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Introduction
Positron emission tomography (PET) has become an indispensable diagnostic tool, 
especially in combination with computed tomography (CT) for attenuation correction. 
Furthermore, PET-CT imaging provides a combined view of functional and morphologi-
cal information of the patient.

The radio-ligand F18-2-fluoro-2-deoxy-D-glucose (FDG) has ensured the success of 
PET-imaging. The glucose component of the molecule has a higher uptake in malignant 
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than healthy cells [1], and the F18 component provides the detectability in PET-CT 
systems.

The nuclear medicine physician can evaluate PET-CT images visually. However, an 
important advantage of PET imaging is that the uptake can be quantified in absolute 
measures. Quantification of FDG PET enables the staging of cancer and the quantita-
tive comparison of follow-up studies to track the evolution of cancer and the response 
to tumour therapy [2]. The degree of variability of the quantification methods limits 
the widespread implementation of quantitative comparison of PET images. Therefore, 
reliable image quantification requires minimizing inter- and intra-observer variabil-
ity as much as possible and estimating the measurement errors on the quantification 
parameters.

One of the metrics for the comparison of F18-FDG PET images is the Standardized 
Uptake Value (SUV). The most used SUV metrics are the SUVMax and the SUVMean. 
With SUVMax, only the voxel with the highest uptake is considered, while with 
SUVMean, all the voxels in a certain region or volume are taken into account. SUVMax 
has a low inter- and intra-observer variability but a high statistical technical variation. 
SUVMean, on the other hand, has a lower technical variation but a higher inter- and 
intra-observer variability since the thresholds for the contours of the volume are a deter-
mining factor of the result. SUVPeak could be a “best of both worlds” metric because 
it includes the voxels in a fixed limited volume around the voxel with maximum value. 
SUVPeak might improve reproducibility for SUV quantification, especially in the most 
metabolically active tumour regions [3].

The proposed framework for PET Response Criteria in Solid Tumours (PERCIST) sug-
gests considering a 30% change in SUV as a significant variation of tumour activity [4]. 
Decreasing the variability of SUV quantification will enable the detection of smaller sig-
nificant changes and therefore enable earlier detection of degeneration or the effect of 
therapy. Being aware of the expected variation and standardizing the process as much as 
possible is therefore essential.

In test–retest studies, patients are injected and scanned twice to assess the variation of 
the complete PET imaging process. However, the knowledge of the components building 
up the total variation can help to reduce this variation.

Theoretically, the variation in a PET measurement consists of biological variability and 
technical variability [5]. Biological variability arises from variations in blood glucose, 
paravenous administration of FDG and FDG uptake. Biological variation can be mini-
mized by standardizing the patient preparation with a protocol defining diet and uptake 
time. Further, the technical variation also plays a role in the process. Several studies have 
shown that important factors affecting the technical variation of SUV are variations in 
image reconstruction and scanner characteristics [6–8]. Standardizing the positioning 
of the patient, acquisition, reconstruction and quantification protocol, and PET system 
calibration will reduce the technical variation. However, a certain amount of technical 
variation is unavoidable due to the statistical variations of the F18 decay and its effect on 
the image reconstruction. This is a “statistical technical variation”, so the part of the tech-
nical variation that cannot be minimized by standardization but is intrinsically present 
on statistical grounds. Knowing the statistical technical variation gives us insights into 
the origin of the total variation.
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Since the statistical technical variation differs between SUV metrics, it is important to 
be able to quantify it specifically for each metric in use. Furthermore, the statistical tech-
nical variability can be scanner- and reconstruction-specific and will be dependent on 
the size of the lesions. The assessment of the statistical technical variation gives insight 
into its contribution to the total variation and enables the quantification of the effect of 
different parameters on the technical variation.

In this study, we present a method to estimate the statistical technical variation of 
different SUV metrics and lesion sizes of images acquired with the same scanner and 
reconstructed with the same algorithm. One PET acquisition is divided into subsets of 
different reconstruction lengths, and the standard deviation between the SUV metrics in 
the subsets is used to estimate the coefficient of statistical technical variation (from here 
called coefficient of variation) of the SUV values of the total acquisition. The proposed 
method determines the coefficient of variation of SUV metrics in order to establish the 
relevance of this variation in the context of other fluctuations.

The method is described and applied on a 150-s acquisition of a NEMA image qual-
ity phantom with a foreground-to-background activity ratio of 10:1 as an example of 
application. The coefficients of variation of SUVMax, SUVMean and SUVpeak of the dif-
ferent spheres in the phantom are presented and discussed as a function of lesion size. 
With the presented method, we want to provide a simple method to estimate the statisti-
cal technical variability of PET images with the goal of evaluating its impact on the total 
technical and biological variation between PET images.

Material and methods
The method that we describe in this paper for estimating the coefficient of variation of 
SUV metrics between PET images consists of three main steps:

•	 Acquisition of the original dataset
•	 Generation and reconstruction of subsets with shorter reconstruction length
•	 Calculation of SUV coefficient of variation within the subsets, and translation to the 

coefficient of variation of the original dataset with full reconstruction length.

Image acquisition and reconstruction

A NEMA NU2–2007 image quality phantom was imaged on a Philips Gemini TF PET/
CT system (Philips Healthcare, Andover, MA). PET reconstructions were made using 
the scanner’s default Ordered Subset Expectation Maximization (OSEM) reconstruc-
tion algorithm with 33 subsets, 3 iterations, matrix size of 144 × 144, and voxels of 
4 × 4 × 4 mm. No Gaussian filter was applied. The reconstruction was corrected for geo-
metrical response and detector efficiency (normalization), random coincidences, scatter 
and attenuation. Data were stored in the list mode to be able to reconstruct subsets with 
different reconstruction lengths. All list-mode reconstructions were decay-corrected to 
the start time of the acquisition.

The NEMA phantom acquisitions were performed according to the requirements for 
the EANM/EARL FDG-PET/CT accreditation [9]. The NEMA phantom is composed of 
a fillable torso compartment acting as background, a cylindrical insert in the centre of 
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the torso compartment and six fillable spheres of different diameters (10 mm, 13 mm, 
17 mm, 22 mm, 28 mm and 37 mm) placed around the central insert. The fillable torso 
compartment and the spheres were filled with a solution of water and F18-FDG. At the 
starting moment of the scan, the activity concentration was 2.10 MBq/ml in the torso 
background compartment and 20.04  MBq/ml in the spheres, resulting in an actual 
sphere-to-background ratio of 9.6:1 (the aim was 10:1) [10] .

The original dataset was acquired with a 150-s frame duration. The total acquisition 
time was 10 min (600 s, 4 bed positions). The full-length 150-s list-mode acquisition was 
divided into subsets of shorter reconstruction lengths varying from 4 to 30 s. An atten-
uation-corrected reconstruction was performed for different reconstruction lengths, 
generating as many images as possible per subset, without using the same coincidences 
multiple times by varying the starting time of the reconstruction. For example, for the 
first subset (4  s reconstruction length), the first image was reconstructed using the 
coincidences recorded between 0 and 4 s, the second image by using the coincidences 
recorded between 5 and 8 s and so on, varying the starting moment of the reconstruc-
tion, generating a total of 37 images. The longest reconstruction length was 30 s, gener-
ating a subset of five images. Fourteen subsets were generated with 4 s, 6 s, 8 s, 10 s, 12 s, 
15 s, 17 s, 19 s, 20 s, 22 s, 24 s 26 s, 28 s and 30 s reconstruction lengths.

The Philips reconstruction software automatically corrected each reconstruction 
for the decay of 18F (half-life of 109.7 min [11]), compensating for the time difference 
between the start of the study and the start of the reconstruction by using an opportune 
scaling factor.

Image analysis

The datasets were analysed using a Python 3.7.0 script (default, Jun 28 2018, 08:04:48) 
[MSC v.1912 64 bit (AMD64)]. The algorithm automatically detected the spheres and 
their central 2D plane. Different SUV metrics were calculated in each image of the 
subsets:

•	 SUVMax 2D: the maximum voxel value in the central 2D plane;
•	 SUVMax 3D: maximum voxel value in each sphere;
•	 SUVMean 2D: the average value of the voxels in the central 2D plane of each sphere;
•	 SUVMean 3D: the average value of the voxels in each sphere.

SUVMean 2D and 3D were calculated considering the complete 2D central plane or 
3D volume, respectively, without using thresholding techniques based on pixel values or 
on a percentage of the maximum value.

•	 SUVPeak: the average value within a 1-cm3 sphere centred on the maximum value of 
the sphere [12]. The algorithm fitted the sphere, found the maximum voxel value in 
the 3D volume, used this voxel as the centre of a spherical region of interest (ROI) of 
1 cm3 and calculated the average value within the 1-cm3 sphere.

The values of the different SUV metrics were calculated for each image in a subset. 
The SUV value populations have been tested for normality with a Kolmogorov–Smirnov 
test, and all subsets matched the characteristics of a normal distribution. The test was 
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run on non-log-transformed data and on log-transformed data. The SUV metrics of the 
different images in a subset were averaged, and their standard deviation was calculated. 
The coefficient of variation of the SUV metrics was calculated as the standard deviation 
divided by their average value multiplied by 100.

We can assume a random sampling model, with no correlations, for independent 
and identically distributed random measurements. The different subsets did not differ 
in activity or voxel dimensions, and the quantification of the SUV metrics was done by 
using the same ROI dimension. We can therefore describe the ratio of the standard devi-
ations (SD) of two independent subsets as:

 With SD1 and SD2 being the standard deviations and RL1 and RL2 being the recon-
struction lengths [7]. By using the measured coefficient of variation of the SUV in a 
subset as SD1 and the length of the reconstruction of the specific subset as RL1, it is 
possible to estimate the coefficient of variation SD2 between repetitions of scans with 
reconstruction length RL2 according to:

 Formula 2 is used to calculate the estimated coefficient of variation of the SUV at dif-
ferent reconstruction lengths using the coefficient of variation of the other subsets. In 
this case, we could calculate (14 − 1 =) 13 estimations of the SD2 for each coefficient of 
variation.

Formula 2 is also used to calculate the estimated coefficient of variation of SUV met-
rics at reconstruction length SD2 = 150 s using the coefficient of variation of each sub-
set. We illustrate the procedure for the subset with a reconstruction length of 10  s to 
estimate the SD2 at a reconstruction length of 150 s. For the reconstruction length of 
10 s, we obtained 15 subsets and we could therefore estimate 15 SUV metrics. We then 
calculated the standard deviation between the 15 SUV metrics and used it as SD1 in 
Formula 2. The ratio between the reconstruction lengths was also taken into account 
according to Formula 2 (in this example, it is 10/150). Since we divided our acquisition 
into 14 different subsets of different reconstruction lengths, we could calculate 14 differ-
ent estimations of the SD2 of reconstruction length 150 s and evaluate their mean and 
standard deviation.

Lastly, the population of two adjacent spheres (10  mm and 13  mm, 13  mm and 
17 mm, 17 mm and 22 mm, 22 mm and 28 mm, 28 mm and 37 mm) was tested ( two-
sample t-test assuming unequal variances with a significance level alpha = 0.05) to verify 
whether there was a significant difference in SUV between adjacent spheres.

Results
After generating and reconstructing the images in the subsets with shorter reconstruc-
tion lengths, SUVMax 2D and 3D, SUVMean 2D and 3D and SUVPeak were calculated 
for the six spheres in each image of a subset. The resulting SUV metrics were averaged, 
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and their standard deviation was estimated for each sphere. The average value was plot-
ted as a function of the sphere diameter, obtaining a recovery curve based on SUVMax 
2D and 3D, the SUVMean 2D and 3D and the SUVPeak. The results are shown in Fig. 1 
as examples for the 4 s (blue line), 15 s (red line) and 30 s (yellow line) subsets.

For the larger spheres, for SUVMax and SUVPeak, the shorter reconstruction lengths 
tend to have a higher average SUV value than the longer reconstruction lengths, as 
shown for the three representative datasets (4  s, 15  s, 30  s reconstruction length) in 
Fig. 1.

Figures 2, 3, 4, 5 and 6 show the coefficient of variation of the measured SUV met-
rics. The coefficient of variation of the SUV is plotted as a function of the reconstruction 
length for the different spheres. We show the results for the spheres with 10 mm and 
37 mm diameter as representative results.

Fig. 1  Average SUVMax 2D and 3D, SUVMean 2D and 3D and SUVPeak values (kBq/ml) and the 
corresponding standard deviation for spheres of different volumes for 4 s, 15 s and 30 s reconstruction 
lengths

Fig. 2  Coefficient of variation of SUVMax 2D as a function of the reconstruction length
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Figures 7, 8, 9, 10 and 11 show the relation between the estimated and measured coef-
ficients of variations. Figures 7, 8, 9, 10 and 11 show the measured coefficient of variation 
as reported in Figs. 2, 3, 4, 5 and 6 together with the estimated coefficient of variation 
(mean and standard deviation) obtained by using the coefficient of variation of the other 
reconstruction lengths as SD1 in Formula 2. We show the results for the smallest and 
largest sphere (10 mm and 37 mm diameter).

The results in Figs. 2, 3, 4, 5 and 6 were used to estimate the coefficient of variation of 
the 150 s original dataset according to Formula 2. The estimated variation of SUVMax 
2D and 3D, SUVMean 2D and 3D and SUVPeak at 150 s reconstruction length is plotted 
in Fig. 12 for the 10-mm-diameter sphere and in Fig. 13 for the 37-mm-diameter sphere 
as examples. The dots show the estimated coefficient of variation of the SUV metrics at 
150 s reconstruction length (SD2 in Formula 2) obtained by using the SUV metrics of 
the different subset as SD1 in Formula 2. Each figure also reports the average value (red 

Fig. 3  Coefficient of variation of SUVMax 3D as a function of the reconstruction length

Fig. 4  Coefficient of variation of SUVMean 2D as a function of the reconstruction length
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line) plus and minus the standard deviation (blue lines) of the results, showing that the 
reconstruction length of the images in the subset has no structural effect on the esti-
mated standard deviation at 150 s.

The estimated average coefficient of variation of SUVMax2D and 3D, SUVMean2D 
and 3D and SUVPeak at 150  s reconstruction length and its standard deviation, as 
shown, respectively, in red and blue in Figs. 12 and 13 for the 10 and 37 mm spheres, 
have been estimated for all the spheres and are summarized in Table 1. The data were 
statistically analysed to verify whether the difference between the estimated coefficient 
of variation of the SUV metrics was significant between spheres (same metric, differ-
ent sphere diameter, so the difference between columns in Table 1) and between SUV 
metrics (different SUV metric, same sphere diameter, so the difference between rows 
in Table  1). The adjacent spheres with a significantly different coefficient of variation 
between them (p value t-test < 0.05) are underlined and in bold in Table 1.

Fig. 5  Coefficient of variation of SUVMean 3D as a function of the reconstruction length

Fig. 6  Coefficient of variation of SUVPeak as a function of the reconstruction length
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We report that the difference between the estimated coefficients of variation of the 
SUV metrics of the sphere with d = 10  mm and d = 13  mm and with d = 28  mm and 
d = 37  mm is significant for SUVMax, Mean and Peak. For SUVPeak, the difference 
between the estimated coefficients of variation of the 13 and 17 mm spheres is also sig-
nificant. The difference between the estimated coefficients of variation of the SUVMean 
2D and 3D is significant between each sphere.

Concerning the differences between SUV metrics, we report no significant differ-
ence between the estimated coefficient of variation of the SUV metrics of the two 
smaller spheres (d = 10, 13 mm). The values of SUVMean 3D are significantly lower 
than the values of SUVMax 2D, 3D and SUVPeak for the four larger spheres (d = 17, 

Fig. 7  Measured and estimated coefficient of variation (mean and standard deviation) for SUVMax 2D as a 
function of the reconstruction length

Fig. 8  Measured and estimated coefficient of variation (mean and standard deviation) for SUVMax 3D as a 
function of the reconstruction length
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22, 28, 37 mm). SUVPeak significantly differs from SUVMax 2D and 3D for d = 17 mm 
and from SUVMean 2D and 3D for d = 22, 28, 37 mm.

Discussion
This study describes a method to estimate the statistical technical variability of SUV 
metrics and to compare the variability of SUV metrics between different lesion sizes. 
The proposed method determines the statistical technical variation of SUV metrics, 
which is a part of the total variation in PET imaging. The method’s value lies in ena-
bling the estimation of the influence of lesion size and choice of SUV metric on the 
total variation in a simple way.

Fig. 9  Measured and estimated coefficient of variation (mean and standard deviation) for SUVMean 2D as a 
function of the reconstruction length

Fig. 10  Measured and estimated coefficient of variation (mean and standard deviation) for SUVMean 3D as a 
function of the reconstruction length
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In Fig. 1, the calculated values of the SUV metrics are shown for all spheres and for 
all reconstruction lengths. We report higher average SUV values for shorter recon-
struction lengths. When the images are noisier, the chance is bigger than a single 
voxel or group of voxels will have a higher value due to a higher statistical variation. 
This effect occurs with SUVMax and SUVPeak, but not with SUVMean, where all the 
voxels in a region are used for calculation. The values in Fig. 1 could also be translated 
into recovery ratios in order to include the effect of background activity.

Figures  2, 3, 4, 5 and 6 show the coefficient of variation of the SUV metrics as a 
function of the reconstruction length for the different spheres. The higher variation at 
shorter reconstruction lengths reaches values up to 30% for the sphere with a 10 mm 

Fig. 11  Measured and estimated coefficient of variation (mean and standard deviation) for SUVPeak as a 
function of the reconstruction length

Fig. 12  Estimated variation of SUV metrics for reconstruction length 150 s for a sphere of 10 mm
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diameter. This suggests that when performing quantification of PET images on the 
small lesion and low counts, the effect of the statistical technical variability might not 
be negligible when compared with the variation used for diagnostic purposes. In this 
regard, the proposed method could be used to define the minimum required acquisi-
tion length: when the statistical technical variation of the SUV has become negligible 
to the test–retest variation, a longer acquisition time might not add value.

Figures 7, 8, 9, 10 and 11 show that the value of the measured and estimated coeffi-
cients of variation is comparable and that the standard deviation of the coefficients of 
variation is relatively small, indicating that this method can be applied to estimate the 
coefficient of variations at different reconstruction lengths. Figures  12 and 13 show 
that the choice of the reconstruction length of the subset used for the estimation is 

Fig. 13  Estimated variation of SUV metrics for reconstruction length 150 s for a sphere of 37 mm

Table 1  Average estimated coefficient of variation for SUV max, mean and peak for different 
spheres at 150 s reconstruction length

dsphere = 10 mm dsphere = 13 mm dsphere = 17 mm dsphere = 22 mm dsphere = 28 mm dsphere = 37 mm

Est. coeff. of 
Var SUVMax 
2D

5.6 ± 1.1% 3.8 ± 1.2% 3.4 ± 0.8% 3.3 ± 0.7% 2.9 ± 0.9% 1.6 ± 0.3%

Est. coeff. of 
Var SUVMax 
3D

5.5 ± 1.1% 3.8 ± 1.2% 3.4 ± 0.8% 3.1 ± 0.7% 2.6 ± 0.6% 1.9 ± 0.6%

Est. coeff. 
of Var 
SUVMean 
2D

5.0 ± 1.0% 3.7 ± 1.1% 2.8 ± 0.5% 2.2 ± 0.4% 1.7 ± 0.4% 0.9 ± 0.3%

Est. coeff. 
of Var 
SUVMean 
3D

5.0 ± 0.9% 3.6 ± 0.9% 2.5 ± 0.6% 1.6 ± 0.3% 1.3 ± 0.3% 0.8 ± 0.2%

Est. coeff. of 
Var SUVPeak

5.5 ± 1.1% 3.6 ± 0.8% 2.8 ± 0.6% 2.9 ± 0.7% 2.8 ± 0.8% 1.7 ± 0.6%
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not creating a bias in the estimation of the coefficient of variation of the full-length 
dataset.

In Table 1, we report the result of the estimated standard deviation of the SUV metrics. 
We report significant differences in statistical technical variation for different sphere 
dimensions. The difference is always significant for each SUV metric for the smallest 
(diameter of 10 mm) and the largest (diameter of 37 mm) sphere. The difference is also 
significant between all spheres for the SUVMean. The coefficients of variation are typi-
cally ranging from 5% for the 10 mm sphere to 1% for the 37 mm sphere, in accordance 
with the range reported for simulated data [13]. In smaller spheres with lower recovery 
coefficients, we expect a larger influence of the noise on SUV metrics. Furthermore, for 
smaller spheres, a partial volume effect can introduce an extra source of variation in the 
quantification of SUV [14]. The maximum expected variation between images, for any 
estimated metric, did not exceed 6% for the smallest object (sphere of diameter 10 mm) 
and 2% for the largest object (sphere of diameter 37 mm) for a reconstruction length of 
150 s. This provides an indication of the contribution of the statistical technical variation 
when the same scanner is used, with equal reconstruction length and activity, and can be 
compared with the variation measured in FDG PET test–retest studies reporting a typi-
cal variation of approximately 10% [15–17]. Our study is not a test–retest study, and it 
aims to quantify the variation obtained when (ideally) repeating the exact same acquisi-
tion, without changing any external factors, if not the statistical ones related to the char-
acteristics of the emitters. The variation measured in our study is, therefore, smaller than 
the one typically measured in a test–retest study due to the fact that we do not have to 
deal with other factors such as repositioning of the patient or phantom and reinjection 
of the activity.

Nevertheless, it is important to notice that the value of the estimated statistical techni-
cal variation calculated for our scanner and reconstruction method is not directly trans-
latable to other centres. The variability in the calculation of SUV metrics inhibits the 
direct comparison of these values [18]. Other factors introducing technical variability 
are, for example, acquisition settings, voxel size, reconstruction protocols, gating set-
tings, analysis methods and scan duration, and their influence is too prominent for a 
direct comparison of the absolute values of the variation between scanners [7, 19].

For a given PET scanner, using advanced image reconstruction algorithms [20] 
will significantly improve the image quality in terms of noise and lesion detect-
ability. Iterative PET reconstruction methods have been proven superior to filtered 
back projections (FBP) for their superiority in detecting focal regions and in reduc-
ing noise [21]. Furthermore, studies have shown that the noise correlation in FBP 
reconstruction might be object dependent and, therefore, it could not be possible 
to apply general statistical methods when estimating a coefficient of variation in dif-
ferent regions of interest in an image. [22] In our method, we have used an OSEM 
algorithm (an advanced Bayesian iterative reconstruction technique) because it is 
the usual choice when reconstructing whole-body F18 images. One of the advantages 
of an OSEM algorithm is that it aims to consider all the physical and statistical pro-
cesses happening during data acquisition. On the other hand, Bayesian reconstruc-
tion algorithms penalize the formation of noisy images based on the hypothesis that 
large local variations in voxel intensity in the images are most likely due to noise. In 



Page 14 of 16De Luca and Habraken ﻿EJNMMI Physics            (2022) 9:40 

OSEM algorithms, the degree of this penalization is unregulated, and the number of 
iterations is often reduced in order to control noise but at the cost of reducing con-
trast and lesion detectability [23]. Other reconstruction algorithms have shown better 
performances in noise reduction and lesion detectability. For example, point spread 
function (PSF) reconstruction algorithms can also be applied to PET images and 
have been shown to reduce noise and increase contrast in the reconstructed images 
identifying the potential for further reduction of the coefficient of variation in SUV 
metrics [24]. Furthermore, deep learning techniques have shown positive results in 
PET reconstruction applications [25], opening the possibility of reducing scan time 
or injected activity by up to 50% compared to OSEM algorithms [26]. Once again, we 
would like to underline that this paper only presents an example of the application 
of the method we describe for a specific Philips Gemini TF PET/CT system and its 
OSEM reconstruction algorithm.

The degree of statistical technical variation of an image is strongly dependent on 
imaging and reconstruction settings and needs to be evaluated for the specific scan-
ner and algorithm in use. When evaluating the technical statistical coefficient of 
variation, standardization of the complete acquisition, from scanner and acquisition 
settings to PET reconstruction settings, is therefore strongly advised [7, 14, 27]. A 
simple method as the one described in this article can be routinely implemented to 
identify the contribution of the statistical technical variation in PET images. Once the 
degree of statistical technical variation is known, a user can evaluate its relevance to 
the total variation of SUV between clinical studies.

The SUV metrics (Max, Mean and Peak) present some significant differences for 
the same sphere diameter. For what concerns the smaller spheres (d = 10, 13  mm), 
the averaging step introduced in the calculation of SUVMean and Peak does not pro-
vide a significant difference in the coefficient of variation in our measurements. For 
larger lesions, the difference between the variation in SUV Mean 3D and SUV Peak is 
significant, suggesting that the dimension of the ROI used for averaging has a signifi-
cant effect on SUV quantification and that a too large ROI might flatten the results. It 
is worth reminding that our definition of SUVMean was based on the knowledge of 
the measured objects, with a ROI defined as a sphere of diameter equal to the nomi-
nal diameter of the imaged sphere. This is not always possible during the analysis of 
images for diagnosis purposes. In that case, another definition of SUVMean must be 
used, and the variation between measurements might be expected to increase [12, 15, 
16]. Furthermore, the biological factors present in clinical practice, such as glucose 
blood levels, rate of FDG uptake in the lesions or weight recording, can increase the 
SUV variation in diagnostic images [8, 28–31].

Another method to estimate the statistical technical variation would be to acquire 
a dataset with a longer acquisition time in comparison with the acquisition time used 
for diagnostic and generate subsets of the long acquisition with a time length similar 
to the one used for diagnostic. This could be a more direct way to measure the vari-
ation, possibly less susceptible to low photon statistics. A similar approach has been 
shown in [7] for SUVMax and Mean for reconstruction lengths of 5 min with varia-
tion between 11.2 and 1.2% depending on the filter, type of acquisition (2D or 3D) and 
metric (SUVMax or Mean) used. Another way to quantify voxel-based variation in 
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SUV metrics has been reported in reference [32], showing higher sensitivity for SUV 
Mean (91.4%) than for SUV Max (82.0%).

For this study, we worked with a foreground-to-background activity ratio of 10:1. In 
order to verify the method further, it could be possible to repeat the evaluation with other 
ratios, for example, 5:1 and 2.5:1. Furthermore, the acquisitions could be repeated after 
a certain amount of hours in order to analyse the variation with other levels of noise. As 
previously discussed, a higher coefficient of variation can be expected for noisier images.

Conclusion
In this study, we present a method to estimate the statistical technical variation of differ-
ent SUV metrics. The method divides the total acquisition into subsets at different time-
frames and estimates the expected coefficient of variation of the total acquisition using 
the standard deviation within the subsets. The method was tested on a 150-s acquisition 
with a foreground-to-background activity ratio of 10:1. This article shows how subsets of 
an original scan can be used to estimate the technical variation between images at differ-
ent reconstruction lengths.

We used the method to estimate the statistical technical variation of SUV for different 
lesion sizes. The method shows that for our settings, the expected coefficient of varia-
tion of SUVMax, SUVMean and SUVPeak at a reconstruction length routinely used for 
clinical studies ranges between 5 and 6% for the smallest sphere (diameter of 10 mm) 
and between 0.9 and 2% for the largest sphere (diameter of 37 mm). These variations can 
be evaluated as relatively low when compared with the proposed PERCIST framework 
suggesting a 30% change in SUV as a significant variation of tumour activity [4]. The 
coefficient of variation reaches values up to 30% for shorter reconstruction lengths (in 
the order of 4 s), suggesting that the variation might become not negligible for noisier 
images with low counts. We also report different coefficients of variation for SUV Max, 
Mean and Peak. We, therefore, suggest including an evaluation of the statistical techni-
cal variation when defining the SUV metric of choice for clinical practice. Our method 
can be used routinely to provide insight into the statistical technical variation of a SUV 
quantification of images acquired with the same scanner and reconstruction method.
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