of the 
clinical superiority of these new uncorrelated variables as opposed to the initial dataset 
of texture features in clinical relevant settings, either as a differential diagnostic tool (e.g. 
for separating benign from malignant lesions) or as predictors of response to treatment 
and outcome, is ongoing.
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