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Abstract

Prostate cancer is one of the most common forms of cancer among men. Early
diagnosis, correct staging, accurate detection of metastasis, and monitoring of the
therapy are the key tasks that could greatly benefit from medical imaging. After a review
of the main developments in the field of positron emission tomography (PET) tracers for
prostate cancer, the impact of improved PET instrumentation with good spatial
resolution and high sensitivity is discussed, together with the latest development in PET
technology: lutetium oxy-ortho-silicate (LSO) and lutetium-yttrium oxy-ortho-silicate
(LYSO) scintillators, resolution recovery, and time-of-flight reconstruction. New directions
and multiple approaches in PET instrumentation for prostate cancer are presented and
discussed. In particular, improved hardware and noise suppressing reconstruction
algorithms allow for higher detectability of small lesions and better spatial resolution in
PET/computerized tomography (CT) and PET/magnetic resonance (MR). This can be
beneficial for guiding biopsy and surgery and for accurate therapy monitoring.
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Introduction
Medical imaging techniques are used in prostate cancer (PCa) for diagnosis, staging,

detection of local recurrence and metastasis, and therapy monitoring. They include

ultrasound (US), computerized tomography (CT), planar bone scintigraphy, single pho-

ton emission computed tomography (SPECT), positron emission tomography (PET),

and magnetic resonance imaging (MRI). In the last decade, there has been an increase

of the use of PET for prostate cancer and a greater interest in investigating PET im-

aging capabilities for this application [1-7]. The increased use of PET still requires the

development of a new tracer that is both sensitive and specific for prostate cancer.

Assuming such an agent will be developed and there are several candidates, imaging of

prostate cancer will be challenging and will probably require additional improvements

in instrumentation.

The first step in the diagnosis of prostate cancer is often an anomalous prostate-

specific antigen (PSA) value. The PSA test is not specific for cancer, lacks in the ability

to differentiate low-grade and high-grade cancer, and is not able to localize the tumor.

Typically, after an elevated serum PSA, a blind biopsy guided by transrectal ultrasound

is performed. The biopsy is ‘blind’ as it systematically places needles within the pros-

tate rather than guiding the needles to specific abnormalities. It has been observed that

this biopsy may detect only 50% of the clinically significant malignant areas found on
Conti; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
icense (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
rovided the original work is properly credited.

2014

mailto:maurizioconti@siemens.com
http://creativecommons.org/licenses/by/4.0
http://www.ejnmmiphys.com/content/1/1/11


Conti EJNMMI Physics Page 2 of 112014, 1:11
http://www.ejnmmiphys.com/content/1/1/11
histological examination of the whole prostate (after removal of the prostate) [8,9]. The

ability to reliably assess the location and the aggressiveness of prostate cancer without

removing the prostate could have a strong impact on the choice of patient treatment.

Once the prostate cancer has been diagnosed, the typical treatment options for

organ-confined prostate cancer are radical prostatectomy, radiation therapy, and active

surveillance. More precise localization of the tumors would improve treatment for all

these options. For instance, surgeons could spare critical nerves in areas of low risk

and perform wider resections near the tumor. For radiation therapy (RT), correct

localization of the tumor could improve the delivery of radiation to increase both the

safety and the efficacy of this treatment [10,11]. However, both surgery and RT are not

without significant risk of clinical side effects. Because urinary incontinence and erect-

ile dysfunction are not uncommon after radical prostatectomy and RT, there is also a

growing concern regarding the risk for overdiagnosis and, consequently, overtreatment

of potentially indolent disease. Since most of the patients with non-aggressive disease

might not experience clinical effects of prostate cancer in their lifetime, a technique

called ‘active surveillance’ can be used: no treatment is adopted, but the cancer is moni-

tored as closely as possible to be able to intervene as soon as needed. For patients

choosing active surveillance, non-invasive localization and characterization of the

tumor could allow for monitoring of the lesion and moving to an active treatment only

if and when needed. Accurate imaging techniques could be very important to monitor

a possible evolution of the disease under active surveillance.

Despite best efforts, about 10% of men progress to metastatic disease. Typically, prostate

cancer metastases occur first in the pelvic lymph nodes and bone. Early lymph node in-

volvement is especially hard to detect by conventional imaging methods such as ultrasound,

CT, or MRI, because the metastasis in lymph nodes is small and grows slowly, making it dif-

ficult to diagnose positive nodes on the basis of enlargement of the nodes. Therefore, pelvic

lymph node dissection is often necessary, with associated risks [1]. For bone metastasis,

bone scintigraphy is used, but it is non-specific and characterized by poor spatial resolution.
Review
PET and PET tracers for prostate cancer imaging

PET (and PET/CT) has been used as a method for prostate tumor localization. The stand-

ard oncology PET tracer, 18F-FDG, has been disappointing for early detection and

localization of primary PCa because of high bladder activity, relatively low tumor uptake,

and low specificity [1,6,7,12]. Alternative PET tracers that exhibit higher sensitivity and

slightly higher specificity have been used, such as 11C-labeled and 18F-labeled choline and

acetate [13]. The lack of specificity of the most common PET tracers and the poor

resolution of the PET cameras are seen as the major limitations of PET imaging [3,5,14].

Another key limitation, common to PET and all other imaging techniques, is the inability to

discriminate between indolent and aggressive disease [5]. In Table 1, a list of the main PET

tracers, available or under development and test, is shown, and a brief review of their

characteristics is presented in this section.

Imaging with 18F-FDG
18F-FDG has low uptake and low sensitivity in the primary stage of PCa and in the pelvic

lymph nodes; moreover, it does not differentiate benign prostate hyperplasia, postoperative
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Table 1 PET tracers for prostate cancer

Tracer Mechanism Specificity
18F-FDG Glucose metabolism Non-specific
11C/18F-choline Lipid metabolism Non-specific
11C/18F-acetate Lipid metabolism Non-specific
18F-NaF Calcium analog Non-specific
11C-methionine Amino acid transport Non-specific
18F-FACBC Amino acid transport Non-specific
18F-FLT Cell proliferation Non-specific
18F-FMAU Cell proliferation Non-specific
18F-FDHT Androgen receptor Specific
18F-DCFBC, 64Cu/89Zr-J591, 68Ga-PSMA, others PSMA inhibitors/antibodies Specific
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scarring, and malignant tumors [12,15]. On the other hand, it has shown some capability in

imaging and assessment of treatment response in advanced castration-resistant (both to

medical and surgical treatments) prostate cancer [6,12].

Imaging of phospholipids (choline)

Choline is a component of biologic membranes. Malignant tumors show increased

demand for cell membrane synthesis and, accordingly, an increased uptake of choline

[6,13]. The main PET tracers based on choline are 11C-choline [16,17], 18F-fluor-

oethylcholine (FEC) [18], and 18F-fluorocholine (FCH) [19]. Urinary excretion of 18F-

choline is higher than that of 11C-choline, but overall imaging methods and results

are similar between different choline agents. The main difference is the half-life: the
11C-choline half-life is 20 min, and the 18F-choline half-life is 110 min. This agent

has been in development for at least 10 years and is engaged in research facilities

around the world.

Imaging of fatty acid synthesis (acetate)

Prostate cancer itself is associated with an increase in fatty acid synthesis. A high con-

centration of 11C-acetate has been seen in prostate cancer. This tracer also has the

benefit of not being excreted by the kidneys, making it preferable to 18F-FDG for visu-

alizing pelvic disease but suffers from the short half-life of 11C [20,21]. 18F-acetate is

also available but has not been widely applied.

Imaging of bone metastasis activity with 18F-fluoride
18F-fluoride (typically NaF) is a high-sensitivity tracer for the detection of bone metas-

tases in patients with prostate cancer, but it is not tumor specific [22].

Amino acid transport imaging and cell proliferation

Uptake of 11C-labeled methionine is associated with amino acid transport and pro-

tein synthesis during tumor proliferation. Methionine is rapidly cleared from the

blood and is metabolized in the liver and pancreas without renal excretion, making it

more suitable than 18F-FDG for imaging pelvic disease [4,7]. Another tracer that fol-

lows the amino acid transport mechanism is 18F-FACBC which is a radiolabeled ana-

log of leucine [23]. Other tracers associated with cell proliferation have been used,

such as 18F-FLT and 18F-FMAU [6]. All these tracers are not prostate cancer specific.
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Imaging of androgen receptor expression
18F-fluoro-5a-dihydrotestosterone (FDHT) is a radiolabeled analog of dihydrotestoster-

one, the main androgen receptor ligand. The androgen receptor plays a major role in

PCa growth. FDHT is typically used to monitor metastasis in advanced disease and has

specifically been used to develop new hormone therapies for treating cancer [6,7].

New PCa-specific tracers

A new generation of PCa-specific tracers is being developed and tested that target

tumor antigens that are unique to prostate cancer. These include ligands such as anti-

bodies and small molecules that bind to specific sites associated with PCa growth; for

example, the prostate-specific membrane antigen (PSMA). Most new tracers are

presently in the animal testing phase or early human testing phase. PSMA and PSA are

being targeted with antibodies, such as 89Zr-J591 or 64Cu-J591 for PSMA [24] and
89Zr-5A10 for PSA [25]. Other PSMA ligands are 68Ga-PSMA [26] and 18F-DCFBC

[27]; both tracers are already being tested on patients. Animal studies showed excellent

imaging capabilities of 124I and 18F minibodies binding to the prostate stem cell antigen

(PSCA) [28,29].
Need and value of new PET technologies

In addition to the lack of a widely available PET imaging probe for prostate cancer, an-

other problem is that prostate cancer, at its early stages, tends to be small within the

prostate, within lymph nodes, and within early bone metastases. A high-resolution,

high-sensitivity, and high-specificity method to accurately localize cancer within the

prostate and in the pelvic region would be highly beneficial. Since new more specific

PET tracers are being developed and tested, the need for better instrumentation be-

comes stronger, in particular, the need for PET cameras with few millimeter resolution

[5,11,14]. Apart from the lack of a specific tracer, the noise level and the spatial reso-

lution have been limiting the proficient use of PET in prostate cancer diagnosis and

treatment monitoring. A review of the scientific literature shows that published studies

with fluorodeoxyglucose (FDG), choline, and acetate were limited to lesions larger than

5 mm [5,12,14], and often poor performance was observed for lesions smaller than

9 mm [30] or even less than 2 cm in the presence of high noise or background [14].

High-sensitivity, high-resolution molecular imaging instrumentation, coupled with

the new high-uptake and high-specificity molecular agents, can provide help for:

� Guiding the biopsy and reducing understaging (and overstaging) and treatment;

� Monitoring the untreated tumor under ‘active surveillance’;

� Guiding prostatectomy, reducing positive margins, and sparing healthy tissue;

� Reducing the need of surgical removal of pelvic lymph nodes;

� Monitoring response to therapy; and

� Detecting metastasis at an early stage.

In Figure 1, a flow diagram of prostate cancer diagnosis and treatment is shown, with

the possible positive effect of an improved PET imaging technique (red).

The increasing availability of a new generation of PET scanners in the clinical envir-

onment makes it now possible to revisit the limitations of PET. The new PET scanners
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Figure 1 A flow diagram of prostate cancer diagnosis and treatment. Also shown is the change of
action and outcome if ‘improved PET’ imaging techniques (red) are used.
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have higher sensitivity and improved reconstruction algorithms: both factors contribute

to lowering of the noise level and allow for the exploitation of the full spatial resolution

of the PET scanner. The impact of new PET technologies has not been fully assessed in

this field.

The following innovations can have a positive impact on prostate cancer imaging:

� new scintillation materials: lutetium oxy-ortho-silicate (LSO) and lutetium-yttrium

oxy-ortho-silicate (LYSO)→ higher sensitivity

� smaller detector crystals→ higher resolution

� longer axial coverage (>20 cm)→ higher sensitivity

� resolution recovery reconstruction→ lower noise, higher contrast

� time-of-flight reconstruction→ lower noise, higher sensitivity

� new development of PET/MR→multimodality synergy

From the point of view of PET image reconstruction, two innovations can be under-

lined as driving the present evolution: resolution recovery (or point spread function) re-

construction and time-of-flight reconstruction. Point spread function reconstruction

(PSF) is characterized by significant noise reduction and contrast enhancement [31].

Time-of-flight reconstruction (TOF) allows for faster convergence and reduced noise

propagation; it is less sensitive to imprecise attenuation and scatter correction, and it

works as a virtual sensitivity amplifier [32,33]. The combination of these techniques has

had a significant impact on image quality and detectability of cancer lesions [34-37]. In
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particular, the noise reduction and virtual count amplification offered by the PSF +

TOF reconstruction and the actual increase of sensitivity offered by LSO and larger

field of view (FOV) could allow for a smaller pixel size in the reconstructed image and

eliminate or reduce the need for image smoothing.

An example of a possible new direction for high-resolution imaging is provided in

Figure 2. An image quality phantom, scanned on a Siemens mCT PET scanner

(Siemens AG, Munich, Germany) [38], has been reconstructed using a standard itera-

tive algorithm, ordered subset expectation maximization (OSEM), with typical image

pixel size of 4 mm (a) and using OSEM with PSF and TOF, with smaller pixel size of

2 mm. The scan contains 26 × 106 total true counts, equivalent to a typical FDG oncol-

ogy study. Conventional OSEM with a smaller pixel size results in high noise and poor

image quality (d). Adding only PSF allows for imaging with a 2-mm pixel size, with ac-

ceptable noise level and slightly improved resolution (b). Adding only TOF produces a

higher resolution image with higher noise level (e). But the combined effect of PSF and

TOF allows for lower background noise and improved spatial resolution (c). In fact, this

detectability improvement with smaller pixel size and advanced reconstruction has been ob-

served by other groups [39].

Given this new landscape of PET instrumentation development, at least three ap-

proaches could be taken in order to improve spatial resolution and sensitivity of PET

scanners for prostate cancer imaging: (1) a standard whole-body PET scanner, with PSF

and TOF reconstruction, and a reconstruction protocol optimized for prostate cancer;

(2) a standard large-ring PET scanner with a high-resolution insert [40-43], with a local

magnification effect [44,45]; and (3) a dedicated small-diameter PET camera with small

scintillating crystals, possibly in multimodality [46-48].

Each of these approaches has advantages and disadvantages. The first option, using

the new generation of TOF PET scanners at full resolution, without any insert, does

not require any development effort, but probably cannot achieve the same results as

the other two solutions, in terms of spatial resolution. The PET insert in a standard

PET scanner could take advantage of the large installed base already available in hospi-

tals and improve the local spatial resolution, but a considerable effort should be put

into reconstruction development for the new geometry. A dedicated camera can be

more compact and easy to use and has a lower cost but would require a large demand

and engineering effort to become a reliable standard.

It is already possible to assess the improvement opportunities associated with the first

approach, using simulation and reprocessing experimental data from clinical sites,
OSEM 4mm PSF 2mm     PSF+TOF 2mm       OSEM 2mm OSEM+TOF 2mm
(a)             (b) (c) (d) (e)

Figure 2 Transaxial slice of an image quality phantom, scanned on a Siemens mCT, reconstructed
using different methods. (a) A standard iterative algorithm (OSEM) at typical pixel size of 4 mm, (b)
OSEM + PSF with 2-mm pixel size, (c) OSEM + PSF + TOF with 2-mm pixel size, (d) OSEM with 2-mm pixel
size, and (e) OSEM + TOF with 2-mm pixel size.
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acquired in the past with non-TOF PET scanners. In an ongoing study at Siemens

Healthcare Molecular Imaging, a set of clinical PET images of patients with prostate

cancer, acquired using 11C-choline and 11C-acetate, were selected as a starting point for

a simulation [49]. Small lesions were added via software in selected locations, with vari-

able size and intensity. Then, the 3D images were forward projected into a sinogram

space, assuming a TOF capability, using the sinogram representation of a Siemens

mCT TOF PET scanner [38]. In the process, detector sensitivity, attenuation, scatter,

randoms, and Poisson noise were added. The data were reconstructed with different re-

construction methods.

A fused PET/CT transaxial slice of a sample patient, scanned on a BGO-based PET/

CT with 11C-choline as a tracer, is presented in Figure 3. The patient, weight 65 kg,

was injected with 295 MBq of 11C-choline, and acquisition time was 120 s. The patient,

imaged before a prostatectomy, was diagnosed with prostate cancer that was localized

in the prostate. The original image had 5.5 × 5.5 × 3.3 mm3 voxels, the reconstruction

method was OSEM with 20 subsets, 2 iterations, and a 6-mm post-reconstruction filter

(Figure 3a). Two simulated lesions were inserted in the pelvic region: the size of both

lesions was 6 mm, and the simulated SUV was 8. One can appreciate the improved vis-

ual detectability using PSF + TOF and 2-mm pixel size and 4-mm filter (Figure 3c) over

the original reconstruction method (Figure 3b). The two lesions, not visible at low reso-

lution, are clearly visible using PSF + TOF and high resolution.

These images, based on simulations of realistic distributions of prostate cancer PET

tracers, hint that it is possible to push the past limits of detectability and localization of

small tumors in the pelvic area, if using the present generation of TOF PET scanners.

This needs to be confirmed by experimental data. Some clinical studies are already

showing a marked improvement in detecting small metastatic lesions in prostate cancer

[50]. Also, PET images have to be correlated with post-surgery histological examina-

tions to verify the PET capability to correctly identify the spatial distribution of cancer-

ous cells and its concentration. A recent simulation study attempted to quantify the

smallest detectable activity in a prostate cancer small lesion or metastasis [49]. Such

smallest detectable activity can be correlated with number of cancer cells in the lesion.

If experimental studies could confirm minimum detectable activity, and if such limit
a b c

Figure 3 A prostate cancer patient with 11C-choline injection. (a) The original fused PET/CT image, with no
simulated lesion (the ‘true’ original large tumor is visible in the prostate); (b) the OSEM reconstruction with the
same parameters as in the original image (5.5 × 5.5 × 3.3 mm3 voxels, OSEM with 20 subsets, 2 iterations, and a
6-mm post-reconstruction filter), after insertion of two 6 mm lesions with SUV = 8; (c) the PSF + TOF reconstruction
with 2-mm voxel size and 4-mm filter, after insertion of the two 6-mm lesions. The arrows point to the location of
the simulated lesions.
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were acceptable compared to the accuracy of the histological examination, then one

could think of replacing lymph node surgery with non-invasive imaging. Up to now,

clinical studies aimed to assess the value of PET/CT for preoperative nodal staging

were disappointing or only partially encouraging [51,52]; on the other hand, the new

generation of TOF scanners were not used in those studies. In general, it needs to be

assessed whether we can reduce false negatives and false positives using better recon-

struction and what kind of support the improved spatial localization and improved

small-tumor detectability can provide to biopsy and/or surgery.

The other key issue in prostate cancer diagnosis and therapy, together with detect-

ability and accurate localization, is the tumor characterization and the non-invasive dis-

crimination of aggressive from indolent disease. In this field, the new PET/MR

multimodality could be very instrumental [53-55]. As PET/CT has shown in the past

decade, two combined modalities are a powerful tool to improve accuracy and specifi-

city in the diagnosis, and MR has superior capability in imaging soft tissue, as com-

pared to CT. There is evidence that PET and MR imaging, and multiparametric MR in

particular [56-58], reinforce each other and improve the reliability of the diagnosis

[30,59,60]. From the point of view of PET, few studies are available that attempt to

correlate the kinetic parameters of the PET tracer or the SUV values with aggressive-

ness of the disease [21,23,61]. Past results are sometimes contradictory for choline and

acetate, and the newer tracers still need to be fully characterized. Higher sensitivity

PET scanners and improved reconstruction algorithms offer lower noise and better

accuracy, and this could be beneficial also for tracer kinetics studies, possibly reducing

measurement uncertainty and providing clearer results. Multiparametric MRI and

hybrid techniques combining PET and MRI parameters have shown some improvement

in discriminating aggressive from non-aggressive disease [62], and, at least, multiparametric

MRI can provide information about the risk of aggressiveness [58]. In particular, magnetic

resonance spectroscopy imaging (MRSI) has been used for tumor characterization: the rela-

tive ratio of (choline + creatine) over citrate has been seen as a marker of aggressiveness

[59,63]. A recent study on a PET/MR scanner using 18F-choline showed that multipara-

metric MRI, coupled with PET, enhances sensitivity and specificity of the single mo-

dalities, and PET SUV values were found to be better correlated with high Gleason

score than the results of the blind biopsy [60]. In conclusion, improved technologies

and multimodalities, such as multiparametric MR + PET and dynamic PET, could be

useful investigative tools, together with more specific PET tracers, in the search for

markers of aggressiveness [64].
Conclusions
Prostate cancer diagnosis and treatment can greatly benefit from improved imaging

techniques and from PET in particular. The present research emphasis on new spe-

cific tracers and the increasing availability of a new generation of PET scanners in

the clinical environment makes it now possible to revisit the limitations of PET. The

new PET scanners have higher sensitivity and improved reconstruction algorithms:

both factors contribute to lowering of the noise level and allow for the exploitation

of the full spatial resolution of the PET scanner. Higher detectability of small lesions

and better spatial resolution in PET/CT and PET/MR can be beneficial for guiding
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biopsy and surgery and for accurate therapy monitoring. PET/MR, with the support

of multiparametric MRI, could be instrumental to investigate aggressiveness of the

disease.

Today, PET and medical physicists, by optimizing present PET scanner protocols, ex-

ploring new technologies and new multimodalities, and working on new and dedicated

architectures, have a unique opportunity to support physicians and radiotracer scien-

tists in the quest for a better diagnosis and treatment of prostate cancer.
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