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Abstract 

Purpose:  This work aims to train, validate, and test a dual-stream three-dimensional 
convolutional neural network (3D-CNN) based on fluorine 18 (18F)-fluorodeoxyglucose 
(FDG) PET/CT to distinguish benign lesions and invasive adenocarcinoma (IAC) in 
ground-glass nodules (GGNs).

Methods:  We retrospectively analyzed patients with suspicious GGNs who underwent 
18F-FDG PET/CT in our hospital from November 2011 to November 2020. The patients 
with benign lesions or IAC were selected for this study. According to the ratio of 7:3, the 
data were randomly divided into training data and testing data. Partial image feature 
extraction software was used to segment PET and CT images, and the training data 
after using the data augmentation were used for the training and validation (fivefold 
cross-validation) of the three CNNs (PET, CT, and PET/CT networks).

Results:  A total of 23 benign nodules and 92 IAC nodules from 106 patients were 
included in this study. In the training set, the performance of PET network (accuracy, 
sensitivity, and specificity of 0.92 ± 0.02, 0.97 ± 0.03, and 0.76 ± 0.15) was better than 
the CT network (accuracy, sensitivity, and specificity of 0.84 ± 0.03, 0.90 ± 0.07, and 
0.62 ± 0.16) (especially accuracy was significant, P-value was 0.001); in the testing set, 
the performance of both networks declined. However, the accuracy and sensitivity of 
PET network were still higher than that of CT network (0.76 vs. 0.67; 0.85 vs. 0.70). For 
dual-stream PET/CT network, its performance was almost the same as PET network in 
the training set (P-value was 0.372–1.000), while in the testing set, although its perfor-
mance decreased, the accuracy and sensitivity (0.85 and 0.96) were still higher than 
both CT and PET networks. Moreover, the accuracy of PET/CT network was higher than 
two nuclear medicine physicians [physician 1 (3-year experience): 0.70 and physician 2 
(10-year experience): 0.73].

Conclusion:  The 3D-CNN based on 18F-FDG PET/CT can be used to distinguish benign 
lesions and IAC in GGNs, and the performance is better when both CT and PET images 
are used together.
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Introduction
With the application of low-dose CT (LDCT) and the screening of COVID-19, the 
detection rate of early lung adenocarcinoma manifested as ground-glass opacity nodule 
(GGN) has increased rapidly [1, 2]. To treat lung GGN, an important early step is to 
estimate the probability of malignancy. More aggressive treatment methods should be 
considered if the predicted probability of malignancy is high [3]. GGNs are associated 
with various lung diseases, such as inflammatory pseudotumor, tuberculoma, scleros-
ing hemangioma, lymphoepithelioma, and non-small cell lung cancer (NSCLC) [4]. The 
imaging features used to determine lesion malignancy include size, density, follow-up 
stability, edge appearance, wall thickness, and the presence of cavitation and calcifica-
tion [5–7]. The clinical management of GGN is determined based on the assessed risk, 
which may involve routine CT follow-up, functional imaging, and/or tissue biopsy [5, 8, 
9].

Several studies [10, 11] found that a single CT morphological feature and quantitative 
parameter did not have a good diagnostic value for GGN. In recent years, the extraction 
of quantitative imaging features from medical scans ("Radiomics" [12–14]) has attracted 
broad research interest, and it has been considered as a possible method for distinguish-
ing benign and malignant lung nodules [15]. The basic principle of radiomics is to use 
image information that may be clinically relevant but not noticed by human eyes [16]. 
Radiomics can perform a comprehensive analysis of the region of interest, while the 
biopsy can only capture a small part of the lesion [17]. Radiomics has been extensively 
studied in PET/CT imaging [18]. The latest study from Palumbo et al. [19] found that 
the shape and texture features of 18F-FDG PET/CT could provide more information for 
distinguishing benign and malignant lung nodules than conventional imaging functions 
alone.

Machine learning methods have been introduced into medical image analysis and 
evolved into deep learning methods (especially the use of multilayer convolutional neu-
ral networks (CNNs)) [20–24]. Tau et  al. [25] showed that using CNN to analyze the 
primary tumors of newly diagnosed NSCLC patients with segmented PET images could 
make reasonable predictions for N category. Another study found that it was feasible to 
use CNN to automatically locate and classify the 18F-FDG PET uptake patterns in foci 
suspicious and non-suspicious for cancer in patients with lung cancer and lymphoma; 
moreover, it could achieve higher diagnostic performance when using CT and PET 
images at the same time [26]. As far as we know, three-dimensional convolutional neu-
ral networks (3D-CNN) are often used to segment tumors in PET/CT images [27, 28], 
but the dual-stream CNN (data obtained from PET and CT as inputs) [24] has not been 
used in the study of benign and malignant differentiation of GGN.

Since the clinical management strategies for treating benign lesions and invasive ade-
nocarcinoma (IAC) are completely different [9], the accurate identification of benign and 
malignant GGN is of great importance. Therefore, this study aims to train, validate, and 
test the 3D-CNN based on 18F-FDG PET/CT images and evaluate CT, PET, and PET/CT 
3D-CNN performance in distinguishing benign lesions and IAC.
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Materials and methods
Participants

In this single-center study, we reviewed 228 GGN patients who underwent 18F-FDG 
PET/CT examinations in our hospital from November 2011 to November 2020. The 
Institutional Ethics Committee reviewed the retrospective analysis (No. [2020] KD 075) 
and agreed that the written informed consent was not required. The inclusion criteria 
for patients were as follows: (1) patients underwent therapeutic surgical resection within 
one month after PET/CT examination and the postoperative pathological data were 
complete (pathologically confirmed), or the volume of benign GGN decreased during 
CT follow-up (clinical confirmed); (2) maximum GGN diameter ≤ 30 mm. The exclusion 
criteria were as follows: (1) lung adenocarcinoma stage > IA; (2) poor image quality or 
low FDG uptake, and the lesion was difficult to measure; (3) history of malignant tumors 
in the past 5 years; (4) severe liver disease or diabetes; (5) other pathological subtypes: 
atypical adenoma hyperplasia (AAH), adenocarcinoma in  situ (AIS) or microinvasive 
adenocarcinoma (MIA). The data of included patients were collected by reviewing the 
cases or follow-up by telephone. The patient selection process is shown in Fig. 1.

FDG PET/CT image acquisition

The image acquisition protocol was based on the Imaging Biomarker Standardization 
Initiative (IBSI) Reporting Guide [29]. The details of all procedures are described in 
Additional file 1. Within one month before surgery, the patient received 18F-FDG PET/
CT examination (Biograph mCT 64, Siemens, Erlangen, Germany). According to the 
European Association for Nuclear Medicine (EANM) guideline 1.0 (version 2.0 was 
released in February 2015) [30], 18F-FDG PET/CT images were acquired at 60 ± 5 min 
after 18F-FDG injection. All PET/CT images were reconstructed on the processing work-
station (TrueD software, Siemens Healthcare). CT data were used to perform attenu-
ation correction on PET images, and the corrected PET image was combined with CT 
image. Respiratory-gated technology was not used in the acquisition process.

Image preprocessing

Figure  2 summarizes the overall approach to developing a deep learning model. All 
images were segmented using 3D-Slicer (version 4.11.20200930, www.​slicer.​com). For 
PET images, we used a semiautomatic segmentation method developed by Beichel et al. 
[31]. To consider the pattern of tumor edge, the generated boundary was dilated by one 
pixel. To eliminate the influence of lung background noise, we set the outside area of 
lesion boundary as a value 0. Since the sample size was small, to ensure the learning 
effect, simplify the task, and reduce the memory requirements and processing time, 
we segmented a 3D volume that occupied a small part of the entire image. This 3D vol-
ume was used as the input for PET model. Because the matrix size of FDG PET varied 
according to the reconstruction algorithm, the nearest neighbor interpolation method 
was used to reslice the segmented cube-shaped volume into isotropic spacing (for exam-
ple, 4.07 mm3).

For CT images (3 mm), we used NVIDIA AI-Assisted Annotation (3D-Slicer built-in) 
and the boundary-based CT segmentation models to process lung nodule images. To 

http://www.slicer.com
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consider the pattern of tumor edge, the generated boundary was dilated by 3.00  mm. 
To eliminate the influence of lung background noise, we filled the outside area of lesion 
boundary with a value -2000 (all values were 0 after normalization). Similarly, we seg-
mented a 3D volume that occupied a small part of the entire image. This 3D volume was 

Fig. 1  Study flowchart. GGN, ground-glass nodule; AAH, atypical adenomatous hyperplasia; AIS, 
adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma
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used as the input for CT model. Since the size of CT matrix varied, the nearest neighbor 
interpolation method was used to reslice the segmented cube-shaped volume into iso-
tropic spacing (for example, 0.73mm3).

The training of deep learning model

Due to the limited size of training data, we used a rotation method for data augmen-
tation. More specifically, image augmentation aimed to develop a robust deep learning 
model against the rotation of tumors, which can be affected by position and location 
of tumors. We rotated the segmented tumor for each image in the training data by 90°, 
180°, and 270°. This type of image augmentation is usually used in deep learning training 
for natural images and medical images [32, 33].

The segmented tumor was the deep learning model’s input whose architecture was 
based on 3D-CNN [34]. FDG-PET was converted to SUVbw (bodyweight units), and the 
SUV values ranging from [0–15] were linearly mapped to a [0–1] range. Similarly, CT 
images were expressed in Hounsfield units (HU), and HU values ranging from [− 1000–
400] were linearly mapped to a [0–1] range. Since the sizes of input images were differ-
ent, CNN was designed to generate output regardless of the input matrix size.

Due to the lack of available data, we adopted a cross-validation method [35] to evalu-
ate the model reliably. The fivefold cross-validation was applied for the training data, and 
the testing data were used until the model was optimized by the training set/internal 
validation set of the cross-validation (based on maximum AUC). To train the model, the 
Adam optimizer (initial learning rate 0.0001) was used. The number of epochs for itera-
tive training was set as 50. For comparison, we constructed three 3D-CNNs: CT, PET, 
and PET/CT. Additional file  1 provides detailed 18F-FDG PET/CT image acquisition 
methods, tumor segmentation, and deep learning model generation.

Statistical analysis

Propensity score matching (PSM) was used to identify a group of GGNs with similar 
baseline characteristics. The propensity score was the conditional probability of a spe-
cific exposure given a set of covariates measured at baseline. The non-parsimonious 
multivariate logistic regression model was used to estimate the propensity score, with 
benign and malignant as grouping variables, and all the baseline characteristics listed in 

Fig. 2  The overview of the process of generating deep learning algorithms to predict benign and malignant 
GGNs
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Table 1 are covariates. The greedy-matching algorithm was used to generate 1:4 match-
ing pairs with replacement. Since the sample size was small, the difference in propensity 
score between the two groups was set within 0.6 [36]. The specific parameters are listed 
in Additional file 1.

The continuous variables were expressed as mean (standard deviation) (Gaussian 
distribution) or median (range) (skewed distribution), and categorical variables were 
expressed as number or proportion. χ2 (categorical variables), Student’s t test (normal 
distribution), or Mann–Whitney U test (skewed distribution) was used to detect the dif-
ferences between benign and malignant groups (binary variable). All the analyses were 
performed using the statistical software packages R (http://​www.R-​proje​ct.​org, The R 
Foundation) and EmpowerStats (http://​www.​empow​ersta​ts.​com, X&Y Solutions, Inc, 
Boston, MA). P values less than 0.05 (two-sided) were considered statistically significant.

We used different CNNs to analyze the data, and the area under the receiver operat-
ing characteristic curve (AUC), accuracy, sensitivity, specificity, positive predictive value 
(PPV), and negative predictive value (NPV) were calculated to evaluate the performance 
of different CNNs on the training set and testing set.

Results
A total of 157 GGNs were included in the final data analysis. Among them, 23 were 
benign (including four fungal infections, one tuberculosis, four granulomatous inflam-
mation, two organizing pneumonia, one alveolar epithelial bronchiolar metaplasia, and 
11 with other inflammatory lesions), and 134 were IAC. The comparison of baseline 
characteristics between the two GGN groups after PSM is shown in Table 1.

Twenty-three benign nodules (maximum diameter 16.4 ± 6.6 mm; range 4.5–28.5 mm) 
and 92 IAC nodules (maximum diameter 19.4 ± 6.5  mm; range 5.5–30.0  mm) were 
included in the study. These 115 nodules were from 106 patients, including 46 males 
and 60 females. The average age was 59.2 ± 9.1 years old (range 31–78 years old), and 
the fasting blood glucose was 6.8 ± 1.7  mmol/L (range 4.1–11.0  mmol/L). There were 
29 smokers (27.4%), and 22 cases (20.8%) had multifocal GGNs. We used stratified 

Table 1  Comparison of baseline characteristics of the two GGN groups after PSM

The results in the table are expressed as Mean ± SD/N (%)

GGN, ground-glass nodule; PSM, propensity score matching; IAC, invasive adenocarcinoma

Variables Benign IAC Standardized diff P-value
N 23 92

Age (years) 57.83 ± 10.90 59.16 ± 8.62 0.1361 0.530

Fasting blood glucose 6.93 ± 1.87 6.73 ± 1.71 0.1124 0.621

Gender 0.3991 0.147

Female 9 (39.1) 54 (58.7)

Male 14 (60.9) 38 (41.3)

Smoking history 0.3714 0.168

No 13 (56.5) 68 (73.9)

Yes 10 (43.5) 24 (26.1)

GGN number grouping 0.0967 0.875

Solitary 16 (69.6) 68 (73.9)

Multifocal 7 (30.4) 24 (26.1)

http://www.R-project.org
http://www.empowerstats.com
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random sampling to divide the data set (n = 115) into training data (n= 82; IAC = 65, 
benign = 17) and testing data (n  = 33; IAC = 27, benign = 6) according to a 7:3 ratio. 
There was no overlap between the two sets.

After the three 3D-CNNs were cross-validated (fivefold cross-validation) on aug-
mented training data, they were used to predict GGN malignancy (IAC vs. benign) on 
the testing set. The average AUC of the CT network in the training set was 0.87 ± 0.04, 
the average accuracy was 0.84 ± 0.03, and the average sensitivity and specificity were 
0.90 ± 0.07 and 0.62 ± 0.16; in the testing set, the accuracy, sensitivity, and specificity 
were 0.67, 0.70, and 0.50 (Fig. 3 and Table 2).

The average AUC of PET network in the training set was 0.97 ± 0.02, the average 
accuracy was 0.92 ± 0.02, the average sensitivity and specificity were 0.97 ± 0.03 and 
0.76 ± 0.15; in the test set, the accuracy, sensitivity, and specificity were 0.76, 0.85, and 
0.33 (Fig. 3 and Table 2). These results showed that, in the training set, the average AUC 
and various performance indicators of PET network were better than those of CT net-
work (especially AUC, accuracy, and NPV were significant, P-value was 0.003, 0.001, and 
0.013, respectively); in the testing set, the performance indicators of both CT and PET 
networks declined (especially the specificity was 0.50 and 0.33, respectively); however, 
when the PPV was similar, the accuracy, sensitivity, and NPV of the PET network were 
still higher than those of CT network.

The average AUC of the dual-stream PET/CT network in the training set was 
0.97 ± 0.02, the average accuracy was 0.93 ± 0.01, the average sensitivity and specificity 
were 0.98 ± 0.01 and 0.76 ± 0.06; in the testing set, the accuracy, sensitivity, and speci-
ficity were 0.85, 0.96, and 0.33 (Fig. 3 and Table 2). In the training set, the average AUC 
and various performance indicators of the PET/CT network were almost the same as 
the PET network (P-value was 0.372–1.000) and were better than the CT network (espe-
cially AUC, accuracy, sensitivity, and NPV were significant, P-value was 0.003, < 0.001, 
0.043, and 0.010, respectively); in the testing set, the performance indicators of PET/CT 
network declined (especially the specificity was 0.33); however, when the PPV was simi-
lar, the accuracy, sensitivity, and NPV of PET/CT network were still higher than both 
CT and PET networks.

To further test and evaluate the performance of dual-stream PET/CT network, we 
used the testing set to compare the accuracy of two nuclear medicine physicians with the 
PET/CT network. The results showed that the accuracy of PET/CT network was higher 
than the two nuclear medicine physicians [0.85 vs. Physician 1 (3-year experience): 0.70 
vs. Physician 2 (10-year experience): 0.73].

Discussion
In this study, we developed a dual-stream 3D-CNN that can distinguish between benign 
lesions and IAC based on clinical 18F-FDG PET/CT GGN images. In the testing set, the 
accuracy and sensitivity of PET/CT network were 0.85 and 0.96, which were comparable 
to or higher than those of the CT and PET networks. Moreover, compared with the diag-
nosis results of two nuclear medicine physicians, PET/CT network also showed better 
performance.

The 2017 Fleischner Association Guidelines [9] recommend that the planned CT fol-
low-ups be carried out for GGNs, and persisted GGNs can be determined according to 
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the dynamic changes of the nodules; for example, the infectious or inflammatory lesions 
may shrink or disappear during follow-up. However, long-term CT follow-up brings 
severe anxiety and repeated radiation exposure to patients, not applicable to some 
patients. Therefore, more effective imaging techniques or the construction of multifac-
tor predictive models are needed to distinguish between benign and malignant GGNs. 
Among the many models, only the Brock model [37] considers the characteristics of 
GGNs and adjusts the correlation coefficient according to the nodule type. However, 

Fig. 3  The ROC of three 3D-CNNs after fivefold cross-validation
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this model’s application is complicated, and its modeling data came from the initially 
screened patients whose malignancy rate was low (5.5%). Although, in recent years, the 
focus of CT radiomics has turned to the field of GGN invasiveness [38], the problem 
of distinguishing benign and malignant GGNs is still unsolved. Gong et al. [39] devel-
oped a radiomics feature analysis method based on CT images to distinguish benign and 
malignant GGNs and confirmed its feasibility. The AUC of identifying benign and IAC 
nodules in the training set was 0.93, and the accuracy in the testing set was 0.61, which 
was higher than the two radiologists (0.53 and 0.56, respectively) [39]. In this study, the 
average AUC of CT network also reached 0.87, and the accuracy was higher than CT 
radiomics method as mentioned above (0.67 vs. 0.61), suggesting that CNN had better 
classification performance.

18F-FDG PET has been clinically recognized as a method to identify malignant soli-
tary pulmonary nodules (SPN). Under the diagnostic criteria of maximum standard 
uptake value (SUVmax) > 2.5, the sensitivity and specificity of 18F-FDG PET are 79–100% 
and 60–100%, respectively [40]. However, the diagnostic value of PET for GGN is still 
controversial. Many studies reported that GGNs were different from solid nodules, and 
PET imaging had a higher false-negative rate and false-positive rate for GGNs [41]. In 
this study, the classification performance of PET network was better than CT network, 
which seems to contradict the higher spatial resolution of CT. The latest study on iden-
tifying benign and malignant SPNs also found that the models based on PET radiomics 
features were generally better than those based on CT characteristics [19], consistent 
with previously published results [42–44]. These findings are interesting because they 
demonstrate that using PET texture features to assess radiotracer uptake’s heterogeneity 
(discussed in [45, 46]) is as important as using CT texture features to analyze tissue den-
sity, although most literature is focused on CT.

Another possible factor limiting the accuracy of CNN is the use of data from only 
one imaging modality (PET or CT), which is an attempt to simplify and standardize 
data extraction [25]. The various machine learning techniques that have been studied 
(including CNN) have not yet produced predictions that can change clinical practice. 
In this study, we combined the data from PET and CT images, used these data to 
train a dual-stream CNN, and evaluated and analyzed the model performance [24]. 
Although PET/CT’s performance was almost the same as PET network in the training 
set, its main performance indicators (accuracy, sensitivity, and NPV) were still higher 

Table 2  The performance indicators of three 3D-CNNs

The results in the table are expressed as mean ± SD

3D-CNN, three-dimensional convolutional neural network; PPV, positive predictive value; NPV, negative predictive value

Model Accuracy Sensitivity Specificity PPV NPV

Training set

CT 3D-CNN 0.84 ± 0.03 0.90 ± 0.07 0.62 ± 0.16 0.90 ± 0.04 0.63 ± 0.15

PET 3D-CNN 0.92 ± 0.02 0.97 ± 0.03 0.76 ± 0.15 0.94 ± 0.04 0.88 ± 0.09

PET/CT 3D-CNN 0.93 ± 0.01 0.98 ± 0.01 0.76 ± 0.06 0.94 ± 0.02 0.90 ± 0.09

Testing set

CT 3D-CNN 0.67 0.70 0.50 0.86 0.27

PET 3D-CNN 0.76 0.85 0.33 0.85 0.33

PET/CT 3D-CNN 0.85 0.96 0.33 0.87 0.67
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than both CT and PET networks in the testing set. We confirmed PET/CT dual-mode 
imaging’s advantages compared to conventional single-mode imaging from the per-
spective of multimodal deep learning. Besides, in this study, we only used a limited 
testing set (n  = 33) to compare and evaluate the performance of PET/CT network 
and two nuclear medicine physicians. If our PET/CT network is robust in future tests 
with larger and more diverse data sets, this study may have a major clinical impact on 
assisting nuclear medicine physicians in making decisions about GGN detection and 
diagnosis.

Our study still had some limitations: (1) Although we used a data augmentation 
strategy in the training data, single-center research, small sample size, and imbalance 
between benign and malignant samples still affected CNN’s performance. Specifically, 
three networks’ performance (especially specificity) declined in the testing set compared 
to the training set, indicating overfitting. The solution is to continue to collect samples 
to increase the size of training data or to adopt multicenter research to improve the 
robustness of the network. (2) To ensure the sample size of CT data, we used 3-mm 
conventional CT instead of 1-mm HRCT (better detail performance), which may affect 
the performance of CT network. (3) During the screening of PET data, we removed a 
small number of IAC nodules that could not be segmented due to low PET uptake. For 
these GGNs, 18F-FDG is not applicable, and we look forward to developing a new PET 
imaging agent. (4) Also, our network was not "smart" enough. Although both CT and 
PET images use semiautomatic segmentation methods, there were still too many manual 
manipulations during the image preprocessing process. In the future, CNN should be 
used for image segmentation to truly achieve an "end-to-end" workflow.

Conclusions
This study successfully constructed, trained, validated, and tested a dual-stream 
3D-CNN based on 18F-FDG PET/CT and used it to classify benign lesions and IAC in 
GGNs. The dual-stream network was better than the CNN based on CT or PET alone. 
Therefore, in the absence of well-trained and experienced physicians, this CNN may help 
the differentiation and clinical management of benign and malignant GGNs. Besides, we 
also expect clinicians to use this CNN for other tumor research suitable for PET/CT 
imaging.
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