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Abstract

Background: For multicenter clinical studies, PET/CT and SPECT/CT scanners need to
be validated to ensure comparability between various scanner types and brands. This
validation is usually performed using hollow phantoms filled with radioactive liquids.
In recent years, 3D printing technology has gained increasing popularity for
manufacturing of phantoms, as it is cost-efficient and allows preparation of
phantoms of almost any shape. So far, however, direct 3D printing with radioactive
building materials has not yet been reported. The aim of this work was to develop a
procedure for preparation of 99mTc-containing building materials and demonstrate
successful application of this material for 3D printing of several test objects.

Method: The desired activity of a [99mTc]pertechnetate solution eluted from a
99Mo/99mTc-generator was added to the liquid 3D building material, followed by a
minute amount of trioctylphosphine. The resulting two-phase mixture was
thoroughly mixed. Following separation of the phases and chemical removal of
traces of water, the radioactive building material was diluted with the required
volume of non-radioactive building material and directly used for 3D printing.

Results: Using our optimized extraction protocol with trioctylphosphine as complex-
forming phase transfer agent, technetium-99m was efficiently transferred from the
aqueous 99Mo/99mTc-generator eluate into the organic liquid resin monomer. The
observed radioactivity concentration ratio between the organic phase and the water
phase was > 2000:1. The radioactivity was homogeneously distributed in the liquid
resin monomer. We did not note differences in the 3D printing behavior of the
radiolabeled and the unlabeled organic liquid resin monomers. Radio-TLC and SPECT
studies showed homogenous 2D and 3D distribution of radioactivity throughout the
printed phantoms. The radioactivity was stably bound in the resin, apart from a small
amount of surface-extractable radioactivity under harsh conditions (ethanol at 50 °C).

Conclusions: 3D printing of radioactive phantoms using 99mTc-containing building
materials is feasible. Compared to the classical fillable phantoms, 3D printing with
radioactive building materials allows manufacturing of phantoms without cold walls
and in almost any shape. Related procedures with longer-lived radionuclides will
enable production of phantoms for scanner validation and quality control.

Keywords: 3D printing, SPECT, Technetium-99m, Resin monomer, Printer ink,
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Background
Tomographic medical imaging procedures have become indispensable in modern

healthcare, and their importance is continuously increasing as the techniques become

more advanced, and the application space is growing. Among the tomographic imaging

modalities, in combination with a suitable radiotracer, the nuclear imaging procedures

positron emission tomography (PET) and single-photon emission computed tomog-

raphy (SPECT) allow molecular imaging of physiological processes and pathological de-

viations at the molecular level. Following the discovery of numerous new radiotracers

for various molecular targets and disease markers in the past decades, a growing num-

ber of these radiotracers have found their way into the clinical routine [1–4]. For evalu-

ation and interpretation of imaging data, reliable standards for image acquisition,

reconstruction, processing, and quantification are of utmost importance, in particular

to assure the comparability of data acquired on different scanners or in different med-

ical centers [5]. This issue becomes even more urgent in view of the growing number

of therapeutic radiopharmaceuticals routinely applied in the clinic. The newly emerging

theranostic approaches in nuclear medicine require proper dosimetry calculations [6],

which in turn depend on the availability of accurate and reliable imaging data.

To ensure reliable standards, nuclear imaging systems are generally validated under

different circumstances using physical phantoms. Traditionally, these phantoms are

hollow cylinders containing hollow spheres, which are usually manufactured by mold-

ing techniques and then filled with radioactive liquids. While the geometric complexity

of phantoms produced by conventional molding methods is somewhat limited, recently

introduced 3D printing techniques allow preparation of phantoms of almost any shape,

including anthropomorphic phantoms with fine structures, such as different organs and

highly irregular tumor lesions [7, 8]. So far, 3D printed phantoms have mainly been

used for computed tomography (CT), followed by magnetic resonance imaging (MRI),

and ultrasound (US). Only a small number of reports have described 3D printed phan-

toms in conjunction with the nuclear imaging techniques PET and SPECT, and usually

the radioactive material is introduced into the empty 3D printed phantom in the form

of radioactive solutions, see Filippou et al. [9] and Valladares et al. [10] for recent re-

views. Embedded into a radioactive background, the walls of such filled phantom in-

serts remain “cold,” i.e., they are devoid of radioactivity. This approach introduces

background dependent bias in PET phantom measurements [11]. Cold walls affect

mostly small inserts, which then become poorly comparable to lesions in patients that

do not have cold walls. 3D printable radioactive materials would allow printing of

phantoms and small phantom inserts of any shape without cold walls. Surprisingly, des-

pite the huge potential, there are only few reports on printing of radioactive materials,

and all of them are limited to 2D printing on paper sheets using a standard inkjet

printer and a mixture of aqueous radioactive solutions mixed with the printer ink. The

papers with 2D printed radioactive patterns were then stacked together in fixed dis-

tances, separated by thin layers of polystyrene or polymethylmethacrylate (PMMA) to

build 3D sandwich phantoms for SPECT (based on technetium-99m) [12–15] or PET

(based on fluorine-18) [16].

Following the successful 2D printing using radioactively spiked ink, direct printing of

radioactive material in a 3D printer may seem straightforward. There are, however, a

number of complicating issues. First of all, there are the inherent challenges associated
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with printing of radioactive materials, such as contamination of printer parts, tools,

washing solutions, and potential leakage and spills, which are in particular problematic

when utilizing radionuclides with long half-lives. Most importantly, however, there are

currently no established methods for incorporating radionuclides into the liquid resin

monomers used for 3D printing. Simple mixing of the liquid resin monomer with

radioactive solutions is not possible, as most radionuclides are present in the form of

aqueous solutions, which are not miscible with the organic acrylate-based liquid resin

monomers. Consequently, to the best of our knowledge, radioactive phantoms printed

on a 3D printer by using liquid resin monomers (“3D printer ink”) spiked with radionu-

clides have not yet been reported.

In this work, we present a novel method for the preparation of 99mTc-containing or-

ganic liquid resin monomers and demonstrate for the first time successful application

of such a radioactive building material for 3D printing of several test objects. Although

the current proof-of-concept study is limited to the radionuclide technetium-99m, we

foresee that the methodology can be adapted to a broad range of different 3D printing

materials and radionuclides and will ultimately lead to widespread use of this technol-

ogy in the manufacturing of radioactive phantoms.

Methods
General information—devices, materials, and radioactivity measurements

The 3D phantoms described in this technical note were prepared on a ProJet® 1200 3D

Printer (3D Systems, Inc., USA) operating with enhanced LED Digital Light Processing

(DLP) technology. The net build volume of the ProJet® 1200 3D Printer is 43 × 27 ×

150 mm3 (xyz), the native resolution (xyz) 0.056 mm (effective 585 dpi), the layer thick-

ness 0.03 mm, and the vertical build speed 14 mm/h [17]. The build material (liquid

resin monomer) “VisiJet FTX Green” is a UV-curable plastic with a density of 1.04 g/

mL (25 °C). It is an organic mixture containing 40–55% of triethylene glycol diacrylate,

15–25% of tricyclodecane dimethanol diacrylate, and 1.5–2.5% of the photoinitiator

phenylbis (2,4,6-trimethylbenzoyl)phosphine oxide [18].

All chemicals were purchased from commercial suppliers and used as received. Trioc-

tylphosphine (97%), trimethyl orthoformate (99%), n-butyl acetate (≥ 99.5%, p.a.), 0.1 N

hydrochloric acid, and 0.1 N sodium hydroxide solution were from Sigma-Aldrich/Merck

KGaA (Darmstadt, Germany), 2-propanol (≥ 99.8%, p.a.) from Carl Roth GmbH & Co.

KG (Karlsruhe, Germany), and 96% ethanol from Hänseler AG (Herisau, Switzerland).

[99mTc]Pertechnetate in 0.9% aqueous NaCl was eluted from an Ultra-Technekow

FM 99Mo/99mTc-generator (b.e. imaging AG, Schwyz, Switzerland). Extraction of radio-

activity from the 99Mo/99mTc-generator eluate into the resin was performed in polypro-

pylene (PP) microcentrifuge tubes. A Spectrafuge™ 24D microcentrifuge (Labnet

International, Inc.) was used for centrifugation. Weighting was performed on a cali-

brated XS205DU analytical balance from Mettler Toledo GmbH (Greifensee,

Switzerland). Radioactivity was measured in a calibrated ISOMED 2010 dose calibrator

from NUVIA Instruments GmbH (Dresden, Germany). For accurate quantification,

small samples (lower radioactivity) were weighted on an analytical balance and counted

for 1 min in a 2470 Wizard2™ Automatic Gamma Counter (PerkinElmer, Waltham,

MA, USA).

Läppchen et al. EJNMMI Physics            (2020) 7:22 Page 3 of 13



Procedure for preparation of the 99mTc-spiked liquid resin monomer

Pilot experiments were directed towards extraction of technetium-99m from aqueous

[99mTc]pertechnetate solutions into the organic solvent n-butyl acetate, which could

then be mixed with the organic liquid resin monomers for 3D printing. To this end,

500 μL of a diluted [99mTc]pertechnetate solution in 0.9% aq. NaCl (ca. 100 MBq) was

mixed with n-butyl acetate (490 μL) and trioctylphosphine (10 μL) in a microcentrifuge

tube, then thoroughly mixed on a vortex, followed by separation of the phases by cen-

trifugation. Samples from each layer were retrieved, weighted, and the radioactivity

measured in a dose calibrator. The data was used to calculate the radioactivity concen-

trations in both layers and the concentration ratio. Control experiments were con-

ducted in the absence of trioctylphosphine.

Further optimizations led to an improved procedure for direct extraction of

technetium-99m from the 99Mo/99mTc-generator eluate into the organic liquid resin

monomer for 3D printing (Fig. 1). In this procedure, approx. 500 μL of liquid resin

monomer was added to pre-weighted 1.5 mL microcentrifuge tube, followed by

[99mTc]pertechnetate in 0.9% aq. NaCl (~ 1 GBq, corresponding to 200–300 μL, de-

pending on the radioactivity concentration) and trioctylphosphine (10 μL). The tube

was then thoroughly mixed on a vortex (3 × 10 s), followed by centrifugation for 3 min

at 16,300×g. For calculation of the radioactivity concentrations, the radioactivity of

weighted samples from each layer was determined in a dose calibrator. For 3D printing,

the 99mTc-spiked resin monomer at the bottom of the extraction tube was carefully

taken up in a syringe with a blunt needle (volume of syringe is 10 mL or 15mL depend-

ing on the required final volume for printing). To avoid the risk of taking up part of

the remaining water layer, only about 80–90% of the 99mTc-spiked resin monomer was

transferred to the syringe. Any possibly remaining residual traces of water in the radio-

active resin monomer were chemically removed by addition of trimethyl orthoformate

(50 μL) to the radioactive resin in the syringe. After 15 min and repeated mixing, the
99mTc-spiked resin monomer was diluted in the syringe with unlabeled resin monomer

to the final volume required for printing. The diluted radioactive resin monomer was

thoroughly mixed while taking care not to generate air bubbles and transferred to the

printer cartridge. To verify the homogeneous distribution of radioactivity in the resin

monomer mixture, samples were taken during transfer of the monomer mixture from

the syringe to the printer cartridge, weighted, and the radioactivity measured in a γ-

counter. The cartridge containing the radioactive resin monomer mixture (~ 10 g/850

MBq for the bar-shaped phantom; ~ 15 g/630MBq for the sphere) was then inserted

Fig. 1 Schematic overview of the procedure for preparation of the 99mTc-spiked liquid resin monomer
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into the 3D printer and used to print the phantom. A schematic overview of the pro-

cedure for preparation of the 99mTc-spiked liquid resin monomer is depicted in Fig. 1.

3D printing of radioactive phantoms and extractable radioactivity

We initially printed a flat bar-shaped phantom (100 × 20 × 2mm3) to assess possible

de-mixing effects during the ~ 7 h lasting printing process, which would result in
99mTc-enrichment or depletion in the residual monomer solution and concomitant var-

iations in the 2D radioactivity distribution in the printed phantom along the printing

direction. Following evaluation of the flat-bar shaped phantom, we printed a spherical

phantom (diameter 25 mm) to study the 3D radioactivity distribution. The sphere was

supported by a non-radioactive stalk, which was printed from non-radioactive resin and

glued onto the radioactive sphere.

Post-printing treatment

After completion of the printing procedure, the printed objects were rinsed twice with

2-propanol following the procedure described in the user guide using fresh solvent for

each washing cycle [17]. After drying, the print platform with the printed object was

positioned in the UV curing chamber and post cured for about 10 min. The radioactiv-

ity of the printed objects was measured in a dose calibrator.

Extractable radioactivity

Since a wipe test for surface detachable radioactivity using an ethanol-wetted swap was

positive, the radioactive phantom was extracted with 96% ethanol at 50 °C for 1 h. This

procedure was done in a closed 50-mL centrifuge tube filled to the maximum with 96%

ethanol. The extraction was repeated twice more in new tubes with fresh 96% ethanol.

The radioactivity of the three tubes with the ethanolic extracts was quantified in a dose

calibrator and in a γ-counter (several samples from each extraction, weight determined

on balance). A second wipe test showed only negligible surface detachable radioactivity,

necessitating no further extractions. To gain more information on the nature and sta-

bility of radioactivity incorporation in the phantom, however, we also investigated po-

tential leaking of radioactivity under acidic (0.1 N aqueous HCl) and basic (0.1 N

aqueous NaOH) conditions. The acidic and basic extractions were only single extrac-

tions at 50 °C for 1 h and were performed after the extractions with ethanol. For the

spherical phantom, an identical extraction procedure was carried out but without acidic

and basic extraction.

Analysis of radioactivity distribution with γ-scanning device and SPECT imaging

Radioactivity distribution in the flat bar-shaped phantom (100 × 20 × 2mm3) was mea-

sured on a miniGITA Dual radio-TLC system (Elysia-Raytest, Straubenhardt, Germany)

using an OFA probe (V-shaped BGO crystal in combination with PMT tubes) and a

10-mm tungsten collimator (suitable for nuclides 60–250 keV). Detector distance was

4 mm, and measuring time was 10min. The 2D radioactivity distribution was also re-

corded on a BrightView X camera (Philips Healthcare) equipped with a low energy high

resolution (LEHR), parallel hole collimator. A static acquisition of 0.5 h duration (5.8 ×

106 counts) was done. The matrix size was 256 × 256 resulting in a final pixel size of
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2.332 × 2.332 mm2. The total radioactivity of the phantom (4.82 g) at the start of the γ-

camera measurements was 38.27MBq, resulting in a radioactivity concentration of

7.94MBq/g. Finally, after completion of all measurements, five small pieces (~ 100 mg

per piece) were removed at different positions from the radioactive phantom and put

into pre-weighted tubes for γ-counting.

For the spherical phantom (diameter 25 mm), 3D radioactivity data was obtained

from SPECT/CT scans acquired on a Discovery NM/CT 670 Pro system (GE Medical

Systems). Low dose non-enhanced CT was performed for co-registration and attenu-

ation correction (120 kVp, 93 mAs, pitch factor 0.56). The SPECT/CT scanner was

equipped with a LEHR parallel hole collimator. Imaging was done with two detectors

180 ° per detector, 90 projections each, in step and shoot mode, with a circular orbit

and 500 s per view in a 256 × 256 matrix. The energy window was set to 140.5 keV for

the photopeak with a symmetric energy window of 20% (126–154 keV) and with an

additional scatter window of 10% (114–126 keV) width at 120 keV. The phantom data

were reconstructed and analyzed on a GE Xeleris workstation (v. 3.1108) using an itera-

tive reconstruction with resolution recovery, attenuation, and scatter correction

(OSEM, 3 iterations, 8 subsets). The matrix was 256 × 256, and the final pixel size was

2.209 × 2.209 mm2 with 2.21 mm slice thickness. The total radioactivity of the phantom

(9.77 g) at the start of the SPECT/CT measurements was 1.28MBq, resulting in a

radioactivity concentration of 0.13MBq/g.

Results
Preparation of 99mTc-containing liquid resin monomer

The basic challenge in the preparation of radioactive liquid resin monomers for 3D

printing is the transfer of the radionuclide species from aqueous solutions into the

hydrophobic liquid resin monomers. In initial experiments, we investigated the extrac-

tion of technetium-99m from aqueous [99mTc]pertechnetate solutions into the organic

solvent n-butyl acetate, which could then be mixed with the hydrophobic liquid resin

monomers. We found that transfer of technetium-99m into the organic phase requires

addition of the complex forming additive trioctylphosphine, as > 99% of total radio-

activity was transferred to the organic phase in the presence of minute amounts of

trioctylphosphine, while essentially all radioactivity remained in the water layer in the

absence of trioctylphosphine.

Subsequent optimization experiments led to a simplified procedure for direct

extraction of technetium-99m from the aqueous 99Mo/99mTc-generator eluate into

the organic liquid resin monomers, bypassing the intermediate extraction into an

organic solvent (Fig. 1). The optimized method only involves mixing of the aque-

ous 99Mo/99mTc-generator eluate with the organic liquid resin monomers in the

presence of a minute amount of trioctylphosphine as a phase transfer agent,

followed by separation of the phases. After addition of a small amount of tri-

methyl orthoformate to remove traces of water, the radioactive liquid resin

monomer was thoroughly mixed with the required volume of non-radioactive li-

quid resin monomer and transferred to the printer cartridge for 3D printing. The

printing with the radioactive resin was performed in the same way as with the

non-radioactive resin.
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Our optimized extraction method with trioctylphosphine proved extremely efficient,

as the observed radioactivity concentration ratio between the organic versus the aque-

ous phase was always > 2000:1 (n = 5). Interestingly, transfer of technetium-99m was

also observed in the absence of trioctylphosphine, but in this case the radioactivity con-

centration ratio was only ≥ 10:1 (n = 3). Evidently, even a minute amount of trioctyl-

phosphine leads to a substantially improved radioactivity transfer into the organic

phase, providing a clear rationale for including this additive in the optimized extraction

procedure.

Using our optimized procedure with trioctylphosphine, most of the radioactivity from

the aqueous 99Mo/99mTc-generator eluate could be transferred into the organic resin

monomer in the printer cartridge, apart from some inevitable losses during handling

and phase separation. The radioactivity was homogeneously distributed in the liquid

resin monomer, as evidenced by γ-counting of weighted samples withdrawn during fill-

ing of the printer cartridge with the radioactive resin. The relative standard deviation

(RSD) of sample radioactivity concentration was < 2% (n = 5).

3D printing and assessment of extractable radioactivity

Printing of the flat bar-shaped phantom proceeded smoothly, we did not notice any differ-

ence compared to printing with the original cartridges containing the non-radioactive li-

quid resin monomer. After printing, rinsing, drying, and post curing—normal procedures

in 3D printing—the flat bar-shaped phantom was tested for surface detachable radioactiv-

ity by carrying out a wipe test with an ethanol-wetted swap. Since the test was positive,

three sequential extractions were performed with ethanol at 50 °C (1 h per extraction) to

remove any loosely bound radioactivity from the surface of the phantom. The extractable

radioactivity (expressed as percentage of the total radioactivity of the phantom) decreased

successively from < 1% in the first extraction to < 0.3% in the second and < 0.1% in the

third extraction. The ethanolic extractions turned out to be effective in reducing the sur-

face removable radioactivity down to the limit of detection. The radioactive phantom

proved also stable towards extraction in acidic and basic aqueous environments, with ex-

tractable radioactivities below 0.4‰ and 0.2‰, respectively.

Following evaluation of the flat bar-shaped phantom (large surface-to-volume ratio), we

printed a spherical phantom (small surface-to-volume ratio). Under the same conditions

(50 °C, 1 h per extraction) and compared to the flat bar-shaped phantom, the ethanol-

extractable radioactivity of this phantom was much lower, amounting to only < 0.3% in

the first extraction and less than 0.1‰ in the third extraction. Further analysis of the data

obtained with both phantoms revealed that the extractable radioactivity is proportional to

the surface-to-volume ratio of the phantom, suggesting that radioactivity is stably immo-

bilized in the phantom core and only extracted from a thin layer on the outer surface of

the phantom. For illustrative purposes, based on the extraction data and the volume and

surface of the phantoms, the calculated thickness of such a surface layer completely de-

void of radioactivity is the same for both phantoms and equals only 12 μm.

Evaluation of 2D and 3D radioactivity distribution in the phantoms

The radioactivity distribution profile (Fig. 2b) of the flat bar-shaped phantom (Fig. 2a)

was determined on a radio-TLC system (Fig. 2c). The radioactivity was found to be
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homogeneously distributed along the longitudinal direction, as evidenced both by sim-

ple visual inspection of the graph and by integration of the activity in the ten 1-cm-

sections S1–S10 (Fig. 2b). In addition, the bar-shaped phantom was also scanned on a

γ-camera (Fig. 3). Analysis of the 2D data confirmed the uniform radioactivity distribu-

tion in the longitudinal direction (Fig. 3, bottom) and additionally showed that distribu-

tion was also homogeneous in the lateral direction (Fig. 3, top). The latter was more or

less expected due to the nature of the printing process, where successive layers are built

along the longitudinal direction, i.e., the printing material in a lateral layer is added at

the same time.

After successful completion of the non-destructive analyses described above, the bar-

shaped phantom was cut into small pieces for destructive analysis by γ-counting. The

radioactivity concentration of different pieces taken from very different positions of the

phantom was essentially the same (RSD ~ 1.2%; n = 5).

In a next step, we extended our measurements from 2D to 3D radioactivity data sets

using a spherical 99mTc-spiked 3D printed phantom and SPECT/CT scanning (Fig. 4).

The axial slice through the sphere’s center displays the typical image of a homogeneous

spherical activity distribution. Another indication for the homogenous activity distribu-

tion are the similar profiles along all main axes (Fig. 5). The sphere’s CT density of

139.22 ± 2.64 HU corresponded to that of polymethylmethacrylate (PMMA) [19] and

was determined in a centered spherical VOI with a volume of 2 cm3.

Fig. 2 Photo of the green bar-shaped phantom (a) and radioactivity distribution along the phantom (b) as
determined on a radio-TLC system (c). Integration of radioactivity counts for each of the ten 1-cm-sections
(S1–S10) on the TLC system resulted in almost identical values (~ 1.3 × 106 counts) with a relative standard
deviation (RSD) of 0.5%
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Discussion
In this feasibility study, we have demonstrated for the first time 3D printing of radio-

active phantoms using liquid resin monomers (“3D printer ink”) blended with a suitable

radionuclide complex. The choice of technetium-99m for the radionuclide in this study

was based on its ease of availability in the clinical environment and its convenient half-

life (~ 6 h), which allows printing and subsequent measurements on the phantom, but

does not suffer from the disadvantages of radionuclides with longer half-lives, such as

high contamination risk and long-lived radioactive waste.

Fig. 3 Radioactivity distribution profiles in different directions across the bar-shaped phantom as
determined on a γ-camera

Fig. 4 Computer model and photo of the 3D printed spherical phantom (a) and the corresponding SPECT/
CT images of the radioactive phantom (b); note that the pedestal was printed with non-radioactive resin
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For the transfer of technetium-99m from the aqueous pertechnetate generator eluate

into the organic liquid resin monomer, we have developed a customized

trioctylphosphine-based method building on the well-known complexation of techne-

tium with phosphine ligands. Cationic 99mTc-complexes of bis(tertiary phosphine) li-

gands have already been under investigation as potential myocardial imaging agents

since the early eighties of the last century [20, 21], and further optimization has led to

the development of [99mTc]Tc-tetrofosmin [22], which had received FDA approval in

1996 and is marketed under the trade name Myoview™ [23]. Important insights on the

structure of Tc-phosphine complexes were gained from studies of the complexes

formed by reduction of pertechnetate with the prototypical bidentate phosphine ligand

DMPE [1,2-bis(dimethylphosphino)ethane] [24]. Depending on the reaction conditions,

three distinct cationic complexes containing Tc(V), Tc(III), and Tc(I) centers with octa-

hedral coordination geometry were obtained [25]. In the course of their search for

small, water-soluble and air-stable phosphine ligands for use as bifunctional chelating

agents (BFCAs), Berning and colleagues [26] investigated the 99mTc-complex of tris(hy-

droxymethyl)phosphine (THP), which is presumably a Tc(V) species resulting from re-

duction of pertechnetate [Tc(VII)] and concomitant oxidation of the THP. The 99mTc-

THP-complex can be prepared by simply mixing the 99Mo/99mTc-generator eluate with

a solution of THP in saline. THP is provided in excess and has a dual role both as re-

ducing and as complexing agent.

Inspired by the facile preparation of the highly hydrophilic [99mTc]Tc-THP complex

(chloroform-water partition coefficient < 0.0001) [26], we evaluated the structurally

closely related lipophilic trioctylphosphine (TOP) for transfer of technetium-99m from

Fig. 5 Quantitative analysis of radioactivity concentration profiles along three perpendicular axes through
the 3D printed spherical phantom
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the aqueous 99Mo/99mTc-generator eluate into the organic acrylate-based liquid resin

monomer. The extraction of technetium-99m into the organic liquid resin monomer

was very efficient, suggesting formation of a stable [99mTc]Tc-TOP complex compar-

able to the [99mTc]Tc-THP complex (vide supra). We demonstrated that this TOP-

complexed technetium-99m is homogeneously distributed and stably immobilized in

the 3D-printed phantom, necessitating no further efforts towards improvement of the

ligand, such as, e.g., by developing customized phosphine ligands with acrylate side

chains to covalently anchor the ligands in the resin by copolymerization.

While technetium-99m is an interesting radionuclide for certain SPECT-applications,

we expect that future developments in the field will focus on solid-state phantoms con-

taining radionuclides with longer half-lives, in particular positron emitters for PET,

which can be used for site qualification in multicenter clinical trials and for longitudinal

measurements on a single PET/CT scanner [27]. Building on our experience with 3D-

printed 99mTc-phantoms, we are currently developing customized procedures for 3D

printing of phantoms containing radionuclides with longer half-lives (t½), such as

germanium-68 (t½ = 271 days) for PET- and cobalt-57 (t½ ~ 272 days) for SPECT appli-

cations. Following the successful proof-of-concept for the production of small phan-

toms, our ultimate goal is the production of larger phantoms, which are typically used

in SPECT and PET. Apart from potential challenges regarding radiation protection and

provided that a suitable 3D printer for printing larger objects is available, we do not

foresee major complications, since our procedure for preparation of the radioactive li-

quid resin monomers (“3D printer ink”) can easily be upscaled by simply using a higher

amount of radioactivity for the extraction followed by dilution into a larger volume of

liquid resin monomers.

Once the basic methodologies for incorporation of various radionuclides into the

monomeric printer resins have been established, we also envisage future research ef-

forts towards 3D printing of “multicolored” phantoms, i.e., phantoms containing sub-

structures with different radionuclides in different concentrations. Evidently, these

phantoms cannot be produced on 3D printers using a liquid resin bath and Digital

Light Processing (DLP) methods, such as the ProJet® 1200 printer. Instead, Multi-Jet

Printing (MJP) or Poly-Jet Printing (PJP) techniques may be the methods of choice [7].

With these techniques, the 3D model is built layer-by-layer by deposition of photopoly-

mer materials followed by curing with UV light. In principle, the composition of the

printing material deposited at a given moment may be controlled by in situ mixing of

different standard materials (different types of liquid resin monomers and/or additives)

in a suitably designed multi-material printing head [8]. In this way, complex phantoms

with local variations of resin materials can be produced, including different concentra-

tions of one or more radionuclides and/or additives to control the radiodensity.

Conclusions
We have developed a procedure for incorporation of technetium-99m into liquid resin

monomers for 3D printing and demonstrated for the first time the successful applica-

tion of this methodology for printing of radioactive phantoms. The 3D printed radio-

active phantoms are characterized by a well controllable, homogeneous distribution of

radioactivity, which is stably bound in the resin. Compared to conventional mold phan-

toms filled with radioactive liquids, 3D printed radioactive phantoms can be produced
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in almost any shape and without cold walls. While the scope of the present study is

limited to the relatively short-lived radionuclide technetium-99m, we anticipate that

similar procedures will eventually allow the preparation of 3D printed solid phantoms

containing long-lived radionuclides. Such phantoms will lead to improvements in scan-

ner validation procedures and can serve as a standard in multicenter trials, since they

avoid the error-prone preparation of liquid-based phantoms at different centers.
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