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Abstract

Purpose: To evaluate whether lesion radiomics features and absorbed dose metrics
extracted from post-therapy 90Y PET can be integrated to better predict outcomes in
microsphere radioembolization of liver malignancies

Methods: Given the noisy nature of 90Y PET, first, a liver phantom study with
repeated acquisitions and varying reconstruction parameters was used to identify a
subset of robust radiomics features for the patient analysis. In 36 radioembolization
procedures, 90Y PET/CT was performed within a couple of hours to extract 46
radiomics features and estimate absorbed dose in 105 primary and metastatic liver
lesions. Robust radiomics modeling was based on bootstrapped multivariate logistic
regression with shrinkage regularization (LASSO) and Cox regression with LASSO.
Nested cross-validation and bootstrap resampling were used for optimal parameter/
feature selection and for guarding against overfitting risks. Spearman rank correlation
was used to analyze feature associations. Area under the receiver-operating
characteristics curve (AUC) was used for lesion response (at first follow-up) analysis
while Kaplan-Meier plots and c-index were used to assess progression model
performance. Models with absorbed dose only, radiomics only, and combined
models were developed to predict lesion outcome.

Results: The phantom study identified 15/46 reproducible and robust radiomics
features that were subsequently used in the patient models. A lesion response
model with zone percentage (ZP) and mean absorbed dose achieved an AUC of
0.729 (95% CI 0.702–0.758), and a progression model with zone size nonuniformity
(ZSN) and absorbed dose achieved a c-index of 0.803 (95% CI 0.790–0.815) on nested
cross-validation (CV). Although the combined models outperformed the radiomics
only and absorbed dose only models, statistical significance was not achieved with
the current limited data set to establish expected superiority.

Conclusion: We have developed new lesion-level response and progression models
using textural radiomics features, derived from 90Y PET combined with mean
absorbed dose for predicting outcome in radioembolization. These encouraging, but
limited results, will need further validation in independent and larger datasets prior
to any clinical adoption.
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Introduction
Delivering external radiation to multifocal/large liver tumors is a challenging task due

to the damage of surrounding normal liver parenchyma. Hence, when disease burden is

high, selective internal radiation delivery is preferred. Transarterial radioembolization

(RE) with preferential delivery of glass or resin microspheres embedded with beta-

emitting 90Y to hepatic tumors is an established treatment for unresectable hepatocellu-

lar carcinoma (uHCC) and liver metastases [1, 2]. Ability to predict lesion-level re-

sponse immediately after therapy can facilitate adaptive therapies following RE by

selecting lesion(s) predicted to be non-responding to the initial treatment for subse-

quent highly focal external stereotactic radiation.

Radiomics, a branch of quantitative image analysis, can capture heterogeneity

characteristics of regions of interest (ROIs) by extracting relevant features from

medical images (CT, MR, PET) and has been widely explored in the literature and

shown to provide predictive capability of treatment response in different cancers

[3–11]. Specifically, in patients undergoing transarterial 90Y radioembolization in

uHCC, Blanc-Durand et al. showed that pre-treatment FDG-PET-derived radiomics

features (strength for PFS, variance, strength, low intensity run short emphasis, and

contrast for OS) for the whole liver are independent negative predictors for

progression-free survival (PFS) and overall survival (OS) [12]. Gensure et al. found

tumor contrast-enhanced CT-based texton and local binary pattern (LBP) features

both achieve high accuracy in discriminating patient response to radioembolization

(RE) with 90Y resin microspheres in terms of serologic response and survival status

[13]. Recent studies by our group and others have reported on the association be-

tween post-therapy 90Y imaging-derived lesion absorbed dose and outcome (re-

sponse, survival) in patients treated with 90Y radioembolization for primary and

metastatic liver cancer [14–18]. However, to our knowledge, our current study is

the first investigation to combine lesion radiomics features with absorbed dose

metrics to predict outcome. Furthermore, our study relies on radiomics features

from post-treatment 90Y PET imaging, unlike prior studies that used conventional

FDG PET-derived features, which makes it unique in this respect. Compared with

FDG-PET, 90Y PET is considerably more noisy due to the low true coincidence

rate associated with a low yield positron in the presence of high random coinci-

dence rates [19]. However, recent 90Y PET/CT studies have reported good quanti-

tative accuracy and contrast-to-noise for dosimetry applications, using time-of-

flight (TOF), longer acquisitions, optimized reconstruction parameters, and partial

volume correction [18, 20]. Although 90Y can also be imaged by bremsstrahlung

SPECT, the poor spatial resolution and challenges of correcting for bremsstrahlung

scatter makes 90Y PET potentially better suited for radiomics analysis.

A major challenge of radiomics modeling especially with limited data is the robust-

ness of the extracted features, as highlighted in recent review articles [21–23]. Variabil-

ities can result from contouring, reconstruction algorithms, and filtering, even different

scans with the same setting. Another challenge is the risk of overfitting when dealing

with relatively small datasets. Therefore, in this study both issues are addressed by (1)

conducting a phantom study to identify robust features, particularly to assess recon-

struction and variability issues, and (2) applying a modified LASSO approach with

bootstrap resampling for robust modeling. To mitigate analysis bias, nested cross-
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validation was used to train (feature selection, model construction) and test the out-

come model (evaluation).

Materials and methods
Patient cohort

The study included patients with primary and secondary intrahepatic malignancies who

had 90Y PET/CT imaging performed after 90Y radioembolization with glass micro-

spheres (TheraSpheres) at the University of Michigan (UM) Medical Center as part of

an ongoing dosimetry research study. Selection criteria for 90Y PET/CT imaging were

well-defined lesions > 2 mL, ability to undergo imaging, follow-up at UM, and informed

consent. The patient and lesion characteristics for the 36 lobar treatments (30 patients,

105 lesions, 6 patients had treatment to right and left lobes at different time points) are

summarized in Supplemental Table 1. The treating physician followed standard guide-

lines to deliver 80–150 Gy to the treated liver with empirical adjustments within this

range based on clinical factors. The 90Y PET/CT imaging was approved by the institu-

tional review board, and all subjects signed an informed consent form.

90Y PET/CT imaging and dosimetry

Images were acquired on a Siemens Biograph mCT PET/CT within a couple of hours

of the RE procedure (prior to discharge) with an acquisition time of ~ 30 min to cover

the entire liver and partial lung. PET reconstruction parameters were selected based on

phantom studies considering both activity recovery and noise: 1 iteration, 21 subsets of

3D OS-EM with time-of-flight and resolution recovery, and a 5-mm Gaussian post-

filter [18]. The PET matrix size was 200 × 200 with a pixel size of 4.07 × 4.07 mm and

a slice thickness of 3 mm. The CT was performed in low dose mode (120 kVp; 80 mAs)

during free-breathing. The CT matrix size was 512 × 512 with a pixel size of 0.97 ×

0.97 mm and a slice thickness of 2 mm.

PET images were transformed to CT-space, and the CT-derived density map was in-

put to our DPM Monte Carlo code [18] to generate dose-rate maps that were con-

verted into absorbed dose maps by accounting for 90Y physical decay. Mean absorbed

doses to segmented lesions were reported following partial volume correction based on

volume-dependent recovery coefficients, determined from a phantom study [18].

Radiomics: lesion segmentation, PET data preprocessing, and feature extraction

Lesion segmentation was performed on diagnostic quality contrast-enhanced baseline

CT or MRI by a radiologist specializing in hepatic malignancies (RK), which is consid-

ered a gold standard. Note that variability due to contouring can be a source of error

but has been addressed in several previous studies [6, 24, 25]. The diagnostic scan was

then rigidly registered to the CT of the 90Y PET/CT, and the contours were trans-

formed with fine-tuning when misregistration was evident on MIM (MIM Software

Inc, Cleveland, OH). In some cases, where the lesions were well visualized on the non-

contrast low-dose CT of the PET/CT, they were directly defined on this CT in order to

minimize misregistration effects. Up to 5 (largest) lesions > 2 mL were segmented per

patient.
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Lesion contours and 90Y PET images were input to an in-house-developed (Matlab,

MathWorks Inc., Natick, MA) radiomics toolbox (benchmarked by image biomarker

standardization—ISBI) that run as an extension on MIM. Our radiomics code is shared

at https://github.com/mvallieres/radiomics. All subsequent analyses were performed in

MATLAB. First, a root-squared transform was applied to the PET images to reduce

quantum noise effects [26].

The full intensity range of the tumor region was quantized to a smaller number of

gray levels (Ng) before computation of the features. The quantization algorithm used is

Lloyd-Max algorithm, which attempts to minimize the mean-squared quantization

error of the output. Ng was experimentally chosen as 32 [27]. The features were ex-

tracted from 3D 90Y PET images, which were interpolated to isotropic voxel size (0.97

mm). Forty-six features, including volume, one shape feature (sphericity), 4 global fea-

tures, and 40 texture features from gray-level co-occurrence matrix (GLCM), gray-level

run length matrix (GLRLM), gray-level size zone matrix (GLSZM), and neighborhood

gray-tone difference matrix (NGTDM), were extracted. All the feature extraction

followed the image biomarker standardization initiative (IBSI) guidance [28]. These fea-

tures represent the spectrum of commonly used features, especially in PET imaging [6,

29, 30]. We further opted for extraction parameters following the ISBI guidelines due

to the limited sample size; we did not explore further parameterization or less com-

monly used features. Supplemental Table 2 presents the list of radiomics features used

in this study.

Lesion-level study endpoints

Two endpoints applied at the lesion-level were considered: overall response (OR) classi-

fication at first follow-up and time to progression at lesion level. For OR assessment,

diagnostic CT or MR at first follow-up was used by a radiologist (RK) to measure per-

centage reduction in lesion diameter relative to baseline according to RECIST criteria

[31]. Lesions that met the RECIST criteria of partial or complete response were classi-

fied as responding (OR = 1), and others (stable or progressive disease) were classified

as non-responding (OR = 0). For time to progression, clinical follow-up images and re-

cords were assessed by a radiologist (RK) and were defined as the time in months from

the date of 90Y therapy to date of local progression. Lesions without evidence of pro-

gression were right censored at the last date of hepatic imaging. This included lesions

that had not progressed at the time of death. Any lesion that had additional liver

lesion-directed therapy after 90Y treatment was also right censored at the date of the

additional treatment.

Phantom study to assess radiomics feature repeatability and reproducibility

A 90Y PET/CT study with a liver/lung torso phantom consisting of a “warm” liver com-

partment and three “hot” lesion inserts (29-mL ellipsoid, 16-mL sphere, 8-mL sphere)

with an insert-to-liver activity concentration ratio of 5:1 was performed. The total activ-

ity in the phantom was 1.9 GBq, and the activity concentrations in the inserts were

6.0–7.3MBq/mL and liver minus inserts was 1.2MBq/mL. To assess radiomics feature

repeatability, 5 consecutive 30-min acquisitions under identical conditions were per-

formed on the same PET/CT system as in the patient studies. To assess sensitivity to
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reconstruction parameters and filtering, each of the 5 scans were reconstructed with 1

and 2 OS-EM iterations (21 subsets) and with and without Gaussian post-filter. The ac-

tivity concentrations, acquisition time, and parameters used in the phantom study were

chosen to reflect conditions for imaging following 90Y RE; hence, the noise-level was

clinically relevant.

Statistical analysis

Phantom feature robustness study

Concordance correlation coefficient (CCC) metric assumed each observation was inde-

pendent as has been commonly reported in repeatability/reproducibility studies [22,

32]. Thus, in the robustness study of our extracted radiomics features, CCCs were com-

puted for the different scans, different iterations, and with/without Gaussian filtering.

For each of the 45 radiomics features (without volume), the resulting CCCs were aver-

aged, and features with larger than 0.85 [22, 33–36] average CCC-robust radiomics fea-

ture set were further investigated in the patient radiomics modeling.

Lesion overall response and progression modeling studies

(1) Univariate analysis

Univariate association between the features (or absorbed dose) and OR classification

was investigated using Spearman’s rank correlation. Univariate analysis for the features

(or absorbed dose) and progression was investigated by Cox regression.

(2) Multivariate analysis—modified Bo-LASSO

In order to select robust features, build generalized models, and evaluate unbiased

model performance, a nested cross-validation (CV) framework has been employed (de-

tails are shown in Fig. 1). In the outer loop, 10 times 5-fold cross validation was used

to estimate the model performance. On the training set of each inner loop, N times

bootstrap was performed. For each resampling training set, optimal lambda λ hyper-

parameter for LASSO was tuned by another cross-validation process. Subsequently, fea-

tures with non-zero coefficients were recorded. With N resampled training sets, N sets

of features were recorded. The frequency of a certain feature being selected by LASSO

was calculated, and thus, a ranking list of the features was obtained. Then, M times

bootstrap logistic regression modeling was used to estimate the model order. Specific-

ally, models using top i (i = 1,…, n = number of features) ranked features were devel-

oped, and mean AUC/c-index for each model order with confidence interval was

obtained, and the model order corresponding to highest AUC/c-index within one

standard error was selected [37]. After we obtained the model order and top selected

features, final model in each outer loop was obtained by retraining on the training set

and applied on the outer test set (here, N and M were both 100).

With the developed method, models were constructed using the 15 robust radiomics

feature set, lesion volume, and mean absorbed dose (AD) (15 + 1 + 1 = 17). Since there

are two subgroups in this patient cohort, the developed models were applied to both
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subgroups to assess if the tumor response correlated differently for primary HCC and

metastatic lesions. The ROC curve (AUC) and c-index were used to evaluate the lesion

OR and progression model performance, respectively. The confidence intervals were

calculated by the bootstrap method [38]. The statistical analysis was performed using

MATLAB R2019a and RStudio 1.1.463. The Bonferroni correction was applied to ac-

count for the family-wise error rate [39]. Overall, 17 features (dose + volume + 15

radiomics features) were tested; therefore, p values < 0.05/17 = 0.003 was considered

significant. For the whole set of features (dose + volume + 45 radiomics features), p

values < 0.05/47 = 0.001 were considered significant. Meanwhile, due to the existence

of unbalance in the dataset, especially for progression analysis (events 14/103), adaptive

synthetic sampling approach (ADASYN) was applied for the multivariate analysis to see

if it can improve the performance [40].

Results
Phantom-based reproducibility and robustness of radiomics features

Supplemental Table 3 shows the mean CCC values from the liver phantom radiomics

studies, assessed over the 5 repeat scans, OS-EM iterations 1/2, with/without Gaussian

filtering, and across all conditions (scans and parameters). CCC for sphericity is always

1 because the shape feature does not depend on the PET scan. There are in total 15

features that have mean CCC > 0.85: 1 global feature sphericity; 1 GLCM feature cor-

relation; 2 GLRLM features, gray-level nonuniformity (GLN) and run length nonunifor-

mity (RLN); 7 GLSZM features, large zone emphasis (LZE), gray-level nonuniformity

(GLN), zone size nonuniformity (ZSN), zone percentage (ZP), large zone low gray-level

emphasis (LZLGE), large zone high gray-level emphasis (LZHGE), gray-level variance

(GLV); 4 NGTDM features, coarseness, busyness, complexity, and strength. The aver-

age CCCs for repeatability (same conditions, different scans) and reproducibility (differ-

ent iterations and filtering) have similar results as shown in Supplemental Table 3.

Comparing with the mean CCC for both repeatability and reproducibility, there is 1

Fig. 1 Summary of radiomics model construction and evaluation
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more robust feature for repeatability (dissimilarity), 6 more robust features (variance,

contrast, dissimilarity, LGRE, SRLGE, GLV_GLRLM) and 2 less robust features

(LZHGE, GLV_GLSZM) for different iterations, and 2 less robust features (ZSN,

LZHGE) for with/without filtering.

Lesion dosimetry and outcome data

A total of 105 lesions > 2 mL were segmented. The average lesion volume was 45mL

(median 10ml, range 2–833). The average lesion absorbed dose was 336 Gy (median

265, range 1–1271). The response rate according to RECIST applied at the lesion level

was 31% (32/105). The number of metastasis and primary HCC lesions is 70 and 35, re-

spectively, with lesion-specific response rate being 26% (9/35) and 33% (23/70) for the

2 groups. There are 103 lesions that have progression data; two metastatic lesions were

excluded due to lack of follow-up. The number of progression events for all the lesions

was 14 (4 HCC, 10 metastatic). The mean time-to-event is 322 days (median 229 days,

range 44–1174 days). The mean time-to-event was 342 days (median 309, range 50–

1174) for metastatic lesions and 284 days (median 199 days, range 44–860 days) for

HCC. Kaplan-Meier analysis showed that the time to progression for HCC and metas-

tasis was not statistically significantly different (P = 0.49)

Outcome models: radiomics, absorbed dose, and combined models

Univariate analysis

The univariate results for volume, radiomics features, and absorbed dose are shown in

Supplemental Table 2 and Table 1 (with Supplemental Table 2 showing all the features

and Table 1 showing only the 15 robust radiomics features). These are the Spearman

correlation between specific features (or absorbed dose) and OR, and the univariate

Cox regression results for progression. Volume has been shown to correlate with pa-

tient prognosis for different cancer types [41]. In our study, the Spearman coefficients

of volume in terms of OR is − 0.215 (p value = 0.028). Among the 46 radiomics fea-

tures (including volume), 10 features are significant (p value < 0.001) for OR: 2/9

GLCM features, 3/13 GLRLM features, 4/13 GLSZM features, and 1/5 NGTDM fea-

tures. Among the 15 robust radiomics features, 8 features are significant for OR: LZE

(p value = 0.0005), ZP (p value = 0.0004), LZLGE (p value = 0.001), LZHGE (p value =

0.002), GLV (p value = 0.0009), coarseness (p value = 0.003), busyness (p value =

0.001), and strength (p value = 0.003). Absorbed dose is a significant predictor of the

OR (p value = 0.0003). In comparison, among the 46 radiomics features (including vol-

ume), no features are significant for progression. ZSN, a robust feature, is the most sig-

nificant one (p value = 0.063) for progression. Absorbed dose is a marginally significant

predictor for progression (p value = 0.005).

Inter-feature correlation is shown in the correlation heat map of Fig. 2. GLN,

RLN, LZE, and LZHGE are highly correlated with volume (Spearman coefficients >

0.85). In general, the radiomics features are highly correlated with each other (ex-

cept sphericity). Though most of the radiomics features are still significantly corre-

lated with dose (except sphericity, GLN, and ZSN), the correlation of radiomics

features with dose is generally lower than radiomics features among them, as

shown in Table 1.
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Multivariate analysis

Given the limited sample size, we included both primary and metastasis cases in the modeling.

For the subset of robust features, the model order is 2 for both OR and progression endpoints,

with top 2 features for OR being absorbed dose and zone percentage (ZP), and for progression

being absorbed dose and ZSN. Figure 3 shows the model order determination for the robust

features and absorbed dose. The top 5 features are shown in Table 2 for OR and progression

models. (Model order determination and the top 5 features using all the radiomics features

and absorbed dose are presented in the supplemental materials Fig. 1 and Table 4.)

After the model order and top features were decided, nested cross-validation was applied to

estimate the performance of the final model. The results for models with ZP only, ZSN only,

absorbed dose only, and the combined models (radiomics robust + dose) are listed in Table 3.

When considering the entire cohort, for the combined models, the average AUCs for OR

(0.729 (95% CI 0.702–0.758)), and the average c-indexes for progression (0.803 (95% CI

Fig. 2 Spearman correlation heat map for radiomics features, volume and absorbed dose

Fig. 3 Radiomics_robust + dose model order determination for OR (left) and progression (right): average
AUC/c-index vs. number of top features included
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0.790–0.815) are superior to the corresponding values for the absorbed dose only and ZP/

ZSN only models. The results for the subgroups of primary and metastasis cases are shown in

Table 3 as well. For the OR model in the subgroup of HCC, the radiomics only model shows

the best performance with average AUC of 0.762 (95% CI 0.680–0.834), and in the subgroup

of metastasis, the absorbed dose only model shows the best performance with average AUC

of 0.696 (95% CI 0.654–0.737). For the progression analysis, in both subgroups, the combined

model outperforms the individual models although the difference was not statistically signifi-

cant. The ROC curve for OR using radiomics alone, dose alone, and combined models is

shown in Fig. 4, and the Kaplan-Meier plot for progression for the combined models is shown

in Fig. 5, respectively. Log-rank test was used for the comparison of high and low risk groups

for progression. The cutoff was median value of the predicted Cox survival probability. The

weights of OR model and progression models are shown below.

OR model (generalized linear regression model):

logit(y) ~ − 0.892 + 0.520 ZP + 0.488 dose

Distribution = binomial

Progression Cox model:

h(t) ~ h0(t) * exp(− 0.530 ZSN + − 1.707 dose)

Artificially increasing the number of cases using ADASYN was evaluated for progres-

sion endpoint as well but found no substantial difference. Last part of Table 3 shows

Table 2 Top 5 features for the combined models with robust radiomics features, volume, and
absorbed dose

OR Progression

Mean absorbed dose Mean absorbed dose

ZP ZSN

Sphericity Strength

GLV Complexity

Coarseness Sphericity

Table 3 Average AUC/c-index for individual and combined models with all the lesions, HCC
lesions, and metastasis lesions

OR model Average AUC (95 % confidence intervals)

All (105) Primary HCC (35) Metastasis (70)

Radiomics (ZP) 0.713 (0.685–0.741) 0.762 (0.680–0.834) 0.658 (0.623–0.693)

Absorbed dose 0.713(0.678–0.746) 0.717 (0.642–0.786) 0.696 (0.654–0.737)

Combined (dose + ZP) 0.729 (0.702–0.758) 0.734 (0.660–0.802) 0.692 (0.653–0.723)

Progression model Average c-index (95% confidence intervals)

All (103) Primary HCC (35) Metastasis (68)

Radiomics (ZSN) 0.694 (0.676–0.710) 0.565 (0.528–0.598) 0.656 (0.629–0.680)

Absorbed dose 0.754 (0.742–0.766) 0.613 (0.585–0.635) 0.719 (0.700–0.737)

Combined (dose + ZSN) 0.803 (0.790–0.815) 0.638 (0.610–0.661) 0.762 (0.740–0.780)

ADASYN progression model Average c-index (95% confidence intervals)

All (103) Primary HCC (35) Metastasis (68)

Radiomics (ZSN) 0.712 (0.698–0.726) NA 0.595 (0.575–0.615)

Absorbed dose 0.771 (0.762–0.781) NA 0.726 (0.713–0.739)

Combined (dose + ZSN) 0.794 (0.785–0.803) NA 0.728 (0.716–0.740)
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the results for ADASYN method. Figure 6 shows the calibration curves for OR models,

with the calibration curves’ slope and intercept values available.

Discussion
Uncovering robust radiomics features is an important task for building robust models

for identifying responders and non-responders and prediction of cancer progression.

Fig. 4 ROC curves for overall response (OR) at first follow-up with the combined model, radiomics alone
model, and dose alone model

Fig. 5 Kaplan-Meier plot of the combined model for progression (absorbed dose + ZSN). This is the result
of 10 times 5-fold cross validation; thus, there are more test samples than the dataset. High and low risk
lesions for progression were stratified by median value of the Cox model output, with high risk group
lesions having shorter time to progression, vice versa
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Thus, radiomics features extracted from repeated PET scans, different number of OS-

EM PET iterations, and with/without Gaussian post-filtering were evaluated for robust-

ness using CCC. Despite the higher noise associated with 90Y PET compared with FDG

PET, 15 radiomics features were identified as robust with CCC > 0.85. In general, the

robust features for different scans (repeatability), OS-EM iterations 1/2, and with/with-

out filtering largely overlap, which indicates that robust features tend to be consistent

for different imaging settings. The results also showed that more features are robust to

different iteration settings, and less features are robust to application of Gaussian filter-

ing. In a study of intratumor FDG PET uptake heterogeneity quantification by Hatt

et al., zone percentage (ZP) was found to be robust with respect to the delineation

method used and the partial volume effects. This feature also demonstrated high differ-

entiation power for prediction of response in esophageal carcinoma [42]. In a study by

Doumou et al., ZP presented substantial agreement across different segmentation and

different levels of smoothing [43]. A study by Ashrafinia et al. showed that ZSN ex-

tracted from 99mTc-Sestamibi Myocardial-Perfusion SPECT (MPS) images showed high

reproducibility [44]. Another recent study by Li et al. on FDG PET radiomics analysis

showed that ZSN is a stable feature [45]. The phantom repeatability and reproducibility

study provides robust features for further radiomics modeling that has the potential to

generalize to PET images reconstructed at other institutions where different recon-

struction settings might have been applied. While this phantom study focused on

Fig. 6 Calibration curves for dose, radiomics, and combined models for OR endpoint, with the slopes and
intercepts available in the table
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reconstruction settings, there are other sources of variability as mentioned that we did

not evaluate here, such as segmentation, interpolation, and preprocessing, which are in-

vestigated in other literatures [22, 23, 33, 46] and reviewed in [47, 48].

The aim of this work is to find radiomics signature that can facilitate dose metrics in

the prediction of tumor response. The final model order is small being 2 (dose + ZP

and dose + ZSN), which is reasonable considering the high correlation between most

radiomics features (Fig. 2). The correlation between ZP and absorbed dose is 0.483 (p

value = 1.828e−7) and ZSN and absorbed dose is − 0.057 (p value = 0.565) (Table 1),

which indicates that ZSN could provide more complementary information to the com-

bined model than ZP. This is consistent with the substantial higher c-index for the

combined absorbed dose and ZSN model (0.803) compared with ZSN only (0.694) and

absorbed dose only (0.754) models for progression, but only slightly higher AUC for

the combined absorbed dose and ZP model (0.729) compared with the ZP only (0.713)

and absorbed dose only (0.713) models for OR (Table 3). In Fig. 4, the ROC curves for

radiomics alone, dose alone, and combined models did present some overlap. However,

it still showed consistent trends in the data that the combined model can perform bet-

ter than individual models. Furthermore, we plotted the calibration curves of the OR

models as shown in Fig. 6. For calibration curve, a slope of 1 and intercept of 0 is the

ideal situation. In terms of the slope, combined model is 0.871, which is closer to 1

comparing with dose (0.700) and ZP (0.708) alone. For the calibration intercept, com-

bined model (− 0.097) is closer to 0 than dose (− 0.261) and ZP (− 0.217). This calibra-

tion result showed that although the combined model is not significantly better than

individual models for the discrimination (AUC) power, it is trending in the right direc-

tion and with larger sample size may attain the desired level of significance. Access to

larger Y-90 PET imaging datasets is required to independently validate these findings

and to reach desired statistical significance for the improvement of the performance of

the combined model over the individual models, which was not established in the

current study. The absence of external validation is a limitation of the current study.

Further studies, such as obtaining radiomics features from FDG-PET, CT, or MRI,

could potentially add more complementary information and further improve the per-

formance [49].

Due to imbalance of progression endpoint (14 events out of 103), we did ADASYN, a

variant of SMOTE. The difference for ADASYN with SMOTE is that it does not simply

interpolate the minority samples to generate synthetic cases, it adaptively generates mi-

nority data samples according to their distributions using K nearest neighbor. The pri-

mary subgroup has 4 events, and it is inaccurate to do ADASYN (which is based on

KNN methods); thus, the ADASYN was only applied to all data and the mets subgroup.

The difference is subtle comparing the results based on original dataset and the ADAS

YN balanced dataset. A larger dataset will potentially enhance the models or make

complex algorithms work better.

ZP is a feature from GLSZM matrix, quantifying the coarseness of the texture by the

ratio of number of zones and number of voxels. The higher the value is, the finer the

texture is, and according to our results, the higher the probability the tumor will re-

spond. Figure 7a and b show example lesions with large/small ZP that were classified

as responder/non-responder; c and d show lesions with large/small ZSN that did not

progress for a long follow-up time (1174 days) and progressed in a short time (44 days).
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Fig. 7 (See legend on next page.)
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Smaller ZP values correspond to coarser appearance and worse response. In another

study by Ha et al., ZP was one of the features used to characterize locally advanced

breast cancer [50]. The trend is consistent with what we found in our study that larger

ZP is associated with better response. ZSN measures the variability of size zone vol-

umes in the ROIs; the higher the value, the larger the variance of the size zone vol-

umes. The hazard ratio for ZSN is smaller than 1, which means the higher the ZSN,

the better the lesion prognosis.

The modified LASSO method we developed was inspired by R. Bach’s work on

Bolasso, which showed that the Lasso selects all the variables that should enter the

model with probability tending to one exponentially fast [51]. So, if we run the Lasso

for multiple bootstrapped replications of a given sample, then, intersecting the supports

of the Lasso (i.e., non-zero coefficients) leads to consistent model selection. However,

the direct application failed since the intersection of the supports lead to null for some

datasets. Bunea et al. came up with similar variants of bootstrap enhanced LASSO (BE-

LASSO) [52]. The percentage of times each predictor was selected (variable inclusion

probability) was recorded, and user-defined threshold (50%) was used to determine the

variables. Abram et al. built upon Bunea’s method of Be-LASSO [53]. Instead of user-

defined probability for feature selection, they used the quantiles of the bootstrap distri-

bution of the coefficients of variables to determine the significance of that variable. In

our study, we developed a new way to select features, still based on the bootstrap

LASSO. Instead of using predefined probability or the distribution quantile, we ob-

tained a ranking of the features based on the frequency of being selected in the boot-

strap; then, we performed cross validation to calculate the AUC/c-index vs. number of

top features included in the model. In this way, we obtained the most parsimonious

model, which is desired when small sample size is unavoidable.

The features that we included in this study (1 shape, 5 global and 10 GLCM, 13

GLRLM, 13 GLSZM, and 5 NGTDM features) are not the whole spectrum of the exist-

ing radiomics features. However, in this study, our focus is textural patterns (second

order radiomics features), and we did cover all the 5 NGTDM features, most of the

GLRLM and GLSZM features. For GLCM features, although there are more features,

we covered the main ones [6, 54–57]; others are variations of the main type. The first

order features that we considered (variance, coefficient of variation, skewness, and kur-

tosis) are calculated by subtracting the mean of the intensity values, which removes the

influence of the absolute intensity values. Examples of first order features that we did

not use are energy, entropy, and minimum, which depend on the absolute intensity

values. In addition to sphericity and volume that we investigated, there are some other

3D shape features, such as surface area, surface to volume ratio, and compactness, that

we did not investigate. However, these are mostly functions of volume and surface area.

In summary, we limited the radiomics features to cover the main ones for each cat-

egory, and the first order non-stable features were avoided due to lack of robustness.

(See figure on previous page.)
Fig. 7 Example 90Y PET/CT images with CT-defined lesion contours (left: PET/CT axial slice showing the
anatomical position within liver, right: magnified lesion on PET). a Lesion with large ZP value corresponding
to responder. b Lesion with small ZP value corresponding to non-responder. c Lesion with large ZSN value
corresponding to no progression at 1174 day. d Lesion with small ZSN value corresponding to progression
in 44 days
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Although using more features may be desirable, in this study, we limited the feature

size to be as non-redundant and robust as possible to relieve the burden of feature se-

lection afterwards. In addition, many of the extensive list of features are paramet-

rization of these basic ones, and with the limited sample size, they are unlikely to

provide significant advantage at this stage.

In summary, absorbed dose is a strong predictor for tumor control, both in terms of OR

at first follow-up and time to progression, which is consistent with recent reports [14–16].

The radiomics feature signals the complimentary value of texture to improve the absorbed

dose only model prediction. It is interesting to explore the underlying biological mechan-

ism of the reason for higher ZP and ZSN leading to better prognosis, which should be in-

vestigated on larger dataset in the future. The two-feature model can be interpreted as

given the dose being fixed, the change in ZP/ZSN will help to predict tumor control (OR/

progression). Using this information, additional attentions would be given to the lesions

that possess lower ZP/ZSN value, which have a higher risk of failure (in terms of OR/pro-

gression), which is potentially informative for clinical decisions. Immediate prediction of

response, based on radiomics features and dose metrics both of which can be derived

from 90Y PET/CT performed immediately after RE, has clinical utility. Instead of waiting

for the first follow-up morphologic imaging that typically occurs at > 2months, the poten-

tial to predict non-responding lesions immediately after therapy would facilitate adaptive

therapy to selected lesions where 90Y RE is followed by further treatment such as stereo-

tactic body radiation therapy or microwave ablation. Limitation of our study include the

heterogeneous patient cohort, the small sample size, and not achieving statistical signifi-

cance showing that OR response models that combine absorbed dose and radiomics are

superior to models based on absorbed dose or radiomics alone. Patient 90Y imaging data

is scarce because post-therapy imaging is not routinely performed after RE, but studies

reporting 90Y SPECT/CT and PET/CT imaging is rising and is expected to become more

readily available, enabling studies with larger cohorts in the future to address limitations

of the current study.

Conclusion
In this study, radiomics only, absorbed dose only, and combined models showed pre-

dictive ability for tumor OR and progression in 90Y radioembolization patients. The

final tumor OR model consisting of the robust radiomics feature ZP and mean

absorbed dose achieved a nested CV AUC 0.729 while the final progression model con-

sisting of the robust radiomics feature ZSN and mean absorbed dose achieved a c-

index of 0.803. Further validation on larger external cohorts will be necessary to statis-

tically establish the superiority of the combined model, which was not achieved in the

current study. Nonetheless, this study showed the potential of combining 90Y PET-

derived radiomics and absorbed dose for improved model building to predict tumor

OR and progression in 90Y radioembolization treatment.
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