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Abstract

Background: Artificial intelligence (AI) is about to transform medical imaging. The
Research Consortium for Medical Image Analysis (RECOMIA), a not-for-profit
organisation, has developed an online platform to facilitate collaboration between
medical researchers and AI researchers. The aim is to minimise the time and effort
researchers need to spend on technical aspects, such as transfer, display, and
annotation of images, as well as legal aspects, such as de-identification. The purpose
of this article is to present the RECOMIA platform and its AI-based tools for organ
segmentation in computed tomography (CT), which can be used for extraction of
standardised uptake values from the corresponding positron emission tomography
(PET) image.

Results: The RECOMIA platform includes modules for (1) local de-identification of
medical images, (2) secure transfer of images to the cloud-based platform, (3) display
functions available using a standard web browser, (4) tools for manual annotation of
organs or pathology in the images, (5) deep learning-based tools for organ
segmentation or other customised analyses, (6) tools for quantification of segmented
volumes, and (7) an export function for the quantitative results. The AI-based tool for
organ segmentation in CT currently handles 100 organs (77 bones and 23 soft tissue
organs). The segmentation is based on two convolutional neural networks (CNNs):
one network to handle organs with multiple similar instances, such as vertebrae and
ribs, and one network for all other organs. The CNNs have been trained using CT
studies from 339 patients. Experienced radiologists annotated organs in the CT
studies. The performance of the segmentation tool, measured as mean Dice index
on a manually annotated test set, with 10 representative organs, was 0.93 for all
foreground voxels, and the mean Dice index over the organs were 0.86 (0.82 for the
soft tissue organs and 0.90 for the bones).

Conclusion: The paper presents a platform that provides deep learning-based tools
that can perform basic organ segmentations in CT, which can then be used to
automatically obtain the different measurement in the corresponding PET image.
The RECOMIA platform is available on request at www.recomia.org for research
purposes.
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Background
Artificial intelligence (AI) is about to transform the field of medical imaging. Deep

learning, a subfield of AI, has become the method of choice for image analysis applica-

tions. This technique provides new opportunities in developing tools for automated

analysis of 3-dimensional computed tomography (CT), positron emission tomography

(PET)/CT, and magnetic resonance imaging. These tools have the potential to improve

or substitute current methods of assessing CT, PET/CT, and magnetic resonance im-

aging in patients with cancer, for example, the Response Evaluation Criteria in Solid

Tumors and PET Response Evaluation Criteria in Solid Tumors [1–3]. The develop-

ment of these approaches is, however, hindered by technical and legal aspects that the

researchers need to spend time and effort on. A platform for communication, image

transfer, and analysis could minimise these problems.

The Research Consortium for Medical Image Analysis (RECOMIA) is a not-for-profit

organisation that aims to promote research in the fields of AI and medical imaging.

RECOMIA has developed a cloud-based platform to facilitate collaboration between med-

ical researchers focusing on patient images and the related information, and mathematical

researchers developing deep learning-based tools. The aim is to minimise the time and ef-

fort researchers need to spend on technical aspects, such as transfer and display of digital

imaging and communications in medicine (DICOM) images and image annotations, as

well as legal aspects, such as de-identification, and compliance with the General Data Pro-

tection Regulation and the Health Insurance Portability and Accountability Act.

Deep learning-based tools can be trained to analyse medical images using images

with manual annotations of organs or pathology, such as tumours. The RECOMIA

platform provides deep learning-based tools that can perform organ segmentations in

CT, detection of lesions in PET/CT, and automated quantitative analysis of the seg-

mented/detected volumes. These tools are freely available for researchers on reasonable

request at www.recomia.org. At present, more than 100 different organs and lesions

can be segmented/detected based on training databases consisting of CT and PET/CT

studies. This article aims to present the RECOMIA platform and the status of the

current deep learning-based CT tools.

Material and methods
Platform

The RECOMIA platform is a cloud-based platform running on two separate servers

(Fig. 1). One is a Windows server running the web application handling everything but

the AI models; it is written in C# using the ASP.NET Framework. One is a Linux server

running Docker handling the AI models. To simplify collaboration between researchers

at different universities and hospitals in different countries, the platform requires no in-

stallation and all functionality is available from a standard web browser. For security,

the platform is deployed in an ISO/IEC 27001-certified data centre, and the recom-

mended hardening, such as IP restrictions, is applied.

De-identification and upload

New medical images in DICOM format can be uploaded to the platform using

drag and drop. Before leaving your device, the image files are automatically de-
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identified in accordance with the DICOM standard (Fig. 2). Transfer to the server

is secured using the Transfer Layer Security protocol with currently recommended

cipher suites.

Online viewing and manual segmentation

The platform also allows viewing and annotating images in the browser. Stand-

ard features, such as windowing, zoom, and colour scales for PET studies are

available, in similar ways as in conventional workstations. For performing de-

tailed manual segmentations of, for example, organs or lesions, several tools are

available. These include basic tools, such as a brush, polygon, and bucket fill

tools, but also more advanced tools specialised for medical images (Fig. 3). All

tools have full support for multiple labels. Annotation tasks can be administered

to different experts via a built-in project management system. Possible tasks in-

clude segmenting new labels but also reviewing segmentations performed by

other experts. To simplify quality control, it is also possible to view the segmen-

tations in 3D.

The resulting annotations can be saved in separate DICOM files with label informa-

tion stored in the DICOM file following the DICOM standard.

Fig. 1 RECOMIA platform architecture overview and user interaction

Fig. 2 Dicom files using drag-and-drop (left). Before leaving your device, the image files are automatically
de-identified (right)
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Online AI tools

Several deep learning-based tools are already available upon request in the RECOMIA

platform, among which the most important is the organ segmentation, described in the

next section (Fig. 4). It is also possible to upload your own customised tools and make

them available to other researchers. Results from the AI tools can be displayed and

Fig. 3 The thresholding brush only paints pixels with Hounsfield values inside a specified range. This can
speed up annotation significantly for some organs

Fig. 4 The AI segmentation tool can be used to segment up to 100 different organs (top left). The
automated segmentation results can be viewed as an overlay (top right) or in 3D (bottom)
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corrected if necessary. It is also possible to use the automated results as a starting point

for manual annotations.

Online quantification

Given a segmentation, whether performed manually or by AI, several statistics are

available for each label. This includes the label volume, mean and max pixel values, and

the number of connected components. For example, for PET images, this allows the

computation of standardised uptake values and total lesion uptakes. The results can be

exported as a CSV file.

Deep learning-based organ segmentation

The RECOMIA platform has allowed the collection of a large dataset of annotated CT

and PET/CT images. This data has been used to develop several useful AI tools. Here,

we will focus on a tool for organ segmentation. Convolutional neural network (CNN)-

based organ segmentation in CT images is already becoming standard, but it is nor-

mally limited to segmenting a smaller number of organs [4, 5]. This work takes organ

segmentation to the next level by handling 100 different labels, including instance la-

bels, such as vertebrae and ribs, where the number of instances can vary between

images.

The model

The organ segmentation tool is based on two CNNs. One CNN handles vertebrae and

ribs labels, where there are multiple instances with similar appearances. The other

CNN handles all other labels. Both networks are fully convolutional segmentation net-

works, with structure loosely inspired by the popular U-Net [6], see Fig. 5. Using valid

convolutions, the main memory bottleneck during training is the early layers because

of their spatial size. By working on four different resolutions, with full field of view only

on the lowest resolution, we significantly reduce the memory used during training. In

practice, this is implemented using pooling layers at the start of the network. The final

convolutional layer contains one channel per label with SoftMax activation.

The instance CNN has three SoftMax output channels coding for background, verte-

bra, and rib. The receptive field size of the networks is 136 × 136 × 72, approximately

corresponding to a cube in millimeters (185 × 185 × 216 mm). This is too small for the

instance CNN to predict the correct index of a vertebra. Instead, it has three extra out-

put channels with linear activations. For each foreground pixel, these channels predict

Fig. 5 The network structure used for both CNNs. The reason for using two different filter sizes is to
compensate for anisotropic voxel sizes and producing an approximately cubic field of view
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the centre of the corresponding vertebra. As a postprocessing step, these coordinates

are clustered to identify the individual vertebrae. The final postprocessing step for all

labels consists of extracting the largest connected component and filling holes in that

component.

Both networks use the same pre-processing; the Hounsfield values are clamped

to [− 800, 800] and divided by 800, resulting in an input with values in the range [− 1, 1].

Patients and manual segmentations

The CNN-based organ segmentation in CT studies in RECOMIA has been used in

multiple studies [7–12]. These studies were approved by the Regional Ethical Review

Board (#295/08) and were performed following the Declaration of Helsinki. Patients

and image acquisition have been described previously [7, 8, 10, 11].

A group of experienced radiologists and nuclear medicine physicians manually seg-

mented different organs using the RECOMIA platform. The organs included 77 bones

and 23 soft tissue organs (Table 1). Not all organs were annotated in all CT studies,

which had to be handled in the training process. A dataset of approximately 13,000

manual organ segmentations in 339 images was used to train the CNNs.

A separate test set of 10 patients (5 male/5 female) was used to test the method and

obtain data on inter-observer variability. Each test case was segmented independently

Table 1 List of the 100 different organs segmented throughout the studies grouped by type

Bones Organs Soft tissue Organs

Skull 1 Adrenal gland 2

Mandible 1 Brain 1

Cervical vertebrae 7 Lungs 2

Thoracic vertebrae 12 Trachea 1

Lumbar vertebrae 5 Bronchi 2

Ribs 24 Heart 1

Sacrum and coccyx 1 Aorta 1

Hip bones 2 Ventricle 1

Scapulae 2 Gastrointestinal tract 1

Clavicles 2 Liver 1

Sternum manubrium 1 Gallbladder 1

Sternum body 1 Spleen 1

Humerus 2 Pancreas 1

Radius 2 Kidneys 2

Ulna 2 Urinary bladder 1

Hand 2 Prostate 1

Femur 2 Testes 1

Tibia 2 Musc. gluteus maximus 2

Fibula 2

Patella 2

Foot 2

Total 77 23
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by two different readers. Ten organs (prostate only for male patients) were segmented

in each CT study.

All images used for training, validation, and test had a pixel spacing of 1.36 mm in

slices and a distance between slices of 3 mm. Images with different pixel spacing can

still be segmented by resampling the images using trilinear interpolation before running

the networks. The resulting segmentation is then resampled to the image resolution

using the nearest neighbour interpolation.

Training the networks

The annotated data was divided with 80% in a training set and 20% in a validation set

used to control hyperparameters. In theory, training a CNN is a simple question of

feeding examples to the backpropagation algorithm. In this case, this means feeding

randomly selected patches from images in the training group. These patches were aug-

mented using moderate rotations (− 0.15 to 0.15 radians), scaling (− 10 to + 10%), and

intensity shifts (− 100 to +100 HU) to enrich the training data. The model was trained

using patches of size 136 × 136 × 72 and a batch size of 50. Categorical cross-entropy

was used as the loss function, and the optimisation was performed using the Adam

method [13] with Nesterov momentum. The networks were developed in Python using

the Tensorflow and Keras frameworks. Training and execution were performed on a

high-end Linux desktop computer with a GeForce RTX 2080 TI graphics card. The

training time for each network was about 48 h. Running the model on a single image

took about 2 min on average.

Statistical methods

The CNN-based segmentation was compared to the manual segmentations. The

Sørensen-Dice (Dice) index was used to evaluate the agreement between automated

and manual segmentations by analysis of the number of overlapping voxels.

Results
The model was compared to the manual segmentations (e.g. Fig. 4) on the validation

set and the test set. For all foreground pixels in the validations set, the Dice index was

0.95, recall 0.96, and precision 0.94. Another way to measure accuracy is by the per-

organ Dice index. The average Dice index over the 100 organs was 0.88 (0.84 for the

soft tissue organs and 0.90 for bones). Per organ metrics are shown in Table 2. For the

test set, one of the manual segmentations was randomly chosen to be ground truth.

The automatic segmentation had foreground Dice index of 0.93, recall of 0.93, and pre-

cision of 0.92. The average Dice index over the 10 organs was 0.86 (0.82 for soft

tissue organs and 0.90 for bones). Per organ metrics for all organs are shown in Table 3.

The inter-observer foreground Dice index, recall, and precision were all 0.94. The average

Dice index over the 10 organs was 0.89 (0.86 for soft tissue organs and 0.92 for bone). Per

organ metrics for all organs are shown in Table 4.

Discussion
AI-based tools can provide highly accurate and reproducible organ segmentation, simi-

lar to those obtained manually by radiologists, but much faster (approximate manual
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Table 2 Dice index, recall, and precision per organ. Each organ is individually segmented (i.e. the
model segmented 24 individual ribs). The metric is presented as the mean over all organs in the
same group. The metric for each organ in each group is very similar

Organ Dice Recall Precision

Skull 0.93 0.94 0.92

Mandible 0.90 0.97 0.85

Cervical vertebrae 0.88 0.88 0.88

Thoracic vertebrae 0.91 0.91 0.90

Lumbar vertebrae 0.91 0.91 0.91

Ribs 0.88 0.92 0.85

Sacrum and coccyx 0.94 0.96 0.92

Hip bones 0.96 0.97 0.94

Scapulae 0.95 0.97 0.93

Clavicles 0.94 0.98 0.90

Sternum manubrium 0.93 0.96 0.90

Sternum body 0.92 0.96 0.89

Humerus 0.92 0.95 0.89

Radius 0.94 0.96 0.92

Ulna 0.93 0.98 0.89

Hand 0.87 0.91 0.84

Femur 0.96 0.96 0.97

Tibia 0.96 0.97 0.96

Fibula 0.96 0.96 0.95

Patella 0.96 0.97 0.95

Foot 0.95 0.95 0.96

Adrenal gland 0.61 0.74 0.58

Brain 0.98 0.99 0.96

Lungs 0.98 0.98 0.98

Trachea 0.89 0.91 0.86

Bronchi 0.77 0.86 0.71

Heart 0.92 0.93 0.92

Aorta 0.87 0.88 0.87

Ventricle 0.85 0.88 0.84

Gastrointestinal tract 0.86 0.85 0.89

Liver 0.96 0.97 0.96

Gallbladder 0.78 0.86 0.75

Spleen 0.89 0.93 0.88

Pancreas 0.57 0.68 0.53

Kidneys 0.91 0.95 0.89

Urinary bladder 0.83 0.88 0.81

Prostate 0.82 0.84 0.83

Testes 0.58 0.55 0.66

Muscle gluteus maximus 0.93 0.93 0.92

Average 0.88 0.91 0.87
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segmentation time was 90 min per patient for the 10 organs in the test set). To the best

of our knowledge, RECOMIA is the only platform that is freely available for research

and can be used to automatically segment a wide selection of organs in CT images and

provide PET measurements for the same organs. We continue to train new CNNs to

continuously improve performance.

Studying the results in Tables 2 and 3, the automatic organ segmentation achieves

high Dice scores for most labels. Unsurprisingly, organs that might have low contrast

to the surrounding tissue, such as the pancreas, are assigned lower scores. Also, small

organs, such as the testes or the adrenal glands, tend to be assigned lower Dice scores.

To understand why, note that the difficult pixels are typically found on the organ

boundaries, while pixels inside the organ are easier to classify. The number of boundary

pixels increases quadratically with organ size, while the total number of organ pixels in-

creases cubically.

Considering the statistical dispersion of Dice indices, it is typically low for organs

with high Dice scores. This means standard deviations between 0.01 and 0.05, exclud-

ing one outlier case where considerable image noise around the first thoracic vertebra

Table 3 Mean Dice index, recall, and precision per organ on an independent test set of 10
patients (5 male/5 female)

Organ Dice Recall Precision

Hip bone left 0.94 0.95 0.94

Humerus left 0.88 0.94 0.84

Rib right 5 0.88 0.91 0.84

Scapula right 0.91 0.92 0.90

Lumbar vertebrae 3 0.89 0.88 0.90

Aorta 0.87 0.91 0.84

Kidney left 0.92 0.94 0.91

Liver 0.95 0.94 0.95

Prostate 0.81 0.93 0.72

Trachea 0.89 0.89 0.88

Average 0.90 0.92 0.87

Table 4 Inter-observer Dice index, recall, and precision for the two readers, per organ on an
independent test set of 10 patients (5 male/5 female)

Organ Dice Recall Precision

Hip bone left 0.96 0.94 0.97

Humerus left 0.92 0.93 0.92

Rib right 5 0.90 0.89 0.91

Scapula right 0.93 0.91 0.95

Lumbar vertebrae 3 0.88 0.87 0.89

Aorta 0.89 0.90 0.89

Kidney left 0.94 0.94 0.96

Liver 0.95 0.96 0.94

Prostate 0.84 0.85 0.84

Trachea 0.94 0.92 0.95

Average 0.91 0.91 0.92
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led to an off-by-one error in the numbering of all the subsequent vertebrae and ribs

(although well delineated). For the organs with lower average Dice index listed above,

the dispersion was also higher with standard deviations between 0.08 and 0.26. Finally,

due to large natural variability, the gallbladder, urinary bladder, and ventricle had high

standard deviations (0.08 to 0.17) although the average Dice indices were good.

The RECOMIA platform and the deep learning-based tools for organ segmenta-

tions have already been used in several studies. Lindgren Belal et al. [7, 8] used

bone segmentation for quantification of bone metastases PET/CT in patients with

prostate cancer. The automatically measured tumour burden to bone was associ-

ated with overall survival. The intra-observer volume difference for the segmenta-

tion of five selected bones was less with CNN-based than a manual approach, for

example, Th7 2% volume difference for CNN-based segmentation vs 14% for seg-

mentation performed by a radiologist.

Mortensen et al. [9] and Polymeri et al. [10] used automated segmentation of the

prostate. A CNN was trained for automated measurements in [18F]-choline PET/CT

scans obtained before radical prostatectomy in patients with newly diagnosed prostate

cancer [9]. Automated standardised uptake values from the PET images were obtained

for the prostate. Corresponding manual measurements were performed, and the CNN-

based and manual measurements were compared with the weighted surgically removed

tissue specimens. The automated CNN segmentation and the PET measurements pro-

vided similar measurements to manually derived measurements. Polymeri et al. [10]

then used the method to explore the potential of automatic PET/CT measurements as

prognostic biomarkers. These authors found that automated PET/CT measurements

reflecting total lesion uptake were significantly associated with overall survival, whereas

age, prostate-specific antigen, and Gleason score were not.

Sadik et al. [11] developed automated segmentation of the liver and thoracic aorta as

a first step towards an automated method for evaluating treatment response in patients

with lymphoma, since those organs are reference organs in the Deauville 5-point scale.

The CNN-method showed good agreement with results obtained by experienced radi-

ologists who had manually segmented the CT images. Ly et al. [12] then used the

method to calculate Deauville scores in patients with lymphoma, to compare Deauville

scores obtained from different reconstruction methods.

The platform is currently used by research groups from 20 hospitals/universities in

10 countries and includes both CT, PET/CT, and magnetic resonance imaging

applications.

The organ segmentations are based on low dose CT without contrast on adult pa-

tients. The scope will be expanded to include also CT of diagnostic quality and with

contrast. Future work will also include organ segmentation of CT studies from

children.

Conclusion
The paper presents a platform that provides deep learning-based tools that can perform

basic organ segmentations in CT, which can then be used to automatically obtain the

different measurements in the corresponding PET image. The tools developed in this

project are available on request at www.recomia.org for research purposes.
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