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With the introduction of combined PET/MRI systems, AIF conversion can be made

under certain circumstances (see [1]). We propose a model that allows modification of

the injection parameters in the AIF fit to account for differences caused by different

injection durations [2].

Brain 18F-Choline PET and DSC-MRI data were obtained using Siemens mMR. The

MR contrast agent was injected with a rate of 4ml/sec and the PET tracer was injected

manually. Perfusion Mismatch Analyzer [3] was used to extract the MRI-AIF. Carotid

arteries were segmented on a post contrast MPRAGE image. PET frames were regis-

tered onto this MPRAGE image using rigid registration and partial volume correction

was done using the iterative Yang method [4]. The AIFs were fitted using a convolu-

tion of a ‘double Butterworth’ function, representing the injection, with a tri-exponen-

tial function representing the elimination [Eq. 1]. The bolus shape can be adjusted by

Figure 1 Simulated MRI-AIFs using Parker’s population-based input function refitted with the developed
function. AIF shapes with different injection durations, Δτ is shown.
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changing Δτ (τ2 - τ1). This was tested with a population based MRI AIF [5], as well as

with clinical data.
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Figure 2 The double Butterworth convolution function used to fit (a) DSC-MRI data and (b) 18F-Choline
PET data together with a plot where the timescale of PET-AIF was limited to MRI-AIF’s to show different
bolus widths.

Figure 3 The MRI-AIF with modified τ1 and τ2 values plotted together with the PET-AIF. The MRI-AIF peak
is scaled to PET-AIF’s peak.
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For the population based input function, Figure 1 shows that when Δτ was increased,

lower and wider peaks were seen, and with decreased Δτ, higher but narrower peaks

were observed. Figure 2 shows that the function fits both clinical PET and MRI AIFs

well. Values of τ1 and τ2 were changed to modify the MRI-AIF and Figure 3 shows the

modified MRI-AIF together with the original fitted PET-AIF, normalized to their

peaks. Two AIFs have similar peak shapes but start to differ at the elimination phase

as Gd-DOTA and 18F-Choline have different tissue uptake rates.

This enables conversion of the early part of the AIFs from one modality to another

even if different injection protocols are used.
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