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Abstract

Rationale: [11C]-UCB-J is an emerging tool for the noninvasive measurement of
synaptic vesicle density in vivo. Here, we report human biodistribution and dosimetry
estimates derived from sequential whole-body PET using two versions of the
OLINDA dosimetry program.

Methods: Sequential whole-body PET scans were performed in 3 healthy subjects
for 2 h after injection of 254 ± 77 MBq [11C]-UCB-J. Volumes of interest were drawn
over relevant source organs to generate time-activity curves and calculate time-
integrated activity coefficients, with effective dose coefficients calculated using
OLINDA 2.1 and compared to values derived from OLINDA 1.1 and those recently
reported in the literature.

Results: [11C]-UCB-J administration was safe and showed mixed renal and
hepatobiliary clearance, with largest organ absorbed dose coefficients for the urinary
bladder wall and small intestine (21.7 and 23.5 μGy/MBq, respectively). The average
(±SD) effective dose coefficient was 5.4 ± 0.7 and 5.1 ± 0.8 μSv/MBq for OLINDA
versions 1.1 and 2.1 respectively. Doses were lower than previously reported in the
literature using either software version.

Conclusions: A single IV administration of 370 MBq [11C]-UCB-J corresponds to an
effective dose of less than 2.0 mSv, enabling multiple PET examinations to be carried
out in the same subject.

Trial registration: EudraCT number: 2016-001190-32. Registered 16 March 2016, no
URL available for phase 1 trials.

Keywords: [11C]-UCB-J, Synaptic density, Radiation dosimetry, Human biodistribution,
OLINDA

Introduction
Synaptic vesicle glycoprotein 2A (SV2A) is an integral presynaptic vesicle membrane

protein and is expressed in presynaptic vesicles throughout the brain [1–3]. Reduction

in synaptic vesicle density measured ex vivo post-mortem has been reported in numer-

ous neurological pathologies including Alzheimer’s disease, Parkinson’s disease,
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Huntingdon’s disease, Down syndrome, major depression, stroke, and epilepsy. In

addition, in epilepsy, SV2A has been confirmed as the target of the anti-epileptic drugs

levetiracetam and brivaracetam [4, 5]. Noninvasive measurement of synaptic density

has the potential to allow early detection of disease and improved prognosis, as well as

enabling measurement of target engagement in early clinical drug development of

agents based on the levetiracetam pharmacophore [6]. Primate studies showed [11C]-

UCB-J to be an excellent tracer with good pharmacokinetic properties and it is

currently the compound most frequently used for a variety of neurophysiological inves-

tigations (reviewed in [7]). The distribution volume (VT) of [11C]-UCB-J has been

correlated with both SV2A and synaptophysin expression level in the primate brain [1].

Subcortical white matter has been validated as a reference tissue to facilitate quantita-

tive clinical studies [8, 9]. To support clinical translation of this tracer and in addition

to a similar recent human biodistribution study by the Yale PET group [10], we report

here human biodistribution and dosimetry estimates for [11C]-UCB-J derived using

OLINDA/EXM version 1.1 (to allow comparison with the previous report). In addition,

we also derived and compared human dosimetry estimates using the more recent and

commercially available version of OLINDA/EXM (version 2.1), as this makes use of

voxel-based computational phantoms (with organ masses scaled to match the computa-

tional phantoms reported in ICRP 89), updated tissue weighting factors from ICRP103,

and the more recent human alimentary tract model [11] and so should provide the best

current estimate of human dosimetry.

Materials and methods
Subjects

Three healthy volunteers were included (2 females and 1 male, 35.3 ± 11.8 years, 74.7 ±

15.0 kg), free of current medical or psychiatric illnesses as determined by medical

history, laboratory findings, and clinical examination. Patient demographics are summa-

rized in Table 1. Vital signs were monitored before injection of [11C]-UCB-J, at 5, 10,

20, and 45 minutes (min) post injection and at the end of the final scan.

This study was part of a larger phase I, single-center, open-label study (EudraCT

Number 2016-001190-32). Written informed consent was obtained for each subject.

The study was approved by the local ethical committee and conducted in accordance

with the most recent version of the Declaration of Helsinki.

Radioligand synthesis

[11C]-UCB-J radiosynthesis was carried out under full GMP as previously described [9].

The radioligand was obtained with high radiochemical purity (>99%) and molar activity

(25.5±1.5 GBq/μmol) (at the time of injection, average value from 3 batches).

Table 1 Demographic information, injected dose, and injected mass

Patient Sex Age Weight Injected activity (MBq) Injected mass (μg) Injected mass (μg/kg)

1 F 29 57.4 337.33 4.15 0.072

2 F 28 85.0 238.47 3.22 0.038

3 M 49 81.6 186.18 2.24 0.027
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Biodistribution and whole-body dosimetry

For each subject, PET data were obtained over approximately 2 h after IV bolus

injection of 254± 77 MBq (range 186 to 337 MBq) of [11C]-UCB-J. The mass dose

for UCB-J was 3.20 ± 0.96 μg (range 2.24 to 4.15 μg). Individual injected activities

and mass doses are also summarized in Table 1. PET data were acquired on a Sie-

mens Biograph 16 PET/CT camera (Siemens, Erlangen, Germany) in two segments

with the field of view covering from the head to the upper thigh. The first segment

(sequential WB scans 1 to 8) began concurrently with the start of injection and

lasted for approximately 60 min (time per bed position was 30 s [for WB 1–3], 60

s [for WB 4–6], and 120 s [for WB 7 and 8]). The second segment (WB 9) started

at 1.25 h post-injection with 4 min per bed position. A low-dose CT (11 mAs) was

performed before each scan segment for both PET attenuation correction and to

provide anatomical information. There was no excretion by any subject during the

scan period.

Data analysis
Dosimetry

Whole-body PET scans were reconstructed using the ordered subset expectation

maximization (OSEM) algorithm (5 iterations, 8 subsets, Gaussian postfilter of 6.0 mm

FWHM, zoom 1.4) using the manufacturer’s software. Corrections for randoms, scatter,

and attenuation (via low-dose CT) were included in each reconstruction. Three-

dimensional volumes of interest (VOIs) representing entire source organs were manu-

ally delineated on PET images, with each co-registered CT scan used to verify anatom-

ical location. Eleven organs were selected on the basis of significant and visually

assessable tracer uptake over the entire acquisition: brain, gallbladder (2 out of 3 sub-

jects), small intestine, stomach, heart wall, kidneys, liver, lungs, red marrow, spleen,

and urinary bladder. Large bone structures (large vertebrae, pelvis) were delineated

based on visible uptake and considered as a surrogate for red marrow. Activity in the

whole body was also calculated in order to quantify activity uptake outside of the se-

lected organs, to be entered as “other” or “remainder” in the dose calculation software.

Time-activity curves were obtained for each source organ by calculating the non-

decay corrected total activity in the volumes of interest expressed as a percentage of

the total injected dose, using PMOD (version 3.9, PMOD Technologies LLC, Zurich,

Switzerland). Where significant tracer was observed in the injection line, this was quan-

tified via delineation of a VOI and subtracted from the injected dose. Time-integrated

activity coefficients (i.e., normalized cumulated activities (NCAs) or “residence times”)

for [11C]-UCB-J were calculated as the area under the time-activity curves of each

source organ through curve fitting with the most appropriate model [12]. A multi-

exponential curve model A × (1−exp(−B × T)) × exp(−C × T) + D × exp(−E × T) was

used to fit brain, stomach, heart wall, and liver uptake while a bi-exponential curve

model A × exp(−B × T) + C × exp(−D × T) was used for red marrow and spleen up-

take. In addition, a trapezoid model was used for the gallbladder, kidneys, and urinary

bladder uptake, while uptake in the lungs were fitted with A × exp(−B × T) and the re-

mainder with A × (1−exp(−B × T)) + C × exp(−D × T). For all curve models, T repre-

sented the time post tracer injection.
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Absorbed dose coefficients were calculated using the Organ Level Internal Dose As-

sessment (OLINDA/EXM) software package versions 1.1 (Vanderbilt University, USA)

and 2.1 (Hermes Medical Solutions, Stockholm, Sweden). The average fraction of activ-

ity entering the intestinal VOI was used as an input to determine NCAs for the compo-

nents of the gastrointestinal tract using the International Commission on Radiological

Protection (ICRP) 30 Gastrointestinal Tract model [13] or ICRP 100 human alimentary

tract (HAT) model [14] as implemented in OLINDA/EXM versions 1.1 and 2.1

respectively.

For OLINDA/EXM version 1.1, a sex-matched model was applied to calculate effect-

ive dose coefficient values to ICRP60. For OLINDA/EXM version 2.1, sex-averaged ef-

fective dose coefficient values to ICRP 103 were calculated by entering NCAs for each

organ into the male and female phantoms respectively. For both versions, gastrointes-

tinal tract values were derived with the GI and HAT models as described above, and

overall effective dose coefficients were derived by averaging the average male and fe-

male values derived above.

Results
Adverse events

There were no adverse events in any of the 3 subjects after injection of [11C]-UCB-J.

No significant changes in vital signs (i.e., pulse rate, blood pressure, respiratory rate) or

electrocardiograms were observed.

Biodistribution and dosimetry

Visual inspection of the sequential WB images showed high early uptake in both the

brain and liver, with the kidney, urinary bladder, and gastrointestinal uptake consistent

with a mixture of renal and hepatobiliary clearance of intact and metabolized tracer

(Fig. 1). Time-activity curves for the brain, liver, kidneys, and urinary bladder are shown

in Fig. 2. The highest initial uptake of radioactivity was found in the liver, with peak

values ranging from 17 to 19% of injected activity followed by subsequent clearance

over the duration of the scan. Kidney and urinary bladder activity peaks at 20 and 40

min, respectively, indicating early renal clearance, while increasing activity in the

gastrointestinal tract indicates later hepatobiliary clearance of the tracer.

Fig. 1 Maximum intensity projection PET images of subject AN01 showing distribution of radioactivity in
whole-body (head to thigh) after injection of 337 MBq of [11C]-UCB-J. High radioactivity uptake is visible in
the brain
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Normalized cumulated activities (NCAs) are given for all source organs in Table 2.

The liver demonstrated the highest exposure (0.667 ± 0.003 MBq-hr/hr), while the low-

est was the lower large intestine (0.0002 ± 0.0001 MBq-hr/hr).

Using OLINDA/EXM 1.1, organ absorbed dose coefficients were largest for the urin-

ary bladder wall (23.3 μSv/MBq), small intestine (18.6 μSv/MBq), brain (15.3 μSv/

MBq), liver (14.1 μSv/MBq), and kidneys (11.8 μSv/MBq) (Table 3). Differences be-

tween organ absorbed dose coefficients from this study and those previously reported

are also presented in Table 3. The overall effective dose coefficient (mean ± SD) was

5.4 ± 0.7 μSv/MBq. Using OLINDA/EXM 2.1, organ absorbed dose coefficients were

largest for the urinary bladder wall (21.7 μSv/MBq), small intestine (23.5 μSv/MBq),

brain (14.4 μSv/MBq), liver (14.6 μSv/MBq), and kidneys (11.9 μSv/MBq) (Table 4).

The effective dose coefficient (mean ± SD) was 5.1 ± 0.8 μSv/MBq. Differences between

calculated absorbed dose coefficient for OLINDA/EXM 1.1 and 2.1 are also presented

in Table 4.

Discussion
Imaging synaptic density has investigated with a number of PET ligands targeting the

SV2A presynaptic vesicle glycoprotein with [11C]-UCB-J having the best pharmaco-

logical characteristics [7] and being the most established clinically to date [1, 8, 9, 15–

27]. This study reports radiation dosimetry for [11C]-UCB-J using two versions of the

OLINDA dosimetry software. As previously reported, [11C]-UCB-J was well tolerated in

all healthy volunteers at the doses administered for PET scanning.

Fig. 2 Time-activity curves of select source organs (brain [a], liver [b], kidneys [c], and urinary bladder [d])
after [11C]-UCB-J injection in 3 subjects. Graphs indicate non-decay corrected mean organ radioactivity over
time, expressed as % injected activity (open symbols). Points were directly connected for trapezoid
approximation (c, d) or were fitted by exponential curves (a, b)
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NCAs were in general lower in the current study compared to those previously re-

ported [10], though the urinary bladder wall, brain, liver, and kidneys were similarly

identified as among those receiving the highest radiation exposure. These data and

comparison to [10] are also summarized in Table 2 and Fig. 3. Uptake in the gastro-

intestinal tract was considerably different; however, though this may to some extent re-

flect the different methodologies employed (direct segmentation vs. use of the ICRP GI

tract models to give regional NCAs); as the gallbladder was not discernible in one pa-

tient in the current study, this also lowered the overall average for the current work.

With the exception of the GI tract, organs with maximal uptake calculated using

OLINDA 1.1 were identical to the previous report; however, individual organ absorbed

dose coefficient estimates identified the urinary bladder wall as the critical organ in

both sexes (as is the case for about 30% of [11C]-labeled radiotracers [28]); absorbed

dose coefficient to liver was markedly lower in females. Overall, these variations may be

attributed to individual differences between patients both in organ size and shapes and

radiotracer clearance coupled with the small sample sizes used in both studies (and

only one male in the current study; see Table 1).

Although overall effective dose coefficients were lower than those previously re-

ported, they were still higher than dosimetry estimates from preclinical studies in non-

human primates (3.3-3.4μSv/MBq ED) [29], it should be noted that this may reflect

simple scaling based on subject weight, which does not account for the difference in

the size of organs relative to overall weight between species [30, 31]. The largest differ-

ences were seen in the stomach, urinary bladder wall, and gallbladder as previously re-

ported [10]. Although the molar activity in our study was lower than previously

reported in our center and others [8–10], the injected mass is still predicted to

give <1% occupancy based on the predicted in vivo affinity of UCB-J [29] and is below the

amount specified for use in clinical studies [32].

Table 2 Normalized cumulated activity coefficients (NCAs) for indicated source organs determined
from whole-body imaging of three healthy subjects injected intravenously with [11C]-UCB-J

Source organ NCA (MBq-hr/hr) Average

Adult female Adult female Adult male

Brain 0.0787 0.0633 0.0506 0.0642 ± 0.0141

Gallbladder 0.0030 0.0000 0.0014 0.0015 ± 0.0015

Small intestine 0.0524 0.0341 0.0598 0.0488 ± 0.0133

Right colon 0.0062 0.0041 0.0071 0.0058 ± 0.0015

Left colon 0.0002 0.0001 0.0003 0.0002 ± 0.0001

Stomach 0.0105 0.0047 0.0078 0.0077 ± 0.0029

Heart wall 0.0037 0.0034 0.0053 0.0041 ± 0.0010

Kidneys 0.0144 0.0156 0.0064 0.0121 ± 0.0050

Liver 0.0654 0.0641 0.0705 0.0667 ± 0.0034

Lungs 0.0101 0.0093 0.0121 0.0105 ± 0.0014

Red marrow 0.0211 0.0194 0.0192 0.0199 ± 0.0010

Spleen 0.0015 0.0017 0.0008 0.0013 ± 0.0005

Urinary bladder 0.0358 0.0263 0.0211 0.0277 ± 0.0075

Total body/remainder 0.1720 0.1946 0.1872 0.1846 ± 0.0155

Cawthorne et al. EJNMMI Physics            (2021) 8:37 Page 6 of 11



Table 3 Absorbed dose coefficients for [11C]-UCB-J determined from three healthy subjects using
OLINDA/EXM 1.1 compared to literature values
Target organ Absorbed dose coefficients (mSv/

MBq)

Adult
female

Adult
female

Adult
male

Average Average
[10]

%
Difference

Adrenals 3.26E−03 3.28E−03 2.57E−03 2.92E−03 ±
0.50

3.34E−03 −12%

Brain 2.09E−02 1.69E−02 1.17E−02 15.30E−03 ±
5.09

1.85E−02 −17%

Breasts 1.56E−03 1.66E−03 1.32E−03 1.47E−03 ±
0.21

1.75E−03 −16%

Gallbladder wall 1.20E−02 4.14E−03 6.95E−03 7.51E−03 ±
0.79

1.22E−02 −38%

LLI wall 3.62E−03 3.13E−03 2.95E−03 3.16E−03 ±
0.30

2.20E−02 −86%

Small intestine 2.08E−02 1.43E−02 1.97E−02 18.63E−03 ±
1.52

2.83E−03 558%

Stomach wall 8.82E−03 5.27E−03 6.16E−03 6.60E−03 ±
0.63

6.83E−03 −3%

ULI wall 8.55E−03 6.35E−03 7.96E−03 7.71E−03 ±
0.36

2.83E−03 173%

Heart wall 5.53E−03 5.19E−03 5.62E−03 5.49E−03 ±
0.18

4.44E−03 24%

Kidneys 1.57E−02 1.67E−02 7.29E−03 11.75E−03 ±
6.30

1.01E−02 16%

Liver 1.56E−02 1.52E−02 1.27E−02 14.05E−02 ±
1.91

1.98E−02 −29%

Lungs 4.50E−03 4.25E−03 4.09E−03 4.23E−03 ±
0.20

5.24E−03 −19%

Muscle 2.09E−03 2.09E−03 1.70E−03 1.90E−03 ±
0.28

2.11E−03 −10%

Ovaries 4.05E−03 3.46E−03 3.31E−03 3.53E−03 ±
0.32

3.50E−03 1%

Pancreas 3.43E−03 3.23E−03 2.72E−03 3.03E−03 ±
0.43

3.37E−03 −10%

Red marrow 4.21E−03 3.96E−03 3.77E−03 3.93E−03 ±
0.22

2.22E−03 77%

Osteogenic cells 4.69E−03 4.63E−03 3.42E−03 4.04E−03 ±
0.88

3.11E−03 30%

Skin 1.53E−03 1.59E−03 1.25E−03 1.41E−03 ±
0.22

1.64E−03 −14%

Spleen 4.35E−03 4.57E−03 2.40E−03 3.43E−03 ±
1.46

4.60E−03 −25%

Testes 1.43E−03 1.43E−03 2.16E−03 −34%

Thymus 1.82E−03 1.95E−03 1.55E−03 1.72E−03 ±
0.24

2.06E−03 −16%

Thyroid 1.59E−03 1.71E−03 1.49E−03 1.57E−03 ±
0.11

1.87E−03 −16%

Urinary bladder wall 3.50E−02 2.62E−02 1.59E−02 23.25E−02 ±
4.84

2.21E−02 5%

Uterus 4.43E−03 3.76E−03 3.41E−03 3.75E−03 ±
0.48

3.21E−03 17%

Total body 3.33E−03 3.15E−03 2.56E−03 2.90E−03 ±
0.48

3.12E−03 −7%

Effective dose coefficient (mSv/MBq)
(ICRP 60)

6.53E−03 5.35E−03 4.91E−03 5.43E−03 ±
0.73

7.59E−03 −28%
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Table 4 Absorbed dose coefficients for [11C]-UCB-J determined from three healthy subjects using
OLINDA/EXM 2.1, compared to OLINDA/EXM 1.1

Target organ Absorbed dose coefficients (mSv/
MBq)

Adult
female

Adult
female

Adult
male

Average %
Difference

Adrenals 4.99E−03 4.84E−03 4.13E−03 4.52E−03 ±
0.56

55%

Brain 1.93E−02 1.56E−02 1.13E−02 14.38E−02±
4.35

−6%

Breasts 1.56E−03 1.65E−03 1.61E−03 ±
0.06

10%

Esophagus 2.63E−03 2.62E−03 2.36E−03 2.49E−03 ±
0.19

n/a

Eyes 2.93E−03 2.73E−03 1.87E−03 2.35E−03 ±
0.68

n/a

Gallbladder wall 1.28E−02 4.19E−03 7.95E−03 8.22E−03 ±
0.39

9%

Left colon 3.62E−03 3.18E−03 3.82E−03 3.61E−03 ±
0.30

14%

Small intestine 2.67E−02 1.82E−02 2.46E−02 23.53E−02 ±
1.52

26%

Stomach wall 9.32E−03 5.58E−03 6.76E−03 7.11E−03 ±
0.49

8%

Right colon 8.63E−03 6.52E−03 9.06E−03 8.32E−03 ±
1.05

8%

Rectum 3.96E−03 3.48E−03 2.62E−03 3.17E−03 ±
0.78

n/a

Heart wall 5.33E−03 4.97E−03 5.82E−03 5.49E−03 ±
0.47

0%

Kidneys 1.60E−02 1.68E−02 7.33E−03 11.87E−02 ±
6.41

1%

Liver 1.58E−02 1.54E−02 1.35E−02 14.55E−02 ±
1.49

4%

Lungs 4.09E−03 3.85E−03 3.80E−03 3.89E−03 ±
0.12

−8%

Ovaries 3.33E−03 3.02E−03 3.18E−03 ±
0.22

68%

Pancreas 4.66E−03 4.16E−03 3.89E−03 4.15E−03 ±
0.37

17%

Prostate 2.50E−03 2.50 n/a

Salivary glands 2.64E−03 2.52E−03 2.00E−03 2.29E−03 ± 0.
41

n/a

Red marrow 4.81E−03 4.55E−03 3.67E−03 4.18E−03 ±
0.71

6%

Osteogenic cells 3.40E−03 3.23E−03 2.88E−03 3.10E−03 ±
0.31

−23%

Spleen 5.23E−03 5.34E−03 2.80E−03 4.04E−03 ±
1.76

18%

Testes 0.00E+00 0.00E+00 1.38E−03 1.38E−03 −3%

Thymus 2.10E−03 2.17E−03 1.86E−03 2.00E−03 ±
0.19

16%

Thyroid 1.74E−03 1.83E−03 1.57E−03 1.68E−03 ±
0.15

7%

Urinary bladder wall 3.12E−02 2.34E−02 1.61E−02 21.70E−02 ±
7.92

−7%
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When comparing results between OLINDA/EXM version 1.1 vs 2.1, individual organ

doses were generally higher (74% of comparable organs) using the more recent version;

however, the same organs with highest organ doses were identified and overall effective

dose coefficient was lower (5.1 ± 0.8 vs 5.4 ± 0.7 μSv/MBq). Differences in organ doses

can be attributed to the use of non-uniform rational B-spline (NURBS) phantoms

scaled to match the organ masses given in ICRP 89 [33], rather than the “mathematical

phantoms” based on simpler geometric shapes developed by Cristy-Eckerman that were

used in OLINDA 1.1. In addition, the human alimentary tract (HAT) model defined in

ICRP 100 was used for OLINDA 2.1, superseding the previous model based on ICRP

30 [13] used in OLINDA 1.1; differences in overall effective dose coefficient will reflect

these changes as well as the use of the different tissue weighting factors from ICRP 103

rather than ICRP 60 (tissue weighting factors decrease for both liver and bladder), as

has been reported in previous studies [34, 35].

The effective dose coefficient for [11C]-UCB-J was 5.4 ± 0.7 μSv/MBq using

OLINDA/EXM version 1.1; however, values from both OLINDA versions were com-

parable with other reported effective dose coefficients for C-11 labeled PET tracers [28,

36]. In Europe, the maximum allowable dose for most studies using radiopharmaceuti-

cals for young healthy volunteers (below 50 years) is 10 mSv per year (WHO Class IIB,

where benefit for medical knowledge is targeted) [37], equating to 1969 MBq of [11C]-

UCB-J (estimated using OLINDA/EXM 2.1). CT would thus be the largest contributor

to radiation dose for [11C]-UCB-J PET/CT.

Table 4 Absorbed dose coefficients for [11C]-UCB-J determined from three healthy subjects using
OLINDA/EXM 2.1, compared to OLINDA/EXM 1.1 (Continued)

Target organ Absorbed dose coefficients (mSv/
MBq)

Adult
female

Adult
female

Adult
male

Average %
Difference

Uterus 4.56E−03 3.88E−03 0.00E+00 4.22E−03 ±
0.48

12%

Total body 3.45E−03 3.20E−03 2.39E−03 2.86E−03 ±
0.66

−1%

Effective dose coefficient (mSv/MBq)
(ICRP 103)

6.24E−03 5.07E−03 4.50E−03 5.08E−03 ±
0.82

−6%

Fig. 3 Log-log plot of human organ residence times for the current study vs those reported previously [10]

Cawthorne et al. EJNMMI Physics            (2021) 8:37 Page 9 of 11



Conclusion
Clinical use of [11C]-UCB-J is safe and results in an ED of 5.1 ± 0.8 μSv/MBq, confirm-

ing previous findings and allowing multiple serial PET scanning to be performed in pa-

tients without exceeding the annual dose limitations. The use of different versions of

OLINDA resulted in relatively minor differences in calculated effective dose coefficient.
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