CORRECTION

Open Access

Correction to: Use of non-Gaussian time-of-flight kernels for image reconstruction of Monte Carlo simulated data of ultra-fast PET scanners

Nikos Efthimiou^{1,2,3*}, Kris Thielemans⁴, Elise Emond⁴, Chris Cawthorne^{5,6}, Stephen J. Archibald¹ and Charalampos Tsoumpas^{2,7}

The original article can be found online at https://doi.org/10. 1186/s40658-020-00309-8.

*Correspondence: efthymin@pennmedicine. upenn.edu ¹ PET Research Centre, Faculty of Health Sciences, University of Hull, Cottingham Rd, Hull HU6 7RX, UK Full list of author information is available at the end of the article

Correction to: EJNMMI Phys (2020) 7:42

https://doi.org/10.1186/s40658-020-00309-8

Following publication of the original article [1], two typographical errors were found by the authors in formulas 6 of the main text and 19 in the appendix. The original and correct versions of the equations are given below:

Original formula 6: $F_D(d; \lambda) = \left(\frac{1-\operatorname{sgn}(d)}{2} - \operatorname{sgn}(d)(\cosh(\lambda(T-|d|)) - 1)\operatorname{csch}\left(\frac{T\lambda}{2}\right)^2\right)/4.$ Correct formula 6: $F_D(d; \lambda) = \frac{1+\operatorname{sgn}(d)}{2} - \operatorname{sgn}(d)(\cosh(\lambda(T-|d|)) - 1)\operatorname{csch}\left(\frac{T\lambda}{2}\right)^2/4.$ Original formula 19: $H = \exp(2d\lambda)(E+F).$ Correct formula 19: $H = \exp(2d\lambda)(-E+F).$ The original article [1] has been corrected.

Author details

¹PET Research Centre, Faculty of Health Sciences, University of Hull, Cottingham Rd, Hull HU6 7RX, UK. ²Biomedical Imaging Science Department, School of Medicine, University of Leeds, Leeds, UK. ³Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 156B John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104-6055, USA. ⁴Institute of Nuclear Medicine, University College London, London, UK. ⁵Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium. ⁶Molecular Small Animal Imaging Centre, KU Leuven, Leuven, Belgium. ⁷Invicro, Hammersmith Hospital, London, UK.

Published online: 24 February 2022

Reference

 Efthimiou N, Thielemans K, Emond E, et al. Use of non-Gaussian time-of-flight kernels for image reconstruction of Monte Carlo simulated data of ultra-fast PET scanners. EJNMMI Phys. 2020;7:42. https://doi.org/10.1186/ s40658-020-00309-8.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2022. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creativecommons.org/licenses/by/4.0/.