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Abstract

The idea of a very sensitive positron emission tomography (PET) system covering a
large portion of the body of a patient already dates back to the early 1990s. In the
period 2000–2010, only some prototypes with long axial field of view (FOV) have been
built, which never resulted in systems used for clinical research. One of the reasons was
the limitations in the available detector technology, which did not yet have sufficient
energy resolution, timing resolution or countrate capabilities for fully exploiting the
benefits of a long axial FOV design. PET was also not yet as widespread as it is today:
the growth in oncology, which has become the major application of PET, appeared
only after the introduction of PET-CT (early 2000).
The detector technology used in most clinical PET systems today has a combination of
good energy and timing resolution with higher countrate capabilities and has now
been used since more than a decade to build time-of-flight (TOF) PET systems with
fully 3D acquisitions. Based on this technology, one can construct total body PET
systems and the remaining challenges (data handling, fast image reconstruction,
detector cooling) are mostly related to engineering. The direct benefits of long axial
FOV systems are mostly related to the higher sensitivity. For single organ imaging, the
gain is close to the point source sensitivity which increases linearly with the axial length
until it is limited by solid angle and attenuation of the body. The gains for single organ
(compared to a fully 3D PET 20-cm axial FOV) are limited to a factor 3–4. But for long
objects (like body scans), it increases quadratically with scanner length and factors of
10–40× higher sensitivity are predicted for the long axial FOV scanner. This application
of PET has seen a major increase (mostly in oncology) during the last 2 decades and is
now the main type of study in a PET centre. As the technology is available and the full
body concept also seems to match with existing applications, the old concept of a
total body PET scanner is seeing a clear revival. Several research groups are working on
this concept and after showing the potential via extensive simulations; construction of
these systems has started about 2 years ago. In the first phase, two PET systems with
long axial FOV suitable for large animal imaging were constructed to explore the
potential in more experimental settings. Recently, the first completed total body PET
systems for human use, a 70-cm-long system, called PennPET Explorer, and a 2-m-long
system, called uExplorer, have become reality and first clinical studies have been
shown. These results illustrate the large potential of this concept with regard to
low-dose imaging, faster scanning, whole-body dynamic imaging and follow-up of
tracers over longer periods. This large range of possible technical improvements seems
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to have the potential to change the current clinical routine and to expand the number
of clinical applications of molecular imaging. The J-PET prototype is a prototype system
with a long axial FOV built from axially arranged plastic scintillator strips.
This paper gives an overview of the recent technical developments with regard to PET
scanners with a long axial FOV covering at least the majority of the body (so called total
body PET systems). After explaining the benefits and challenges of total body PET
systems, the different total body PET system designs proposed for large animal and
clinical imaging are described in detail. The axial length is one of the major factors
determining the total cost of the system, but there are also other options in detector
technology, design and processing for reducing the cost these systems. The limitations
and advantages of different designs for research and clinical use are discussed taking
into account potential applications and the increased cost of these systems.

Keywords: PET, Sensitivity, PET-CT

Introduction and overview
The successful clinical introduction of novel imaging systems is based on reliable and
high performance detector technology but also requires a clear application and a suf-
ficiently large market. Technology is often introduced in an early phase: TOF systems
were already introduced in the 1980s [9, 10, 22, 37, 62, 75, 78], with examples pub-
lished showing Oxygen-15 water-, C-11 acetate- and Rb-82-based studies. These TOF
systems were used for human imaging but were not further developed as they did
not seem to be competitive with bismuth germanium oxide (BGO)- and NaI-based
systems.
There were also some PET prototypes with a long axial field of view (FOV) (> 50 cm)

built before introduction in clinical routine [17, 72]. These systems were demonstrators
and did not evolve beyond the prototype stage and were not used in clinical routine.
Besides the high costs for these systems, there were also important technical challenges
like limitations on the detectors, data handling and 3D image reconstruction, which
limited the further development of these system. At that time, PET was also not yet
widespread for clinical purposes.
Since the early years, PET systems have been improved steadily with regard to sensitiv-

ity and resolution by optimising the detectors and geometry. After the integration of PET
with CT, time-of-flight technology has been introduced in clinical PET systems. The trend
towards fully 3D acquisitions and longer axial FOV started even before the clinical intro-
duction of PET/CT and TOF [27, 63]. Most recent clinical systems have an axial extent of
15–26 cm, work in fully 3Dmode and have a timing resolution in the range of 200–500 ps.
This range in axial FOV is quite similar to the early days of PET where NaI(Tl) systems
from 1990s already had an axial FOV of 25 cm [45]. A next logical step towards better PET
systems is to further increase timing resolution although realising further major improve-
ments in timing resolution (below 200 ps) will require new detector concepts and it may
take about 10 years before such technology is mature enough for introduction in a clin-
ical PET system. In the limit of 10 ps [33], reconstruction would not even be necessary
anymore. There will however still be the need for attenuation and correction for scatter,
randoms. Effects from limited spatial resolution and noise would still be present.
Compared to 10–20 years ago, the current detector technology [36, 48] used in

most clinical PET systems today does combine good energy, timing resolution and
high countrate capabilities. These detectors have now been used since more than a
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decade to build fully 3D time-of-flight PET systems. Combined with the progress in
iterative 3D reconstruction methods and the increase in computing power, all ingre-
dients are available for the construction of total body PET systems. While the gain
for organ-specific imaging is limited, factors of 10–40× higher sensitivity are pre-
dicted for multi-organ scans for oncological indications. Most scans performed with a
PET system are nowadays body scans (oncology). As the technology is available and
the full body concept also seems to match with existing applications, the concept of
a total body PET scanner, considered already many years ago, is finally being put
into practice. The motivation for research is stronger with new radio tracers becom-
ing rapidly available and for clinical studies due to the high demand and diagnostic
benefits.
The aim of this review is to give an overview of the major challenges and most recent

developments towards the construction of total body PET systems and explain the poten-
tial gains in sensitivity that will enhance current applications or enable new applications.
First, we give a summary of the most recent evolutions in PET technology and clinical
PET systems which are now the basis for the construction of the first total body PET
systems. The concept of total body PET and the recent developments are described in
the next part. Afterwards, we will discuss the choice of axial length of these systems
(closely related to the total cost) and the different fields where this technology may have
an impact. An overview of technical developments to reduce the cost or increase the
performance of total body PET is given in the last chapter. The discussion compares
this innovation with other recent developments in nuclear medicine and describes dif-
ferent possible scenarios for justifying these systems in research institutes and clinical
centres.

Clinical PET-CT

In the initial days (1980–2000), PET was a useful research tool and the real growth into
clinical applications only appeared during the last 20 years. This growth was closely tied
to the approval for medicare reimbursement and aligned with the introduction of PET-
CT. Themajor application is oncologic imaging, but other applications include cardiology,
neurology and psychiatry. The increased use of PET has been driven by the availability of
cyclotrons, but also companies that distribute FDG which made it possible for hospitals
to have a PET system without the complexity of an on-site cyclotron. Other factors were
the availability of several new PET tracers and more recently generator produced Ga-68-
based tracers. Technical improvements of the PET system (delivering improvedmolecular
information) and the integration of PET with CT (co-registered anatomical information)
have significantly accelerated PET exams already. These technical improvements with
regard to the PET-CT system are summarised in the next section.

Improvements with regard to sensitivity, TOF and spatial resolution

During the last 40 years, PET has been improved with regard to sensitivity and spatial
resolution [45]. A system with good spatial resolution is not sufficient; it needs to be
combined with sufficient sensitivity. This factor is important as the Poisson noise on the
detected emission data leads to noise propagation in the final reconstructed image. High
sensitivity is therefore important: the final image quality is related to the obtained signal
to noise ratio per voxel, which can be increased by a higher number of detected counts.
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Compared to the first PET systems, the sensitivity of current systems has been increased
by 3 major factors:

1. The use of thick detectors (20–30 mm) with higher detection efficiency (first for
BGO, but also more recently L(Y)SO)

2. The removal of axial septa: systems have evolved from 2D to 3D with limited
acceptance angles and finally to fully 3D systems

3. Increasing the axial length of the system

Besides increasing the number of detected photon pairs, the information content per
photon pair has also been improved by introducing time-of-flight measurements in the
most recent systems. TOF PET systems [25, 57] do not only register the detectors where
both hits of a coincidence are detected, they also measure the time difference of both
photons with a precision of a couple of hundred picoseconds. The time difference is
used to localise the position of the annihilation along the line-of-response (LOR). This
information is then used in image reconstruction via Gaussian-weighted forward and
backprojections with the Gaussian weight the same as the spatial distribution of the TOF
kernel [70]. This leads to a reduction in noise propagation and an increase in effective
sensitivity [50, 58, 59], which is proportional to the ratio of the object size and the TOF
resolution.
Besides the large improvements in sensitivity, also improvements in spatial resolution

have been obtained by using smaller detector pixels and reducing the light spread towards
the photodetector. The switch from large conventional photomultiplier tubes to small
solid state silicon photomultipliers (SIPMs) [7, 53] has been the latest step in this devel-
opment. Some of the most recent systems even have one-to-one coupling of scintillator
pixels to SiPM pixels. The major improvements in PET system design are shown in Fig. 1.

Fig. 1 The three major improvements in PET technology during the last three decades
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Multimodality imagingwith PET-CT

The combination of PET with CT has been very successful and was almost directly intro-
duced into clinical routine. The main reasons are the direct availability and accurate
registration of anatomical information with the PET image and the use of the low-dose
CT for attenuation correction with a much faster acquisition than traditional transmis-
sion scans [6]. The CT image directly provides the required information for attenuation
correction [28] and is obtained in less than a minute, while lengthy transmission scans
were required for standalone PET systems. Since about 10 years, all commercial whole-
body PET systems are integrated PET-CT scanners. The total procedure for one patient in
PET currently takes about 20–30 min, including setup: after a quick scout view for selec-
tion of axial coverage, a CT of the region of interest (typically head to thigh for a body
scan) is acquired in about 1 min and this is followed by the PET study (typically 10–20
min for a whole-body scan). The acquisition length varies depending of the centres pref-
erence for lower dose or higher throughput scanning. Acquisition length in some centres
may also depend on body mass index (BMI).
Typically, a nuclear medicine department will have a patient throughput of 10–25

patients per day with one or two tracer productions. As the PET acquisition is the slow
part in this chain, significantly higher throughput can be obtained by speeding up PET
acquisition using systems with higher (effective) sensitivity. During the last few years,
there has already been a major improvement by the introduction of scanners with slightly
longer axial FOV and better TOF resolution due to the use of SiPM-based detectors. One
of the bottlenecks is the time required for putting the patient on and off the bed. This may
take 2–5 min as patients selected for PET scanning are often not in good condition.

Current whole-body PET design

In the initial years of PET, there were systems based on different geometries, like rotat-
ing partial ring systems and flat panel detectors and using different scintillators (BGO,
NaI and GSO), but several of these designs and detectors have not been continued in the
latest generation of PET systems [45]. Nowadays, nearly all clinical whole-body PET sys-
tems have a very similar configuration consisting of an annulus of scintillation detectors
surrounding the patient. The bore diameter is typically in the range of 65–85 cm, with the
smaller bores being used in clinical PET-MR systems and larger bores in systems adapted
for radiation therapy planning. The scintillator used in nearly all new systems is Lutetium
Oxyorthosilicate (LSO or LYSO) as it has favourable properties for PET like high effec-
tive Z and density, combined with good energy resolution, very good light output in a
short time and time-of-flight capabilities. Nearly all clinical systems use pixelated L(Y)SO
arrays. The pixel size is in the range of 3.2 to 5 mm and its thickness from 15 to 25 mm,
resulting in spatial resolution in the range of 3.5–5 mm at the system level. At the system
level, good energy resolution of 10–12% is obtained, which limits the amount of scattered
coincidences in fully 3D PET. In contrast to 2D PET, the remaining scatter in 3D PET
currently still creates unacceptable bias and scatter correction is mandatory.

Acquisitionmode

The standard axial length of a PET ring (in a state of the art PET-CT system) ranges
from 15–26 cm. This is sufficient for acquiring brain or cardiac PET scans in a sin-
gle axial bed position. Nowadays, the majority of scans performed are in oncology and
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require scanning a large part of the body with bed translation (typically from head to
thigh in about 5 bed positions). These scans are obtained by acquiring the data in step
and shoot mode (with some overlap in the axial direction in order to improve unifor-
mity of axial sensitivity) or with continuous bed movement (see Fig. 2). In step and shoot
mode, one bed position takes about 1–3 min, the data from the different axial positions
(or the continuous movement) are stitched together and body scans are acquired in 10–
30 min. An important assumption is that the distribution of the tracer does not change
significantly during the acquisition: this is approximately true for FDG studies. Scans are
typically acquired at 1 h after injection of this tracer, when the uptake in active regions is
sufficiently high and the tracer distribution is approximately at a plateau phase.

The concept of total body PET
Limited sensitivity of current PET systems

PET is widely regarded as themost sensitivemolecular imaging technique, concentrations

Fig. 2 The difference between a current PET-CT (top figure) and a total body PET-CT (bottom figure).
Different bed positions to complete a body scan are not required anymore. Inside the total body PET FOV,
higher sensitivity is obtained for each point in the FOV by the larger solid angle coverage (indicated by the
shading). For the same activity injected in the patient, the total acquisition time can be reduced by a large
factor due to the higher sensitivity
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down to a pico-molar concentration can be detected, orders of magnitude lower than
other modalities. It is however still quite suboptimal from a physics point of view: only a
small amount of the emitted radiation from the patient is detected by the imaging system,
even the best commercial systems have about 1% sensitivity. A gamma ray pair from an
annihilation inside the patient is emitted in random direction; to detect it as two 511-keV
photons, several conditions need to be fulfilled:

1. Both photons need to escape the body (not attenuated or scattered [28, 65])
2. Both photons should hit the detector ring (geometrical acceptance)
3. Both photons need to interact in the detectors (detection efficiency)
4. Both signals need to pass the selection criteria (selection efficiency)

The first condition is an intrinsic effect which cannot be avoided. The detector thick-
ness has been optimised taking into account the high scintillation material cost and
degradations (like increased depth-of-interaction, DOI) when making the detector too
thick. A typical detector thickness for LYSO will be 15–30 mm. Another important
improvement of PET detectors has been the combination of uniformity of scintillation
performance, improved block detector design and better system calibrations leading to an
improvement in energy resolution; most systems will have an energy resolution between
10 and 12%. This allows the use of a smaller energy window which limits the amount of
detected scattered photon pairs. This is particularly important for fully 3D PET systems
as a poor energy resolution would lead to a very high scatter fraction. The current detec-
tors will typically lead to scatter fractions at the system level in the range of 30–40%. This
is according to NEMANU2-2012, which is representative of measurements with patients
of average size.
Two major factors are causing the limited sensitivity in the current PET systems. When

the organ of interest is in the FOV, the majority of isotopically emitted gamma pairs
will not hit the detector ring due to its limited axial extent. The other factor is that for
the specific case of acquisitions of long objects, a large fraction of the object is outside
the axial FOV and emissions from those regions can never be detected as true coin-
cidences. With the current axial length of about 20 cm, we only cover about 10–20%
of the body’s organs (total body or head to thigh for patients of 160–200 cm) we are
interested in.

Early developments in total body PET

The concept of total body PET (see Fig. 2) is to surround the patient with much more
detectors in the axial direction to increase the sensitivity with a large factor.
There are two improvements associated with such a design:

1. First of all, the detection efficiency of photon pairs emitted from a certain point
already in the FOV is increased by the larger solid angle (longer axial extent).

2. A much larger fraction of the patient is seen in one bed position, so more FOV is
covered in the same time frame.

This idea has already been proposed about 30 years ago (Terry Jones around 1990)
and has been the subject of several research studies. Crosetto [18] proposed the three-
dimensional complete body screening to maximizing the capture of signals. Besides
the slow but steady increase in the axial FOV of the clinical systems, there have
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already been efforts to built PET scanners with large axial FOV [76]. Hamamatsu has
constructed a research scanner with an axial FOV of 68.5 cm [72]. The number of
detector rings was 96, and the detector of choice was a 16 × 8 BGO (2.9 mm × 6.3
mm × 20 mm) crystal array readout by flat panel PS-PMT (Hamamatsu R8400-00-
M64) [39]. To reduce the number of scattered coincidence events, annular collimators
between adjacent rings, called septa, are placed between the block detector rings. The
scatter fraction (NEMA NU2-2001) was equal to 31.4%, and the obtained sensitiv-
ity was 9.72 cps/kBq. Peak NECR was equal to 113.6 kcps at 10.5 kBq/ml. One main
limitation of this system was the energy resolution of the block detector (36% on
average). This explains why the system sensitivity was about 40% lower than Monte Carlo
predictions.
The early PET systems came with septa because fully 3D data acquisition and recon-

struction were not feasible at that time, and then it took some time to verify (using
retractable septa) that fully 3D PET was mature enough to replace 2D PET for all appli-
cations. In this period, the main bottleneck to fully exploit the total body concept was
the performance of the scintillators. Although BGO has a very good stopping power,
high detector efficiency alone is not the only factor leading to good image quality. The
stopping power however has to be combined with low system dead time, good energy
resolution and good timing resolution. LSO, which was introduced in clinical systems in
the beginning of the 2000s, is a scintillator with fast timing, good energy resolution and
high stopping power. Despite the fact that the cost of the scintillator is clearly higher than
BGO, it was quickly introduced in PET, and since 2005, almost all new systems were based
on LSO or LYSO with data acquired in fully 3D mode. The LSO scintillator was the basis
of a research PET tomograph (Siemens P39-5H) with large axial coverage (53 cm) and
composed of five panel detectors mounted in a hexagonal configuration mounted on a
rotating gantry [17]. Despite a high sensitivity of 2%, about 2 times higher than current
commercial scanners and an acceptable scatter fraction of 40%, the NECR (noise equiv-
alent count rate) did not improve significantly. The relative large detector modules lead
to high deadtime losses at high countrates and the system also did not yet have time-of-
flight information. For these different reasons, the prototype did not evolve into a clinical
system.
After these first prototypes, several simulation studies of long axial FOV systems have

been performed [19, 21, 49, 55, 56, 76]. These system simulations have helped to motivate
the systems being built today.

Gain in sensitivity

Sensitivity for different sources

Before going more into detail in technical gains by total body PET, it is important to
explain the differences in what is understood by sensitivity of a PET system and how it
depends on the type of source. We also include equations to describe the sensitivity for
generating the figures in this sections.
The sensitivity of a PET scanner is defined as the number of 511-keV photon pairs

per unit time detected by the device for each unit of activity present in a source.
It is normally expressed in counts per second per microcurie (or megabecquerel)
(cps/microCi or cps/kBq). For a preclinical system, the sensitivity is typically given
for a point source in the centre of the FOV. Since the major application of clinical
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PET is nowadays in whole-body imaging, the sensitivity for such a system is deter-
mined using a line source with an axial extent of 70 cm. According to NEMA, the
sensitivity is measured using a phantom consisting of five nested metal sleeves of
known thickness and 700 mm length. Activity is placed in a plastic tube, and this
tube is threaded through the inner sleeve. Absolute sensitivity is then obtained by
extrapolating to zero thickness. This measurement was defined by NEMA [46] long
before there was consideration of actually building systems with axial length beyond
70 cm.
The whole-body sensitivity S, defined as the ratio of the registration rate of image

forming events (the true coincidences) to the total activity of 511 keV photon pairs cre-
ated inside the patient, depends on the photons’ attenuation in the body (Att), as well as
detection (εdet) and selection (εsel) efficiencies, and may be approximately expressed as:

S =
∫ z=AFOV/2

z=0
dz

[∫ θmax(z)

θmin(z)
(εdet(θ) · Att(θ))2 · sin θdθ

]
· ε2sel/Lpatient (1)

The above formula was derived assuming that the activity is distributed uniformly in the
line source with the length of Lpatient. Angle θ denotes the angle between the direction of
gamma photons emitted from the source and the main axis of the tomograph; the term
εdet(θ) = 1 − e−μd/sin(θ) accounts for the changes of the detection efficiency as a function
of the θ angle, with d denoting the radial thickness of the scintillators and μ stands for
the linear attenuation coefficient equal to 0.833 cm−1 in case of the LYSO crystal, Att(θ)

indicates fraction of 511-keV photons which does not interact in the imaged object. In
the case of the assumed cylindrical phantom with radius of r, the term Att(θ) is approx-
imated by e−μwater r/sin(θ) with μwater ≈ 0.096 cm−1. The term sinθ dθ stands for the
angular dependence of differential element of the solid angle, and the angular range θmin
to θmax determines the angular acceptance (solid angle) of the tomograph for the emis-
sion from the point z along the axis. Selection efficiency εsel (in crystal-based detectors)
may be estimated as the photoelectric fraction which for the LYSO crystals is equal to
about 0.34. This will underestimate the true efficiency because when the first interaction
is a Compton interaction the photon may still be successfully detected.
In the case of the single organ imaging, when the image object is shorter than the AFOV,

the integration in formula 1 should be performed over the range from AFOV/2 - Lorgan/2
to AFOV/2. The values from attenuation are based on the National Institute of Standards
and Technology, NIST database (https://www.nist.gov/pml).

Influence of solid angle in long axial FOV systems

As we make the scanner longer, more LORs emitted from the patient will hit the detector
ring, as discussed in detail in [19]. The total solid angle for a point in the centre versus
the axial extent of a PET scanner is shown in Fig. 3. At a length of 1 m, already 80% of the
solid angle is covered, with 50 cm more than half of the solid angle is covered . So for a
single point source (which is an approximate model for single organ), the primary gain is
already in the first 50 cm to 1 m and only marginal gains are obtained by extending the
PET scanner more in the axial direction.
A line source in the axial direction can be approximated by a set of closely placed point

sources, and sensitivity can be obtained by integrating the solid angles for each of the
points, see Eq. 1 . The fraction of detected over emitted counts for line sources of 1 m

https://www.nist.gov/pml
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Fig. 3 The geometrical acceptance for a point-like source and line sources of 10 cm, 100 cm and 200 cm
length in the transverse centre of a PET scanner with a diameter of 80 cm. The y-axis shows the fraction of the
solid angle

length or 2 m length (in the transverse center of the scanner) as a function of axial length
is shown in Fig. 3. The choice for a source of 1 m length is motivated by the approximate
axial distribution of whole-body organs of interest (e.g., brain to pelvis) for typical human
height. It shows that 50% of counts of a 1-m-long source emitted in a 1-m-long scanner
are hitting the detector ring, for a 2-m-long source this reduces to 25% of the counts. By
increasing the axial length to 150 cm, one can increase the geometric sensitivity above
75% for a 1-m-long source.

Influence of detector efficiency and object attenuation in long axial FOV systems on point and

volume sensitivity

In a realistic imaging situation, there is also attenuation by the object itself and the
detectors are not perfect and have limited detection efficiency.
For large oblique angles, these two effects (one caused by the object and one by the

imperfect detection system) counteract each other as illustrated in Fig. 4: the longer the
path of an LOR through the patient, the higher the probability of attenuation will be. So if
one takes this into account, the gain due to the large solid angle of a total body PET system
will be reduced. The effect of attenuation is relatively large for 511 keV as the total path
needs to be taken into account (both photons need to escape). A graph of the attenuation
versus angle is shown for a phantom diameter of 20 cm.
On the other hand, LORs at large oblique angles, which escape the body, have a higher

probability for detection as they will encounter more detector material due to their
obliqueness. In Fig. 5, we illustrate the relative increase for a total body system with per-
fect detectors (pure solid angle gain) and take the influence of attenuation and detector
stopping power into account (assuming 20-mm-thick LYSO).
These curves show that the negative effect of phantom attenuation dominates the

positive effect of higher detection efficiency for large oblique incidence. The dashed-
double-dot curve in Fig. 5 shows that with a standard PET detector (20-mm-thick LYSO)
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Fig. 4 The influence of the oblique angle on attenuation and detection efficiency in a long axial FOV scanner

activity (inside a realistic attenuating object) in the centre of the FOV about 5% of the
emitted photons pairs can be detected. This point is reached for a scanner length of about
1 m.
Using the same methodology as before to calculate the volume sensitivity of the line

source, we also take into account the effect of object attenuation and detection efficiency,

Fig. 5 The fraction of detected two-photon events for a central point source taking into account the
detector acceptance (Acc), detection with 20-mm-thick LYSO crystals (Acc & Det), attenuation caused by a
20-cm phantom (Acc & Att) as well as (Acc & Att & Det) and selection of event forming events (Acc & Att &
Det & Sel). The y-axis displays fraction with maximum value equal to 1
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shown in Fig. 6. This figure is similar to Fig. 3, but shows only the overall sensitivity S for
different lengths of the line source.

Howmuch sensitivity can be gained for different sources?

The ratio versus the sensitivity obtained by a 20-cm axial FOV scanner curves (shown
in Fig. 7) show that the gain for a point source is reasonable but limited to a factor 3
and is already reached at an axial length of about 70–80 cm. For extended sources, the
gain is much larger and goes up to factors 15 for a 1-m-long scanner and above 40× for
a 2-m-long scanner. Taking into account the detection, efficiency increases the gain, but
attenuation has a larger (and negative) effect and reduces the gains.
Point sensitivity is related to human PET scanning where an increased point sensitivity

helps to detect and quantify more focal lesions. Volume sensitivity assumes that one is
only interested in quantifying the tracer uptake in a bigger volume, like a large portion of
the human body. In several cases, we want to have a simultaneous image of the torso and
head of a patient; in these cases, we benefit from the large increase in volume sensitivity.

Total body PET system developments
Challenges in total body PET with existing PET detectors

Several groups and companies have pixelated PET detectors with the required per-
formance with regard to spatial, TOF and energy resolution for building a total body
PET system. When extending systems in the axial direction, the major remaining chal-
lenges are mostly related to engineering developments like data handling, cooling and
sufficiently fast image reconstruction [83].

Detection of coincident events

While the singles rate per detector will be comparable to current systems, there will
be a much higher coincidence rate to be handled inside these systems, requiring more

Fig. 6 Sensitivity for detection and selection of image forming events for a point-like, 10-cm-long,
100-cm-long and 200-cm-long central line source taking into account the attenuation caused by a 20-cm
phantom and the detection efficiency of a 20-mm-thick LYSO detector. The y-axis displays fraction with
maximum value equal to 1
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Fig. 7 The sensitivity gain versus a 20-cm axial FOV PET system for a central point source, and for a
200-cm-long line source, the curves for pet and det and sel overlap as the gains remain the same. The gain
on the y-axis is the ratio of sensitivity versus the sensitivity of a 20-cm axial FOV PET system

advanced coincidence electronics. When making the choice for online storage of all sin-
gles events, large datasets will be collected and need to be processed offline to form
coincidences [20, 34]. This seems attractive as for example patient-dependant coincidence
windows (for oblique LORs larger time differences need to be accepted) can be imple-
mented. It is challenging in this case to keep the combined processing and reconstruction
time comparable to acquisition times. However, it has been shown that clinically accept-
able processing and reconstruction times are achievable with off the shelf computing
power and efficient coding [26].

Data size and reconstruction

Iterative methods like OSEM are now the standard reconstruction method for any PET
scanner and will very likely remain the preferred method in the near future.
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Listmode seems the most natural way to store coincidence events containing informa-
tion about detector elements and TOF (and eventually energy) information. Listmode
becomes favourable when the number of events is smaller than the number of possible
sinogram bins. Several new developments (e.g. TOF) lead to a faster growing number of
bins than events. The large amount of coincident events per time unit generated by a total
body PET system will require the use of extensive processing power to bring reconstruc-
tion times at an acceptable level. Another challenge will be the long time storage of the
data in this format.

Alternative formats like histoprojections or histoimages use the available informa-
tion from TOF to position the event into image space before reconstruction. Events are
grouped into images or projections [67] according to their polar and transverse angle,
and image reconstruction can be reduced to efficient operations like convolution filtering
or Fourier transforms with filters [38]. This format does reduce the amount of required
data storage per study and can lead to fast reconstruction times independent of the count
statistics.
A next generation of reconstruction algorithms based on machine learning [71] may

combine the accuracy and fast computation of analytical reconstruction with the higher
signal to noise ratio of iterative reconstructionmethods. Other authors have implemented
a deep learning-based method for accelerating iterative image reconstruction [13].

Preclinical imaging systems

Several improvements in PET have been introduced first in animal systems as the total
component cost of these systems is more within reach of research labs. Besides the early
developments in long axial FOV scanners for human imaging, there has been a similar
trend in small-animal imaging systems towards long axial FOV.While the first generation
systems typically had an axial length in the range of a couple of centimetre [80], the sub-
sequent systems were covering a larger fraction of the animal (typically 8–10 cm). One
of the most installed systems, the Inveon small-animal PET scanner, is characterised by a
127-mm axial length but has still a relatively large 161-mm crystal ring diameter. In the
last generation systems, the axial FOV (around 12–15 cm) is larger than the transverse
diameter and these systems easily cover the complete body of a mouse and a large portion
of a rat. The reasons for this early evolution towards total body coverage in small-animal
systems are the limited amount of scatter in small objects like mice, which obviates the
need for detectors with very good energy resolution. The cost for detector material is
also a smaller fraction of the total system cost compared to clinical systems. The newest
generation of systems are based on monolithic crystals [30, 54] with different DOI layers
enabling a reduction of the detector ring diameter and an extension of the FOV in the
axial direction while still improving spatial resolution.

Explorer project

Animal systems

Prior to the first human systems, (large) animal systems have been developed based on
clinical technology (Siemens mCT and United Imaging) to demonstrate the potential of
new applications and total body imaging capabilities in veterinary imaging. The goal of
these systems is to test the technology at a smaller scale and to explore new applications
in large animals that may translate to humans. The systems also have a geometry and
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sensitivity which makes them very suitable for human brain imaging. The first system is
called MiniExplorer I [5] and is based on the detectors and electronics from a Siemens
mCT (diameter of 87 cm and axial length of 23 cm): the same number of detectors is used
but the bore diameter (87 cm) is reduced by a factor two, these detectors are then used
to expand the FOV in the axial direction (23 cm) by a factor of two to 45.7 cm, result-
ing in a system with about 50% solid angle coverage. The system also uses for the first
time TOF information for dedicated animal imaging.The system is installed in the Cali-
fornia National Primate Research Center at UCDavis. The characteristics of this system
are described in Table 1, and first results [82] have been published recently showing 18F-
FDG dynamic study of a juvenile rhesus monkey. The high sensitivity enables images of
one second frames. A 40-min scan 18 h post injection showed the low-dose capability of
total body PET systems.
The second system is called the MiniExplorer II and is based on the detector tech-

nology of United Imaging, which is also used for building the human uExplorer. The
characterisation of this system has been presented recently at the first total body PET
Imaging conference in Ghent, Belgium [1], and the results are shown in the same Table 1.
The major differences are the improved TOF resolution (400 ps compared to 600 ps),
the reduced pixel size of the detector elements (2.76 mm versus 4 mm) and the slightly
increased axial length.

Human systems: uExplorer and PennPET explorer

The USA-based EXPLORER [14] program (funded by NIH) program was started in 2015.

Table 1 Specifications of the developed total Body PET systems for animal (or human brain) use in
the Explorer project

System MiniExplorer I MiniExplorer II

Scintillator LYSO LYSO

Readout PMT SiPM

Scintillator size (mm3) 4 × 4 × 20 2.76 × 2.76 ×18.1

Total detector elements 32448 NA

Bore/detector diameter 32.0/43.5 NA/52

Axial length (cm) 45.7 48.3

Resolution (FWHM in mm)

Transaxial 3.0 2.62

Axial 3.0 2.61

Energy res. (%) NA 11.7

Energy window 425-460 430–...

Scatter fraction (%)

NU4 16.5 (NU-4) 17.8

NU2-2012 NA 41.9

Sensitivity

% 5% (NU-2) 12.5% (630 keV)

kcps/MBq 57.16

Coincidence window (ns) 3.6 (46 deg acc. angle) 2.9

TOF resolution (in ps ) 609 409

Peak NEC (kcps )

NU-4 peak monkey 1741 (@158 MBq)) 1761.8 kcps@59.4kBq/cc

NU-2 -2012 NA 298.7 kcps@8.4kBq/cc

Several parameters are not yet available as these are systems in development
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It has led to the construction of the first total body PET scanner, called uExplorer, by
United Imaging Healthcare America, a North American Subsidiary of Shanghai United
Imaging Healthcare, and uses SiPM technology from SensL Technologies, Cork, Ireland.
The 195-cm-long system has become operational in mid-2018. The detector is composed
of 2.76 × 2.76 × 19.1 mm3 LYSO pixels. The small pixel size results in a high spatial res-
olution of 3 mm.The main difference with all other commercial PET scanners is the large
solid angle (194.8-cm axial extent), which leads to the highest sensitivity of any PET sys-
tem. The system is based on an impressive number of crystals (564,480) arranged into
13340 crystal blocks. The number of SiPMs (53,760) is more modest by using a sparse
readout method. The system is combined with an 80 detector row CT (in front of the
PET scanner). All available specs can be found in Table 2. The system is oriented towards
exploring the potential of total body imaging, and the first clinical results (showing the
dynamic option, low count studies and fast static scans) have recently been reported
in [2].
Parallel to this system, there has also been a major development at the University of

Pennsylvania, called the PennPET Explorer [26]. This system is based on the Philips tech-
nology used in the Vereos scanner. The detector is an array of 3.86× 3.86× 19mm3 LYSO
pixels readout by Philips DPC digital SiPM (64 channels per detector). This detector is
based on one-to-one coupling between detector pixel and SiPM. The first 3 rings of the
system were completed in May 2018, resulting in a system with a 70-cm axial FOV. The
current ongoing extension of this system is a further doubling of the axial length of the
FOV to 140 cm. First results have been presented at the total body PET imaging confer-
ence and are shown in Table 2. The excellent TOF resolution (below 250 ps) was obtained
by additional cooling (compared to the Vereos) of the digital SiPMs. This excellent TOF

Table 2 Specifications of the developed human total body PET systems in the Explorer project

System Penn PET Explorer uExplorer

Scintillator LYSO LYSO

Readout SiPM (digital) SiPM

Scintillator size (mm3) 3.86 × 3.86 × 19 2.76 × 2.76 × 18.1

Total number of detector pixels 564,480

Bore/detector diameter 70/81 68.6/78.6

Axial length (cm) 70/140 194.8

Resolution (FWHM in mm)

Transaxial 4.0 3.0

Axial 4.0 3.0–3.5

Energy res. (%) 10 11.7

Energy window 440-660 430-645

Scatter fraction (%)

NU2-2012 32 35.8

Sensitivity

kcps/MBq NU-2 55 191.5 (@0 cm)

Coincidence window (ns) 5 ns 4.5-6.9 ns (ring difference
dependent)

TOF resolution (in ps ) 250 ps 505 ps

Peak NEC (kcps )

NU-2 -2012 (70-cm phantom) >1200 kcps (for incomplete 70-cm system) 1435 kcps@16.8 kBq/cc

(175-cm phantom) 1718 kcps@8.0 kBq/cc



Vandenberghe et al. EJNMMI Physics            (2020) 7:35 Page 17 of 33

resolution differentiates this system from the uExplorer (400 ps), and the final design of
140 cm axial length will result in a comparable effective sensitivity. Compared to the uEx-
plorer, this system will initially be more oriented to research use, rather than clinical use
since it does not yet have FDA510(k) clearance.

How to use the higher sensitivity?

As current PET imaging is mostly focussed on imaging a relative large part of the body,
it is clear that total body PET concept can lead to significantly improved sensitivity
compared to the current available systems. This opens different options for its intended
use. In general terms, one can use the higher sensitivity in four different ways (or any
combination of these).

1. A first option is to keep the acquisition time and administered dose equal and use
the higher sensitivity to improve the SNR of images. In several studies, the number
of counts is not sufficient to get good image quality, specific cases of these may be
the therapeutic isotope Y-90 with very low specific abundance and scanning for
example tracers at late time points after several half-lives.

2. A second option is to keep the acquisition time equal and use the order of
magnitude in higher sensitivity to reduce the administered dose in vulnerable
groups (e.g. paediatric) or for applications where the radiation dose is an important
concern. This may also be interesting for imaging tracers with high cost and
limited availability (e.g. Zr-89). Also for centers at relative large distance from a
cyclotron, this can become an interesting option.

3. A third option is to scan much faster and increase the number of patients per day
scanned on a PET system. Especially in areas where the number of PET scanners
versus the population is small, there may be a high demand for conventional FDG
PET scans.

Besides the higher sensitivity with the potential for faster, low-dose or dynamic scan-
ning, it is also interesting that such a system will give simultaneous information about
multiple organs or systems. Several indications may come in the scope of PET imag-
ing. In combination with low-dose imaging, the potential number of indications (also
outside oncology) for PET may grow significantly. As this review is focussed on the
technical developments, we refer to recent papers on the potential applications of this
technology [15].

Length of a total body PET and potential applications
The cost of a PET system is mostly dominated by the volume of crystals, the area of pho-
todetectors and the required electronics. While it is clear that the full 2-m system is the
one with the most flexibility for research, this system is of course also the most expensive
solution and may be out of reach for most clinical centers. Another practical consider-
ation of a 2-m system may be a claustrophobic feeling inside the long tunnel of such a
system and so display technology inside the bore may be needed to help minimise this
effect.

Axial length

Several designs have been proposed: all systems have a bore diameter in the range of 70–
80 cm but the FOV varies in axial length ranging from 70 cm, 1 m, 1 m 40 and the full 2 m,
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Fig. 8 Total body PET systems with an axial length of 70 cm, 100 cm, 140 cm and 200 cm

as shown in Fig. 8. The patient shown has a length of 1 m 70. A 1-m axial length will cover
the torso in the majority of population. The sitting height of 95% of American males and
97.5% of the female US population is below 1 m.
An estimate of the component cost of a total body PET system versus a system with 20

cm axial length is shown in Fig. 9 . The relative cost is based on available prices of CT
systems (same for all designs) and quotes from LYSO and SiPMs in large quantities.
The optimal length for introducing total body PET into current clinical routine or

research will depend on what the major applications are, and whether the benefits will
justify the additional cost for a research institute or a clinical department. Therefore, it
is interesting to look at the gain in sensitivity versus a system with 20 cm for different
objects, as shown in Fig. 10 . We selected a point source representing a single organ, 1-m-
long cylinder representing the head + torso and a 2-m-long cylinder for the full body of
the patients. For single organ, all systems have a very comparable gain (2.5-3.5× higher)
and the optimum is reached with a 70-cm system. For a 2-m-long object, there is con-
sistent clear gain up to 40× for a 2-m-long scanner. The slope in sensitivity gain for a
1-m-long object reduces when going beyond 1 m 40.

Fig. 9 Increase in component costs for a 70-cm, 100-cm, 140-cm and 200-cm system versus a system with 20
cm axial length; the y-axis is the system cost in relative units
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Fig. 10 The increase in sensitivity as a function of axial length for a point source, short object 10 cm, a
100-cm-long phantom and a 200-cm–long phantom all filled with activity. The y-axis displays the relative
gain versus a system with 2-cm axial FOV

Currently, PET scanners are compared based on NECR (noise equivalent count rate).
For the same dead time per detector unit (simulations are based on a Paralyzable 300-
ns dead time per detector block of 5 × 5 cm), we simulated the NECR for 2 different
phantom lengths (70 cm and 140 cm). The resulting curves are shown in Fig. 11. It is
clear that the gain for a 2-m-long system compared to a 1-m-long system is moderate for
a standard 70 cm. Only for a 140-cm phantom a 2-m-long scanner has a clear increase in
peak NECR.
The gains in sensitivity for different designs are summarised in Table 3.
When the primary aim of a total body PET scanner is to use it in current clinical practice

for FDG imaging, an axial FOV of 70 cm (9–10 higher sensitivity than current state of the
art) up to 1 m is a logical choice. It will allow to reduce the dose, increase the throughput

Fig. 11 The increase in NEC as a function of axial length for a 70-cm-long and a 140-long phantom for
systems of 20, 70, 100, 140 and 200 cm axial length. Simulations are based on a Paralyzable 300-ns dead time
per detector block of 5 × 5 cm
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Table 3 Gain for different objects and axial length of total body PET systems

Axial length Gain in single organ sensitivity vs 20 cm axial length Gain in body sensitivity
(1–2-m-long object) vs 20
cm axial length

70 cm 2.5–3.5 × 9–10 ×
100 cm 2.5–3.5 × 15–20 ×
140 cm 2.5–3.5 × 20–30 ×
200 cm 2.5–3.5 × 30–40 ×

or increase the number of patients per day and is the most economical choice. Designs
with a longer axial FOV will be in the first phase research systems exploring the potential
of total body PET. They can become interesting for clinical centers for new applications
requiring dynamic total body scans or for ultralow-dose scanning.

Next technical steps
As described before, the major limitation for introducing these systems in clinical routine
is the higher cost of such scanners. The major component leading to the high cost is the
amount of scintillation material and the second most expensive component is the readout
sensor. Some optimisation by distributing the same amount of scintillator over a longer
axial FOV [49, 61] is possible, but the total cost of the scintillator material remains high.
As the high system cost is a major limiting factor, alternative PET detector technology
which could significantly lower costs is of high interest. The high cost of the scintillator
material is expected to remain at a high level while only a limited reduction in the costs
of the SiPM and readout electronics (due to mass production) can be expected. How-
ever, there are some alternative design solutions for reducing the component cost which
can have a major impact on the total cost of the systems. One can adapt the geometry,
introduce gaps and use deep learning to reduce the effect of low count data.
These solutions are described in the next section, starting with the most evident

methods, followed by more fundamental changes in the system.

Lowering the cost of total body PET

First, we describe the options to reduce the cost per detector module in total body PET,
as illustrated in Fig. 12.

Reducing the scintillator thickness

One evident way of reducing the cost of the system is to use scintillators (the most
expensive component) with reduced thickness. The major drawback is the fast drop in
coincidence sensitivity. A detailed study [61] compared different axial lengths from 20–
75 cm but with the same total amount of scintilator volume, so using thinner crystals for
longer axial lengths. Keeping the scintillator volume equal to a system with 18 cm axial
FOV and 20-mm-thick LYSO, it was found that the optimal system (with LYSO) had a
thickness of 10 mm and an axial length of 36 cm.
The loss in coincidence sensitivity may be partially compensated by a better TOF

performance for thinner crystals. Several groups have reported TOF resolutions of
100–150 ps for a crystal thickness in the range of 3–10 mm.

Different detector materials

We have included a table with the properties of the most common scintilllators in PET
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Fig. 12 Different options to reduce the cost of the detectors (scintillator, sensor, electronics) in total body
PET systems

and added a plastic scintillator (Table 4). Of particular interest are scintillators like BGO
and plastic scintillators which are significantly of lower cost.

BGO

Especially in 3D mode, scanners based on L(Y)SO are performing better than BGO for
PET scanners. The main reasons are the higher countrate capability, better energy and
timing resolution, explained by the better light yield and shorter scintillation time. This
leads to better randoms and scatter rejection. BGO, the scintillator used in the first PET
systems, has however a superior attenuation coefficient and higher photoelectric fraction
than L(Y)SO:Ce. For the total body PET system design, the advantage of this scintillator
is that the cost for the same volume is about 2–3 times lower than L(Y)SO.
While Siemens and Philips are using exclusively L(Y)SO for their PET systems, GE

Healthcare still has a line of PET/CT scanners based on BGO detectors [52]. The
last generation of clinical BGO-based PET scanners (GE discovery-IQ) is operating

Table 4 Scintillators used in PET

Scintillator Light output (photons/Mev) Decay time (ns) Density (g/cm3) Light attenuation length (cm)

LYSO 32000 41 7.1 20.9

BGO 8500 300 7.13 22.8

GSO 7600 30-60 6.71 22.2

LaBr3 65000 15 5.29 16.0

BC-408 (plastic) 11000 2.1 1.023 380
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in fully 3D mode, has an axial length of 26 cm and has shown an acceptable scat-
ter fraction at the NECR peak of 36.2% by increasing the lower energy treshold to
425 keV. The sensitivity at center of FOV is 22.8 kcps/MBq, which is one of the high-
est in the field. The detector block is consisting of 6.3 × 6.3 × 30 mm3 BGO
crystals. The crystals are however relatively large (6.3 × 6.3 × 30 mm3) com-
pared to L(Y)SO-based systems which have crystals of around 4 mm transverse and
axial dimension and therefore better system spatial resolution. System design studies
for a 1-m-long low-cost (pixelated) BGO system have been presented recently [84].
While these systems are based on PMT readout, the combination with improved SiPMs
may reduce some of the limitations of BGO. The performance of monolithic BGO
blocks readout with SiPMs is quite promising for PET scanners with large volume of
scintillators [23].
While initially BGO was considered as a non-TOF capable PET scintillator, this has

changed in the last years. The Cherenkov effect leads to an instantaneous photon
yield of about 10 photons per 511-keV event. BGO is also a transparent scintilla-
tor with a high refractive index of about 2.15. Excellent results have been reported
in combination with digital SiPMs by the group in TUDelft [8]. At the single crystal
level, excellent TOF full width at half maximum (FWHM) below 400 ps for a crys-
tal thickness of 20 mm has been reported. The full width at tenth maximum (FWTM)
values are however relatively high (around 3 ns), which would be expected to have
a negative impact on the benefits of TOF-assisted reconstruction. Another important
major change has been the combination of BGO with the availability of novel SiPMs
working in the NUV region [31]. Using this combination coincidence, resolving time
values (FWHM) of about 270 ps from 2 × 3 × 2 mm and about 560 ps from
3 × 3 × 20 mm BGO crystals were measured. When photodetectors with improved
response in the near UV/blue response can be developed, better timing resolutions can be
expected.
One particular advantage of BGO over L(Y)SO is that for PET studies with very low

activity BGO-based scanners do not suffer from intrinsic radiation like Lutetium-based
scintillators [21]. This effect has not been studied in detail for total body PET systems, but
may introduce some limitation in the case of ultralow-dose imaging due to the relative
high amount of scintillator material in these systems.
Right now, BGO seems to be the main competing scintillator for L(Y)SO for a total

body PET design as it is also available at low cost and in large quantities. There continues
to be research into new scintillators with favourable properties, although these are not
yet practical for large-scale production. Another interesting alternative for L(Y)SO may
be LuAP [32] as it combines high density of 8.34 g/cm3 with fast response time (17 ns).
Also the energy resolution is at least equivalent to LSO. It does however not have a sim-
ilar cost advantage as BGO. Other interesting scintillators with more light and without
intrinsic activity are LaBr3 and CeBr3. The main disadvantage is the lower density and
higher probability for compton interaction (lower photoelectric fraction), although these
disadvantages can be minimised by the large geometric sensitivity gain of a long axial
FOV system.

Besides only changing the detector itself , there are also other options by departing from
the conventional multiring approach, as illustrated in Fig. 13.
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Fig. 13 Proposed cost-effective designs for total body PET systems

Plastic scintillators

A system built from axially arranged plastic scintillator strips is proposed by the group in
Krakow [41, 44]. This technology can be used as an alternative to inorganic scintillators
and can lead to cost-effective total body scanner. As the design makes use of much less
expensive detector material, the cost for the same volume is about 80 times lower than
for L(Y)SO. The mean path is much longer, and to achieve comparable stopping power, a
much greater thickness is needed for plastic. In this type of scintillators, nearly all inter-
actions will be due to the Compton scattering, making the discrimination of scatter more
challenging than in conventional PET systems.
The reduction of scatter fraction is, however, possible [42] and as it was shown in ref-

erence [29], the selection of events with energy loss higher than 200 keV decreases the
scatter fraction down to about 35%.
With plastics strips, the number of electronics channels may be reduced significanty

also for the total body PET, because of more than order of magnitude lower light atten-
uation of plastics compared to crystals [73], and hence application of long strips. In
principle, a total body PET may be constructed from two 100-cm-long cylinders or even
single 200-cm-long strips since the plastic scintillators’ attenuation length may be as long
as 400 cm. So far, a prototype of plastic PET with 50 cm axial length was commissioned
[47]. The low density of plastic scintillators (around 1.032 g/cm3) will however require
larger amount of detector material. The readout at the edges facilitates also possible appli-
cation of plastic PET as an insert to MRI or even CT scanners. But if the plastic is made
thick enough, it may not be possible to use it as an insert in the bore of a standard
MRI or CT. Yet, the axial arrangement enables for application of many concentric detec-
tion layers compensating for the low efficiency of plastic scintillators [44] as illustrated
in Fig. 14.
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Fig. 14 The axial arrangement allows for concentric layers of scintillation material

Figure 15 compares the sensitivity gain for the registration of true events with plastic
and LYSO detectors. It shows results of calculations (Eq. 1) assuming 2-cm-thick LYSO
blocks and 6-cm total thickness of plastic scintillator layers. The figure illustrates that
the total body plastic PET with total thickness of 6 cm may increase the sensitivity with
respect to the current 20-cm length PET based on LYSO crystals by more than factor
of 20, which is two times less compared to the total body PET from LYSO crystals. The
mechanical robustness of plastics compared to crystals enables the construction of a light,
modular and portable total body PET system. These scintillators are also fast enough to

Fig. 15 Sensitivity gain, with respect to 20-cm length LYSO PET, as a function of the axial length for LYSO
(2 cm thick) and plastic (two 3-cm-thick layers) detectors. Results for a point-like, single organ (10 cm), as well
as 100-cm and 200-cm sources are shown
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enable TOFmeasurements [43] to improve noise properties in human body PET imaging.
In principle, a TOF resolution below 100 ps is achievable [44, 51].

Detector configuration

Sparse axial coverage of detectors

3D PET contains redundant data, and it is not necessary to fill all axial rings with
detectors to obtain tomographic information. Yamaya et al. [79] proposed an ‘open
PET’ geometry, consisting of two axially separated detector rings. While the initial
ideas were mostly focussed on the benefits for in-beam PET imaging (creating a gap
in the axial center), this concept may also be of use for creating total body PET sys-
tems with reduced cost. Up to 50% of the detector surface can be gaps at the expense
of significant sensitivity loss: by reducing the detectors by a factor of two, the volume
sensitivity will drop by a factor of 4. A recent study [81] for a Philips Vereos design
showed that removing 50% of detectors in the transverse or the axial direction did not
have a major impact on the SUV values. Phantom and human imaging results reported
for the initial configuration of the PennPET Explorer [26] were acquired with gaps
between the rings corresponding to a data loss of 30% of each ring, thereby demon-
strating the potential to trade-off in axial length between sensitivity and total number of
detectors.

Axially oriented scintillator-based detectors

The detector proposed in the AxPET collaboration departs from the conventional PET
detector with radially oriented crystals [3]: long crystals are oriented parallel with the
main axis of the scanner and readout on both sides by photosensors. The main advantage
of this approach is a reduction in the number of readout channels and parallax free data
resulting in a very small degradation of transaxial resolution. This approach may be an
interesting option for building scanners with increased axial FOV.

Reducing the readout complexity

An evident way to reduce the number of channels is to use PMTs instead of SiPMs. As
shown in one of the early total body PET designs (using Photomultiplier tubes), the EB-
PET by Wong [74], the quadrant sharing approach may be an effective way to reduce the
number of readout sensors and channels. While in a conventional PET block design 4
small PMTs are used per detector block, in this design, a larger PMT is used and it is
now shared between 4 detector arrays. The EB system is using large 39-mm round PMT,
and in this way, the number of PMTs required for a 1-m-long PET is equal to 1768 for
the 205,700 crystals. This approach was recently adopted for the uExplorer, but there it is
based on much smaller SiPMs. It has the advantage of reducing the number of channels,
which is important for expensive devices. On the contrary, there is poor light coverage
since these devices are much smaller than PMTs. This has an effect on the timing and
energy resolution.
While most clinical systems are still based on PMTs, the cost-benefit ratio of SiPMs

has however seen a major improvement and this will have an impact on the final sys-
tem performance of a PET system. The most recent PET detectors are based on SiPMs,
and this readout is also used in the first total body PET systems for human use. The one-
to-one coupling used in the Philips Vereos PennPET Explorer is the most evident choice
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to have the best performance at the detector level. The GE detector does not have 1-
to-1 readout and the SiPM does not cover the complete crystal block and so has worse
timing. The United Imaging detector block has the least coverage and poorer timing per-
formance. Even with the lower light collection due to incomplete coverage, an excellent
energy resolution of 11.7% and good timing resolution of 409 ps is reported.

Image reconstruction and deep learning

An alternative solution may be the combination of reduced number of detectors (or
thinner scintillators) and a further improvement of image quality with methods like regu-
larised reconstruction. Some recent studies have also used deep learning [11] to estimate
high count images from lower count studies predicting a possible reduction with a factor
of 4 in counts and may be applied to total body PET scanners. Combined with anatom-
ical information, some recent studies even claim a factor of 100× lower counts [12]. For
brain PET-MR imaging data, factors up to 200× count reduction are claimed with these
methods [77]. In another recent paper, the authors have used deep learning to estimate
full-dose PET images from 1/10th dose PET images [24].

Improving the performance of total body PET

Instead of reducing the cost of the detector, there is also the option to further enhance the
detectors used for building total body PET. The Explorer design has a full body coverage
and maximised the geometric sensitivity but can still be improved with regard to some
other parameters. From the technical perspective, there is still room for further improving
these systems with d of interaction (DOI). Three possible lines of improvement are the
TOF resolution (United Imaging uExplorer has about 500 ps TOF, PennPET Explorer
has 250 ps), high spatial resolution and DOI. An illustration of the influence of these
improvements in transverse and axial direction is shown in Fig. 16.

Improving the effective sensitivity by better TOF

Current PET systems with the best TOF resolution (at the system level) are the PennPET
Explorer (250 ps) and the recently introduced Siemens Biograph Vision (214 ps). Several
detector groups have shown in a lab setup performance down to 100 ps, often at the
expense of detector thickness. The interesting property of TOF is that it increases the
effective sensitivity for any object larger than its effective TOF kernel. As 400 ps is already
equivalent to a FWHM of 6 cm, gains for any time resolution below 400 ps will be seen

Fig. 16 Two possible improvements in future total body PET systems: introduction of DOI and better TOF
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in any part of the human body. The axial extension of a PET system is mostly relevant
for objects with a length comparable to the length of the scanner. Short axial objects (e.g.
Human brain) will therefore have a higher effective sensitivity in a systemwith 70 cm axial
length and 200 ps, than in a system with 140 cm and 400 ps TOF.
Most TOF PET detectors are based on simple signal processing techniques like

leading edge discrimination or constant fraction discrimination to estimate the TOF
difference. Methods that use as input the digitised waveforms from the detector to
estimate TOF can further improve performance. Using a deep convolutional neural
networks (CNNs) to estimate TOF directly from the pair of digitised detector wave-
forms resulted in about 20 percent improvement [4], compared to methods like leading
edge discrimination and constant fraction discrimination. Direct sampling at multi-
ple time points can be enabled by the last generation of FPGAs [20] and can deliver
more accurate TOF information. In this way the need for dedicated ASICS can be
avoided.
With the current detector technology (LYSO + SiPM), 100 ps at a system level may

be reachable with some reduction in detector thickness, which also reduces the scintil-
lator cost. An important evolution are the Calcium co-doped versions of LSO leading to
increased light output and shorter decay time compared to current LSO(Ce) scintillator,
which will lead to faster timing resolutions [57].
The future of reconstruction less PET with 10 ps TOF [33] will require new detector

technologies. It will take quite some time before this technology is developed and mature
enough to be introduced in clinical systems.

Improving the system by better detector spatial resolution and DOI

A four-layer depth-of-interaction (DOI) detector for TOF PET has been proposed by a
group in Japan [64] . They have shown that using the DOI information and using a timing
correction dependent on the depth can improve time resolution. As demonstration of this
principle, they reported an improvement in timing resolution (measured in combination
with fast BaF2) from 730 to 477 ps in FWHM. Monolithic scintillators are promising for
this concept as they deliver accurate DOI information.
The intrinsic limit of spatial resolution in clinical PET is determined by positron

physics. While in preclinical systems the limit is mostly determined by positron range,
clinical systems are dominated by the effect of acolinearity [35]. For a diameter of 60–
80 cm, the best possible spatial resolution is about 2 mm due to non-collinearity of the 2
gammas . The aim of the ultimate detector should be to have an intrinsic spatial resolution
well below this value, so the detector itself has a limited contribution on the system spatial
resolution. Our estimates [35] are that such a detector should have a intrinsic resolution
better than 1.3 mm.
A detector with very good intrinsic spatial resolution alone is not sufficient to build

the ultimate PET system. First of all, this property should also be combined with suffi-
cient stopping power and very good TOF resolution. Due to the relative thick detectors,
improving the intrinsic spatial resolution alone will not result in a uniform spatial resolu-
tion over the FOV. Therefore, also DOI measurements are required. None of the current
PET or proposed total body PET systems has this capability. Total body systems would
benefit more from this information as there is DOI in both transverse and axial directions
in TB-PET.
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A pixelated detector with all required properties of TOF, good intrinsic spatial reso-
lution and DOI is hard to realise. DOI with multiple layers has always been a challenge
in this type of detectors. Reducing the pixel size will lead to better spatial resolution,
but also less light output and will have a negative impact on energy and TOF resolution.
Monolithic detector technologies are used now frequently in preclinical systems. They
are also promising for clinical systems as they can combine accurate DOI based on the
light spread function, with high intrinsic spatial resolution. Very good TOF may be the
most challenging parameter for this technology as the light is spread over a larger area
of photodetectors. New fast algorithms for fast and accurate TOF estimation should be
developed to exploit the full potential of these detectors. Very good results have been
shown for detectors in a lab setup, but have not yet been realised in full systems. The cost
of monolithic detectors is comparable to pixelated detectors when built as blocks with
pixel sizes (2–4 mm) used in current clinical systems. The readout and positioning in
this type of detectors is however more complex and costly than pixelated detectors. This
may be a major limitation for building full total body PET systems based on monolithic
detectors; however, the availability of more advanced Field-Programmable Gate Arrays
(FPGAs) can lead to a fast development for these systems.
Based on an initial design of a paediatric PET system with long axial FOV [40], a com-

pact total body PET design with only 3–4 times the detector material of a current PET-CT
scanner has been proposed [69]. Besides only improving the sensitivity, the aim is to also
take a large step in spatial resolution (approaching the limits of clinical PET) by using
high-resolution monolithic detector technology. This technology has been implemented
in several preclinical systems and now seems mature enough for using it in clinical sys-
tems. Compared to preclinical systems, the detector cost can be reduced by adapting the
size of the crystal and the number of SiPM pixels.

Discussion
The first total body PET systems have included TOF in their system and were combined
with CT. This seems to be a logical choice as the high sensitivity of these new PET designs
will lead to PET acquisition times close to the speed of CT acquisitions; also the main
driver for these systems is body imaging which is primarily done with PET-CT. Combin-
ing with MR would be suboptimal as the acquisitions of total body MR would be much
slower than with PET. The total cost of the system would also be significantly higher.
The first systems have mostly been the result of an academic effort and a new company

on the market (United Imaging). Only one of the three major vendors (Philips via the
project at UPENN) is indirectly involved in the development of a total body system. A
similar situation was seen with the clinical introduction of TOF, which was first realised
at the University of Pennsylvania in the Philips Gemini TF in 2006. Within 2–3 years the
other vendors also introduced TOF in their PET systems. This may be a possible scenario
as the current PET detector technology of all major vendors are also suitable for building
total body PET systems and the full realisation of these systems is mostly an engineering
challenge (cooling, countrate and image reconstruction).
The introduction of total body PET systems is a typical example of technology push

introduction: research and development in new detector technology and system design
brings a new imaging system to the market. It is not yet clear what the market for this new
type of systems will be, but there seems to be quite some potential for existing applications
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and new fields can be explored. It is hard to predict how this technology will spread, but
recent examples of new technology in nuclear medicine can be instructive:
In the case of PET-CT (introduced in 2000), the combination of both systems has com-

pletely taken over the standalone PET market and also led to a significant growth of PET
as an imagingmodality. Besides the clinical benefits of combiningmolecular with anatom-
ical imaging, one of the drivers was the higher throughput: by adding a CT to PET, lengthy
transmission scans can be avoided at a moderate extra cost of adding a CT scanner to the
PET system. These systems have also a clear application in oncology imaging.
PET-MRI is another multimodal system introduced around 2010, but has only been a

moderate success [68]. While nearly all technical challenges (like interference between
modalities and the challenge of MR-based attenuation correction) have now been solved
and there is a clear benefit by dose reduction, the introduction of this system in clinical
routine has been limited. Themain reasons for this seem to be the significantly higher cost
of the system, the limited throughput (compared to PET-CT) and the lack of a clear appli-
cation for combiningMRwith PET. Using theMR to its full extent also requires dedicated
personnel. Finally, the introduction of the PET ring inside the MR also requires a wide
bore MR system and is associated with a reduced performance compared to standalone
MR systems. A third example is the introduction of TOF [25, 60], which was also adopted
in a short period and is now also present in nearly all new PET-CT scanners [16, 66]
and the most recent PET-MR systems. The combination of improved image quality with
faster scanning has lead to shorter scan time and a higher throughput, and it was intro-
duced at a reasonable extra cost. Most centres have used TOF to speed up the acquisition
and only slightly reduced the administered dose to the patient. A fourth example is the
introduction of SPECT-CT: this technology was introduced quite soon after PET-CT, and
there has been a slow but steady introduction in the market and now most systems will
be combined SPECT-CT systems. Compared to SPECT standalone (mostly done without
transmission scans), the throughput is not much higher, but the additional value of the
CT scan seems to justify the significantly higher cost (700 kEuro for a SPECT-CT versus
400 kEuro for a standalone SPECT).
One can expect the first introduction of total body PET in large research centres focus-

ing on the development of novel tracers for imaging and therapy and on the use of PET in
drug development. Similar as with other expensive imaging systems (7T MRI, PET-MR,
linac-MRI), institutional and government funding should allow the acquisition of these
high-cost systems by a reasonable number of centres in the world. The major technical
advantages of these systems (simultaneous and dynamic imaging of a large part of the
body, low-dose capabilities and scanning at late time points) are the key factors catching
the interest of these centres, and they can have a large impact on their research.
Increasing patient throughput while preserving image quality will be the main driver

for purchasing a total body PET. The use of a total body PET system will be a trade-off
between reduced scanning time and reduced tracer dose and will depend on the specific
situation of each PET center (capacity of tracer synthesis etc). Also, the choice of the
optimal length for the axial FOV will depend heavily on the specific demands of each PET
center.

Conclusions
Since the first concept idea of total body PET in the early 1990s, the detector technology
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has improved significantly with regard to energy and timing resolution. Another major
change since that time has been the transition of PET from a modality mostly used for
fundamental and clinical research into clinical routine (accelerated by the combination
with CT). Since 2000, most PET scans are related to oncology and typically a large portion
of the body is acquired in these scans. This type of scans is the one in which total body
PET systems have superior performance (10–40× higher sensitivity), so there is also a
clear direct application for this technology.
The combination of available detector technology with substantial funding from NIH

and a major contribution from the medical imaging industry has very recently led to
the realisation of the first total body PET systems: 2 systems were built for large animal
imaging and 2 systems for human applications. As predicted by extensive simulations,
these systems show superior performance with regard to sensitivity and at least equal
performance for the other parameters (compared to the current systems). The first clin-
ical results of these first total body PET systems have impressed the community, and it
can be expected that several institutes will add it to their research equipment. The avail-
ability of this technology in the first centres and probably within the next years in other
large research centres will enable the demonstration of its benefits in clinical imaging and
clinical research.
The major hurdle for spreading this technology in clinical centers is the much higher

cost of such scanners. As shown in this paper, for body imaging, quite large gains (9–
10×) can already be obtained using scanners with an axial length of 70 cm and this length
is already optimal for organ-specific imaging like brain scanning. Looking at the typi-
cal set of PET scans performed in a clinical center, such a system would already enable
much higher throughput and enable ultralow-dose imaging for specific populations (e.g.
paediatric). For institutes starting in molecular imaging, the high sensitivity of total body
PET systems may justify the high cost of this system by avoiding the need for an onsite
cyclotron. Before a clinical centre can justify the much higher cost for the 1-m-40- or 2-
m-long axial FOV systems, it will first require demonstration of its clinical benefits in the
first pioneering institutes.
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